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Abstract: Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by
the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However,
its biological activity and specific mechanisms still need to be further elucidated. In the present
study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and
human urine, and 246 potential targets were identified through a literature review and database
analysis. A total of 151 common targets were identified by intersecting them with the targets
of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites
were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic
acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine,
cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1,
EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA,
and ITGAV. The core pathways included the neuroactive ligand–receptor interaction, cancer, and
arachidonic acid metabolism pathways. The molecular docking results showed that bile acids
such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid,
deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3,
NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that
bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and
UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible
hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore
the therapeutic mechanism of bile acids in T2DM.

Keywords: rice resistant starch; hypoglycemic; network pharmacology; molecular docking;
α-glucosidase; α-amylase

1. Introduction

Type II diabetes mellitus (T2DM), a complex metabolic disorder characterized by
insulin resistance and impaired glucose regulation, has become a global epidemic, affecting
millions of people worldwide [1]. With the escalating prevalence of unhealthy dietary
habits and lifestyles, T2DM poses a significant burden on global healthcare systems, and
the pathogenesis of T2DM is not fully understood in current research [2]. However, it is
generally accepted that T2DM is triggered by environmental and genetic factors, including
overweight, obesity, prolonged sedentary behavior, age, ethnicity, and family history [3,4].
The effective treatment of T2DM requires a comprehensive strategy that balances effec-
tiveness with the potential to cause side effects, including nausea, vomiting, diarrhea,
headaches, and even liver function abnormalities, edema, and skin reactions [5]. Rele-
vant research suggests that dietary therapy and Chinese medicine could prevent and treat
diabetes, as well as delaying the onset of complications [6,7].
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Resistant starch (RS), known as anti-enzymatic starch or indigestible starch, is not
digestible in the human stomach and small intestine. However, it can be fermented in the
colon to produce beneficial metabolites for the health of the organism [8]. RS is generally
found in foods such as cereals, vegetables, legumes, seeds, and nuts, and it is characterised
by low water retention and no off-flavor, which not only improves the quality of the
food, but also benefits nutrition and health [9]. In recent years, RS has attracted much
attention as a novel nutritional component. Relevant studies have shown that RS has po-
tential pharmacological effects in improving glycemic control, alleviating insulin resistance,
and lowering blood lipids [10], which might work by resisting digestion, regulating the
activity of enzymes related to T2DM, and modulating intestinal flora disorders [11–13].
Rice (Oryza sativa L.), as a significant source of energy, not only fulfills people’s survival
needs, but also constitutes an essential part of the food culture in various countries. Rice
with high-resistant-starch content has been proven to be one of the most commonly used,
effective, and safe functional foods in humans, and its metabolites have positive effects
on the prevention of chronic metabolic diseases [14]. Kim et al. used metabolomics to
explore the effect of changes in canine fecal metabolites on obesity after the consumption
of Dodamssal rice containing high levels of RS. Their results showed that Dodamssal rice
remodeled the structure of the gut microbiota in obese canines, increased the contents of
core metabolites such as 3-hydroxybutyric acid and 4-aminobutyric acid, and improved the
symptoms of obesity and hyperglycemia [15]. The results of Wan et al. indicated that the
intake of high-resistance rice under a high-fat diet led to a reduction in oleic acid content in
the livers of mice, which could alleviate insulin resistance and ameliorate diabetes through
the linoleic acid metabolism pathway [16]. Gao et al. explored the effects of wholegrain
rice on blood glucose, lipids, and related metabolites in rats, and showed that brown
rice contributed to maintaining lower blood glucose levels, while the serum metabolites
2-acetylpyrazine, glutathione, phosphatidylcholine [18:2(9Z,12Z)/15:0], and phosphatidyl-
choline [O-16:0/18:2(9Z,12Z)] were negatively correlated with fasting blood glucose and
mainly ameliorated hyperglycemia through the glycerophospholipid metabolism and glu-
tathione metabolic pathways [17]. Existing evidence indicates that the metabolites of rice
resistant starch (RRS) have positive regulatory effects on glycometabolism. However, the
precise molecular mechanisms underlying the role of RRS metabolites in the treatment of
T2DM remain unclear and require further investigation.

Network pharmacology has gained significant academic attention due to its applica-
tion in emerging areas such as traditional Chinese medicine and functional food, and it
offers effective tools and methods to explore the pharmacodynamic components and mech-
anisms of action and their potential interactions [18]. Network pharmacology provides a
theoretical foundation for drug discovery and development by integrating knowledge from
various disciplines, such as biology, chemistry, and informatics. It constructs molecular
interaction networks to reveal the intricate relationships between drugs and biomolecules,
including targets, proteins, and genes, and has emerged as a potent tool for investigating
mechanisms of drug action and disease treatment [19]. Currently, the focus of network
pharmacology primarily lies in the chemical components contained within the target prod-
uct. There is limited attention paid to the impact of metabolites from target products on
their targets. To our knowledge, studies on the hypoglycemic properties of RS and its
metabolites with a focus on network pharmacology have not been reported.

In this study, the differential metabolites of RRS were used as the research subject to
predict their potential targets in T2DM therapy, while molecular docking was utilized to
validate their functional efficacy, elucidating their hypoglycemic mechanisms. Furthermore,
the potential mechanisms of RRS in reducing hypoglycemia were validated by inhibiting
α-glucosidase and α-amylase activities in vitro.
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2. Materials and Methods
2.1. Materials

α-glucosidase (50 U/mg), p-nitrophenyl-α-glucopyranoside (p-NPG), glycoursodeoxy-
cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic
acid, and cholic acid were purchased from Shanghai Macklin Biochemical Technology Co.,
Ltd. (Shanghai, China). α-amylase (4000 U/g) was purchased from Shanghai Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). Acarbose, soluble starch, and dimethyl sul-
foxide (DMSO) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). The other chemicals and reagents were of analytical grade and were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Screening of Differential Metabolites and Predicting Targets of RRS

Differential metabolites of RRS in the organism were selected as active ingredients
in this study. In Chinese and English literature databases, such as CNKI (https://www.
cnki.net (accessed on 26 May 2023)), Web of Science (https://www.webofscience.com
(accessed on 26 May 2023)), and PubMed (https://pubmed.ncbi.nlm.nih.gov (accessed on
26 May 2023)), the keywords “rice starch”, “rice resistant starch”, and “T2DM” were used
to screen differential metabolites from different sources to ensure that the results pertained
to the active substances of RRS. The 2D structures of the metabolites were obtained from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov (accessed on 28 May 2023)).
Further screening was conducted using SwissADME (http://www.swissadme.ch (accessed
on 28 May 2023)), which required at least two of the five principles of drug-like property
principles (Lipinski, Ghose, Veber, Egan, and Muegge) to be “yes” and the degree of
gastrointestinal absorption to be “high”. The 2D structures of the target metabolites were
imported into the Swiss Target Prediction database (http://www.swisstargetprediction.ch
(accessed on 28 May 2023)) and screened by probability > 0.1.

2.3. Screening of Common Targets of Metabolites and T2DM

Potential targets related to T2DM were searched in the GeneCards (https://www.
genecards.org (accessed on 17 May 2023)) and OMIM databases (https://omim.org (ac-
cessed on 17 May 2023)) with the keywords “T2DM” and “type 2 diabetes”. Only targets
with a “Relevance score” greater than 15 in GeneCards were considered. Subsequently, the
collected targets were pooled and intersected, and duplicates were removed to obtain the
final screening targets. Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny (accessed on
25 May 2023)) was used to create a Venn diagram of intersecting targets between metabo-
lites of RRS and T2DM. Additionally, Cytoscape 3.10.1 was used to construct a network of
drugs, active ingredients, targets, and diseases. The key metabolites were selected based
on their “Degree” values, which were greater than twice the median.

2.4. Construction of Protein–Protein Interaction (PPI) Network and Screening of Key Targets

To construct a PPI network, the intersecting targets of metabolites and diseases were
imported into the “Multiple Proteins” module of the STRING database (https://cn.string-
db.org (accessed on 30 May 2023)), and the species “Homo sapiens” was selected. The
setting options were set as follows: we chose “full STRING network” for network type, “ev-
idence” for the meanings of network edges, “highest confidence (0.900)” for the minimum
required interaction score, and “enable 3D bubble design” and “hide disconnected nodes
in the work” for the network display options. Subsequently, the node data were imported
into Cytoscape 3.10.1 for visualization and network topology analysis, and the core targets
were selected based on their “Degree” values, which were greater than twice the median.

2.5. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Analysis

The DAVID database (https://david.ncifcrf.gov (accessed on 30 May 2023)) was used
for GO enrichment and KEGG pathway analysis. Intersecting targets of metabolites and
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diseases were imported into the DAVID database to explore potential pathways by which
RRS may interfere with T2DM. Biological processes (BP), cellular components (CC), and
molecular functions (MF) were selected for GO functional enrichment analyses, as well as
KEGG pathway enrichment. Further screening was performed at p < 0.05.

2.6. Construction of Component–Target–Pathway–Disease

The core metabolites of RRS, key common targets, important pathways, and T2DM
were imported into Cytoscape 3.10.1 to establish a network. Topology analysis was then
performed to explore the intervention pathways of RRS in T2DM.

2.7. Molecular Docking of Core Metabolites of RRS and Key Targets

Molecular docking was used to simulate and verify the mechanism of action of RRS in
improving T2DM. The core metabolites of RRS were used as ligands, and the core targets
were used as receptors. The 2D structures of the key metabolites of RRS were downloaded
from the PubChem database, and then imported into Chem3D software to generate the
3D structures with minimum free-energy treatment. Additionally, the protein structures
of the targets were obtained from the PDB database (http://www.rcsb.org (accessed on
29 March 2024)). Water molecules and residues were removed using pymol software,
and the hydrogenation process was performed using AutoDock software to determine
the active pockets of the receptor [20]. Before formal docking, the original ligands were
extracted from the target proteins and re-docked using the pre-determined method to
evaluate the reliability and accuracy of AutoDock Vina in the structural docking of each
protein. The root-mean-square deviations (RMSDs) between the docked ligands and the
original ligands were then calculated, and the RMSD was less than 2 Å indicating high
accuracy of the docking method. Following the evaluation, AutoDock Vina was used for
molecular docking, and the docking results were presented through pymol software.

2.8. Molecular Docking of Core Metabolites of RRS, α-Glucosidase, and α-Amylase

Hypoglycemic experiments were conducted in vitro to validate the hypoglycemic
activity of the key RRS metabolites which were strongly bound to core targets in the molec-
ular docking results. Before the experiments, molecular docking was used to preliminarily
determine the binding ability of key RRS metabolites to α-glucosidase and α-amylase. The
metabolites derived from 2.7. with the highest ranking were used as ligands for docking,
and the receptor protein structures of α-glucosidase and α-amylase were downloaded from
the PDB database (http://www.rcsb.org (accessed on 29 March 2024)). The same methods
were used to preprocess ligands and receptors. AutoDock Vina was used for molecular
docking, and the docking results were presented through pymol software.

2.9. Assay of Inhibition of α-Glucosidase by Core Metabolites

The α-glucosidase inhibition of core metabolites was determined according to the
method described by Tian et al. [21]. In a 96-well plate, 20 µL of sample solutions with
varying concentrations (1 mg/mL, 2 mg/mL, 5 mg/mL, 10 mg/mL, 20 mg/mL) prepared
in DMSO, 20 µL of 0.5 U/mL α-glucosidase, and 100 µL of 0.1 mol/L phosphate buffer
(pH 6.8) were mixed and incubated for 10 min at 37 ◦C. Then, 20 µL of 2.5 mmoL/L
p-Nitrophenyl-α-D-glucopyranoside (pNPG) was added and incubated for 15 min at
37 ◦C. Finally, the reactions were terminated by adding 40 µL of 0.2 moL/L NaOH solution,
and the absorbance values were measured at 405 nm to evaluate the enzyme activity and
calculate the enzyme inhibition. Additionally, α-glucosidase was replaced with an equal
volume of phosphate buffer (0.1 mol/L, pH 6.8) to exclude its effect on the reaction. An
equal volume of ultrapure water was used as a blank control for the samples, and acar-
bose was used as a positive control drug. Three parallels were set up in each group, and
α-glucosidase inhibition was calculated with Equation (1):

Inhibiton rate (%) =
A0 − A2 + A1

A0
× 100% (1)

http://www.rcsb.org
http://www.rcsb.org
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where A0 represents the acarbose of blank control, A1 represents the acarbose of the groups
without α-glucosidase, and A2 represents the acarbose of the groups of experimental samples.

2.10. Assay of Inhibition of α-Amylase by Core Metabolites

The α-amylase inhibition of core metabolites was determined according to the method
described by Wang et al. [22]. A total of 500 µL of each of sample solutions with varying
concentrations (1 mg/mL, 2 mg/mL, 5 mg/mL, 10 mg/mL, 20 mg/mL) prepared in DMSO
and 500 µL of 0.5 U/mL α-amylase were mixed and incubated for 10 min at 37 ◦C. Then,
500 µL of 1% starch solution was added and reacted for 10 min at 37 ◦C. Subsequently,
the reaction was terminated by adding 1 mL of dinitrosalicylic acid and heated in boiling
water for 5 min. After cooling to room temperature, ultrapure water was added until the
reaction system reached 10 mL, and the absorbance values were measured at 540 nm to
evaluate the enzyme activity and calculate the enzyme inhibition. Additionally, α-amylase
was replaced with an equal volume of phosphate buffer (0.1 mol/L, pH 6.8) to exclude its
effect on the reaction. An equal volume of ultrapure water was used as a blank control for
the samples, and acarbose was used as a positive control drug. Three parallels were set up
in each group, and the α-amylase inhibition was calculated using Equation (2):

Inhibiton rate (%) =
A′

0 − A′
2 + A′

1
A′

0
× 100% (2)

where A0
′ represents the acarbose of the blank control, A1

′ represents the acarbose of the
groups without α-amylase, and A2

′ represents the acarbose of the groups of
experimental samples.

2.11. Statistical Analysis

The experimental data were statistically analyzed by Excel 2019 and IBM SPSS Statis-
tics 26. The intergroup statistical differences were analyzed by using Ducan’s test, and
GraphPad Prism 8 was used for plotting the results. All data are expressed as means ± SD,
and p < 0.05 was considered to be statistically significant.

3. Results and Discussion
3.1. Metabolites and Potential Targets of RRS

A total of 93 metabolites were obtained from the literature, including 19 serum metabo-
lites, 52 fecal metabolites, 12 hepatic metabolites, and 10 urinary metabolites, and the species
sources were mice, rats, canines, and humans [15–17,23]. As shown in Table S1, there were
3 saccharides, 3 alcohols, 24 organic acids, 24 amino acids, 17 fatty acids, 14 alkaloids, and
8 other compounds in the selected differential metabolites. Galactose-6-phosphate is an
intermediate product of galactose metabolism and participates in the glycolytic pathway in
galactose metabolism. Additionally, it has been demonstrated that the oral administration
of small amounts of fructose can reduce postprandial blood glucose, insulin, and C-peptide
fluctuations, thereby improving diabetes [24]. The impaired metabolism that occurred
in diabetics, such as increased gluconeogenesis and slowed glycolysis, could influence
inositol metabolism [25]. Additionally, lipid metabolism had also been impaired in diabetic
patients, which could lead to dyslipidemia, affecting glycerol metabolism [26]. Short-chain
fatty acids (SCFAs) such as acetic acid, propionic acid, and butyric acid could regulate
appetite and increase insulin secretion by protecting pancreatic islet tissue from damage
and activating the GLP-1 signaling pathway to alleviate T2DM [27,28]. Additionally, SCFAs
were also found to regulate intestinal flora disorders, which had a positive effect on improv-
ing diabetes [29]. Bile acids have been proven to activate receptors (such as FXR and TGR5)
to improve glucose tolerance, insulin sensitivity, and energy metabolism [30]. Similarly,
drugs like bile acid sequestrants were found to modulate glucose metabolism by improving
insulin resistance [31]. In addition, metabolites such as pyruvic acid and succinic acid are
involved in glycolytic metabolism and tricarboxylic acid cycle, which are closely associated
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with energy production and the development of metabolic diseases such as diabetes [32].
Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Metabolites
such as L-glutamine, L-lactate, pyruvic acid, acetic acid, L-glutamate, D-glucose, L-alanine,
L-threonine, citrulline, L-lysine, and succinic acid have been identified as recurrent poten-
tial biomarkers of DR, suggesting that DR could be mitigated through specific amino acid
and energy metabolic pathways [33]. Palmitoleic acid and oleic acid appeared multiple
times as differentiated metabolites in an organism after interventions with high-resistance
rice. There is evidence that palmitoleic acid is able to alleviate insulin resistance by acti-
vating macrophages and influencing glucose-metabolizing enzyme activities to enhance
glycemic metabolism, while oleic acid primarily contributes to lipid metabolism regulation
and reduces the risk of cardiovascular complications [15,34]. Alkaloids, a class of nitrogen-
containing organic compounds, are widely distributed in plants. Jiao et al. detected an
increase in lysophosphatidylcholine (LysoPC) and phosphatidylcholine levels in T2DM
mice, which potentially indicated the progression of inflammation and reduced insulin
secretion in the organism [35]. Additionally, reduced levels of unsaturated fatty acids
such as eicosapentaenoic acid, arachidonic acid, and 20-hydroxyeicosatetraenoic acid were
observed in this study. These results suggest that these metabolites might play significant
roles in the development of diabetes. Obviously, this evidence confirms the rationality of
selected differential metabolites of RRS, and they could be used in the subsequent network
pharmacology studies.

Subsequently, 93 metabolites were input into the SwissADME database for further
refinement based on the five principles of drug-likeness (Lipinski, Ghose, Veber, Egan,
and Muegge) and gastrointestinal absorption capacity. As a result, 52 metabolites were
finally selected, and detailed information on them is presented in Table 1. Then, 2D
structures of the 52 target metabolites of RRS were imported into the Swiss Target Prediction
database. A probability >0.1 was used as the criterion for filtering the target compounds,
and 246 potential targets were identified.

Table 1. The information of 52 differential metabolites screened by SwissADME.

Metabolites
Principles of Drug-Likeness Gastrointestinal

Absorption Capacity
PubChem

CIDLipinski Ghose Veber Egan Muegge

2-acetyl pyrazine Yes No Yes Yes No High 30914
3-hydroxybutyric acid Yes No Yes Yes No High 441
4-aminobutyric acid Yes No Yes Yes No High 119

Alanine Yes No Yes Yes No High 5950
Asparagine Yes No Yes Yes No High 6267

Aspartic acid Yes No Yes Yes No High 5960
Butyric acid Yes No Yes Yes No High 264

Butyrylcarnitine Yes No Yes Yes Yes High 213114
Chenodeoxycholic acid Yes Yes Yes Yes Yes High 10133

Cholic acid Yes Yes Yes Yes Yes High 221493
Deoxycholic acid Yes Yes Yes Yes Yes High 222528

Fumaric acid Yes No Yes Yes No High 444972
Glutamic acid Yes No Yes Yes No High 33032

Glutamine Yes No Yes Yes No High 5961
Glyceric acid Yes No Yes Yes No High 752

Glycerol Yes No Yes Yes No High 753
Glycolic acid Yes No Yes Yes No High 757

Glycoursodeoxycholic acid Yes No Yes Yes Yes High 12310288
Isobutyric acid Yes No Yes Yes No High 6590

Isoleucine Yes No Yes Yes No High 6306
Isovaleric acid Yes No Yes Yes No High 10430

Lactic acid Yes No Yes Yes No High 612
L-asparagine Yes No Yes Yes No High 6267
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Table 1. Cont.

Metabolites
Principles of Drug-Likeness Gastrointestinal

Absorption Capacity
PubChem

CIDLipinski Ghose Veber Egan Muegge

Lauric acid Yes Yes Yes Yes Yes High 3893
Leucine Yes No Yes Yes No High 6106

L-glutamic acid Yes No Yes Yes No High 33032
Linolenic acid Yes No No Yes No High 5280934

Lithocholic acid Yes Yes Yes Yes Yes High 9903
Lithocholylglycine Yes No Yes Yes Yes High 115245

L-methionine Yes No Yes Yes No High 6137
L-proline Yes No Yes Yes No High 145742
Malic acid Yes No Yes Yes No High 525

Methionine Yes No Yes Yes No High 6137
Myristic acid Yes Yes No Yes No High 11005

N-acetyl glutamic acid Yes No Yes Yes No High 70914
Norepinephrine Yes Yes Yes Yes No High 439260

Oxalic acid Yes No Yes Yes No High 971
Palmitic acid Yes Yes No Yes No High 985

Palmitoleic acid Yes Yes No Yes No High 445638
Phenylalanine Yes Yes Yes Yes No High 6140

Proline Yes No Yes Yes No High 145742
Propionic acid Yes No Yes Yes No High 1032

Pyroglutamic acid Yes No Yes Yes No High 7405
Pyruvic acid Yes No Yes Yes No High 1060
Shikimic acid Yes No Yes Yes No High 8742
Succinic acid Yes No Yes Yes No High 1110

Threonine Yes No Yes Yes No High 6288
Tryptophan Yes Yes Yes Yes Yes High 6305

Uracil Yes No Yes Yes No High 1174
Ursodeoxycholic acid Yes Yes Yes Yes Yes High 31401

Valeric acid Yes No Yes Yes No High 7991
Valine Yes No Yes Yes No High 6287

3.2. Screening of Intersection Targets between T2DM and Metabolites of RRS

The key words “T2DM” and “type 2 diabetes” were used to search the GeneCards and
OMIM databases to identify the targets related to T2DM. As a result, 7496 potential targets
were obtained. Subsequently, the intersecting targets from the GeneCards database with a
“relevance score” greater than 15 and those from the OMIM database, after removing dupli-
cates, resulted in the identification of 3606 potential therapeutic targets for T2DM. Venny
2.1 was then used to create a Venn diagram of intersecting targets between metabolites of
RRS and T2DM, which is shown in Figure 1.
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RRS, metabolites of RRS, common targets, and T2DM were imported into Cytoscape
3.10.1 to produce a “drug-active ingredient-target-disease” network. The result is shown in
Figure 2, where the red part represents RRS; the orange part represents the metabolites of
RRS, and the graphic and font sizes are positively correlated with the “Degree” values; the
green part represents the common targets of RRS and T2DM; and the brown part represents
T2DM. The network diagram was subjected to topological analysis, and the core metabolites
of RRS were screened on the basis of the “Degree” values which were greater than twice
the median. As a result, 11 metabolites were selected as the key active components, namely
linolenic acid, chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), deoxycholic
acid (DCA), lithocholic acid (LCA), lithocholylglycine (GLCA), glycoursodeoxycholic acid
(GUDCA), phenylalanine, norepinephrine, cholic acid (CA), and L-glutamic acid.
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3.3. Construction and Analysis of PPI Protein Interaction Network

A total of 151 common targets of metabolites of RRS and T2DM were imported into the
STRING database for PPI network construction (Figure 3A), in which, the species selected
was “Homo sapiens”, the isolated nodes were hidden, and the high-confidence score was
set to 0.9. Then, the result of the PPI network was input into Cytoscape 3.10.1 for network
topology analysis.

Figure 3. Original PPI network diagram (A) and topological analysis diagram (B) of potential targets
for the metabolites of RRS.
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The result of the PPI protein interaction topology analysis is shown in Figure 3B. The
“Degree” values reflect the strength of the role between each target, with darker colors
and larger fonts indicating higher strength. The result indicated that there were 151 nodes
and 180 edges in the network, with an average node “Degree” value of 2.38. Based on
the principle of “Degree” values which were greater than twice the median, the following
16 key targets were further screened (Table 2): MAPK3, MAPK1, EGFR, ESR1, PRKCA,
FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV.

Table 2. Attribution of main targets.

Target Betweenness
Centrality

Closeness
Centrality

Topological
Coefficient Degree

MAPK3 0.223813617 0.428571429 0.155555556 18
MAPK1 0.199221844 0.428571429 0.145555556 18
EGFR 0.140099305 0.384236453 0.226824458 13
ESR1 0.194078415 0.371428571 0.204545455 12

PRKCA 0.212868248 0.39 0.191056911 12
FYN 0.086891474 0.366197183 0.227272727 11
LCK 0.032375537 0.345132743 0.306666667 10

DLG4 0.19912985 0.331914894 0.189814815 9
ITGB1 0.042968916 0.320987654 0.247863248 9

IL6 0.169924934 0.352941176 0.233333333 9
PTPN11 0.044866981 0.378640777 0.287749288 9
RARA 0.040924344 0.348214286 0.3 7
NR3C1 0.064554392 0.342105263 0.369047619 6
PTPN6 0.003184922 0.310756972 0.438596491 6
PPARA 0.135433492 0.329113924 0.306666667 6
ITGAV 0.017906128 0.331914894 0.410714286 6

3.4. GO Functional Annotation and KEGG Pathway Enrichment Analysis

The common targets of the metabolites of RRS and T2DM were entered into the DAVID
database for GO functional annotation and KEGG pathway enrichment analysis. After
screening, a total of 660 GO enrichment results were obtained, including 454 biological
processes, 82 cellular compositions, and 124 molecular functions. Then, the three types
of GO enrichment results were sequentially sorted from small to large according to the
p value, and the top 10 entries in each group were selected to draw a histogram, which is
shown in Figure 4A. The horizontal axis of the diagram indicates the number of enriched
genes (counts), the vertical axis is −log10 (p value), and the colors from red to blue represent
p values from small to large. The result showed that the response to xenobiotic stimulus, the
positive regulation of cytosolic calcium ion concentration, and arachidonic acid secretion
were mainly involved in biological processes; the plasma membrane, integral component
of the plasma membrane, and membrane raft were the main cellular compositions; and
RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA
binding, zinc ion binding, and steroid binding were the main molecular functions.

A total of 103 KEGG pathway enrichment results were obtained, and the top five
metabolic pathways were neuroactive ligand-receptor interaction, pathways in cancer,
arachidonic acid metabolism, the renin–angiotensin system, and the renin secretion path-
way, indicating that the metabolic components of RRS in organisms could ameliorate T2DM
by regulating the related genes of these pathways. Additionally, the first 15 metabolic
pathways were selected to be represented in KEGG bubble diagrams, and the specific
results are shown in Figure 4B, where the horizontal axis represented the gene ratio, which
indicated the proportion of genes related to the metabolic pathway to the total number of
genes, and the vertical axis was −log10 (p value); the colors from red to green represent
p values from small to large. The results are detailed in Table 3.
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Table 3. Information of enrichment results of main KEGG pathways.

KEGG ID Pathway Gene Ratio (%) p Value Counts

hsa04080 Neuroactive ligand–receptor
interaction

24.50331126 6.08 × 10−19 37

hsa05200 Pathways in cancer 17.8807947 3.93 × 10−7 27
hsa00590 Arachidonic acid metabolism 6.622516556 5.68 × 10−7 10
hsa04614 Renin–angiotensin system 4.635761589 1.42 × 10−6 7
hsa04924 Renin secretion 6.622516556 1.66 × 10−6 10
hsa04726 Serotonergic synapse 7.947019868 2.64 × 10−6 12
hsa05207 Chemical carcinogenesis–receptor

activation
9.933774834 9.29 × 10−6 15

hsa04915 Estrogen signaling pathway 7.947019868 1.55 × 10−5 12
hsa04724 Glutamatergic synapse 7.284768212 1.66 × 10−5 11
hsa03320 PPAR signaling pathway 5.960264901 2.91 × 10−5 9

3.5. Construction of RRS-Metabolite-Target-Pathway-T2DM Network

In total, 11 core RRS metabolites, 16 core common targets, and 15 main metabolic
pathways were imported into Cytoscape 3.10.1 to construct the “RRS-metabolite-target-
pathway-T2DM” network, which is shown in Figure 5. Topology analysis showed that
there were 39 nodes and 88 edges in the network. The red part in the figure represents
RRS, the orange part represents the core metabolites of RRS, the yellow part represents the
core targets of “drug-disease”, the blue part represents the metabolic pathways of RRS in
regulating T2DM, and the green part represents T2DM.

3.6. Verification of Molecule Docking between Core Metabolites of RRS and Targets

Molecular docking was verified using AutoDock Vina software to simulate the process
of the regulation of T2DM by RRS metabolites through key targets. Specific information and
sources on the proteins obtained in the PDB database are shown in Table S2 [36–51]. The
results of molecular docking were evaluated based on the binding free energies, and lower
binding free energies represent a better binding ability of the ligand and receptor. Generally,
a binding energy below −4.25 kcal/moL indicates that there is binding capacity between
the ligand and the receptor, a binding energy below −5 kcal/moL indicates good binding
capacity between the ligand and the receptor, and a binding energy below −7 kcal/moL
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indicates strong binding capacity between the ligand and the receptor [52]. The molecular
docking results of the 11 RRS metabolites with 16 core targets are shown in Figure 6. All
metabolites and targets were freely bound to each other, and most of the binding energies
were below −4.25 kcal/moL. Among the RRS metabolites, the potential biological activities
of CDCA, CA, DCA, GUDCA, LCA, and UDCA were higher. Meanwhile, EGFR, ITGAV,
ITGB1, MAPK3, and NR3C1 had the best binding abilities to core metabolites. Furthermore,
visualization using PyMOL software better illustrated the docking information of the top
five metabolites and core targets in terms of docking energy (Figure 7). The results provide
detailed insights into ligand–receptor docking, with the yellow lines in the 3D structure
representing hydrogen bonds, while the 2D structure primarily depicts the hydrogen bonds
and hydrophobic interactions.
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The results (Figure 7 and Figure S1) show that the interaction between bile acids and
EGFR protein was mainly achieved through linking with amino acid residues such as
Thr790, Leu788, Ser720, Cys797, Thr854, Asp855, and Gly857. Cys797 and Thr790 have
been identified as binding sites for T790M mutation inhibitors in the EGFR T790M/L858R
protein (PDB ID 5HG7) [47]. Additionally, Yun et al. demonstrated that gefitinib and the
AEE788 inhibitor acted on the amino acid residues Thr790, Leu788, Thr854, and Asp855 to
inhibit EGFR kinase mutations [53]. The interaction between bile acids and ITGB1 protein
was mainly achieved by linking to Arg420, Leu419, Glu171, and Arg106. The Arg420 of
ITGB1 was able to form a salt-bridge interaction with the Asp residue in the Arg-Gly-Asp
sequence, facilitating their binding [54]. Similarly, ITGAV is a member of the integrin family
that facilitates cell adhesion to the extracellular matrix by recognizing ligands containing
the RGD sequence, and Arg and Asp residues might play an important role in this process.
Bile acids’ sites of hydrogen bonding to the MAPK3 protein include Glu126, Asp123, Glu50,
Lys131, Ala52, Met125, Ile48, and Asn171. The same active sites appeared upon the binding
of kaempferol 3-rutinoside-4′-glucoside to the MAPK3 protein, where Ala52, Lys131, Ile48,
Asn171, and Glu50 were bound in the hydrogen-bonding mode, and van der Waals forces
were present between Met125, Glu126, and Asp123 and the ligand [55]. Cholic acid was
bound to NR3C1 via the amino acid residue Arg611, which had the same active site as
hydrocortisone, which was bound to the EGFR protein (PDB ID 4P6X).

Core bile acids were able to bind strongly to the five core targets, and most of the
binding sites were consistent with the known binding sites, indicating that the molecular
docking results were reliable. Furthermore, the RMSDs of the original ligands for the five
key targets after docking were less than 2 Å (Table S3), suggesting that the docking methods
and parameters were reasonably designed, and the docking results were highly reliable.

It is noteworthy that bile acids constituted a significant portion of the bioactive fraction
within the metabolites of RRS screened by molecular docking. Among them, CA, DCA,
and CDCA belonged to primary bile acids, while LCA, GLCA, GUDCA, and UDCA
were secondary bile acids. Studies have indicated an association between T2DM and bile
acid metabolism, and bile acids have been found to regulate T2DM by reshaping the gut
microbiota, enhancing bidirectional communication in the gut–liver axis, and reducing the
expression of inflammatory factors [56].

Bile acids are synthesized by the liver, and their physiological functions include the
absorption of nutrients and fat-soluble vitamins in the intestinal tract, facilitating the
metabolism of lipids and toxic substances, and regulating glucose metabolism through
various mechanisms [57]. Bile acids can enhance insulin sensitivity through glucose and
lipid metabolism mediated by receptors. FXR is the main nuclear receptor in the phys-
iological role of bile acids, and its role in maintaining the homeostasis of glucose and
lipid metabolism in organisms had been well established [58]. The results of Han et al.
demonstrated that FXR agonists improved impaired fasting glucose tolerance and alle-
viated symptoms associated with T2DM in FXR-knockout mice [59]. GUDCA is a novel
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endogenous FXR antagonist. In a study that examined the influence of metformin on T2DM
via intestinal flora, the oral administration of metformin attenuated related T2DM symp-
toms, accompanied by a decrease in the abundance of Bacteroidetes, a reduction in bile salt
hydrolase activity, and an increase in GUDCA levels. Therefore, the synthetic metabolism–
GUDCA–gut FXR axis might represent an effective way to ameliorate the dysfunction
of glucose metabolism [60]. TGR5 is a well-studied membrane-bound G-protein-coupled
receptor, and its pathways for improving glucose and lipid metabolism mainly includes
promoting hepatic glycogen synthesis and insulin sensitivity, increasing insulin secretion,
enhancing energy expenditure, and increasing satiety [61]. Numerous studies have in-
dicated that the TGR5 receptor activated by bile acid participates in the regulation of
glycolipid metabolism processes in various tissues [62–64].

Moreover, bile acids have the potential to improve T2DM by reducing the concentra-
tion of cellular inflammatory factors. LCA, a product of CDCA metabolism, falls into the
category of secondary bile acids. Studies have shown that LCA inhibits the production of
TNF-α and IL-1β by macrophages through the activation of FXR and TGR5 receptors, thus
alleviating the inflammatory response [65,66]. Additionally, DCA similarly inhibits TNF-α
production by activating FXR receptors. Additionally, UDCA synthesized by intestinal flora
such as Ruminococcus was found to play a role in regulating the immune system, which
was achieved by reducing cytokine secretion by lymphocytes and inhibiting eosinophil
activation and granule release [67]. In our molecular docking results, the inflammatory
protein IL-6 exhibited low binding affinity with most bile acids, with the strongest affin-
ity observed with GUDCA (−7.1 kcal/mol), suggesting that RRS might alleviate T2DM
symptoms by inhibiting the expression of IL-6 via GUDCA metabolism in the body.

EGFR is a tyrosine kinase receptor that activates intracellular signaling pathways by
binding to ligands such as epidermal growth factor (EGF) and affected processes such as
cell proliferation, differentiation, migration, and apoptosis [68]. The interaction between
enhancers and their target genes plays a significant role in gene regulation and disease
pathogenesis. The study of Yang et al. aimed to determine the genetic relationship between
enhancers and their target genes associated with T2DM, and resulted in the identification
of a pair of SNPs, rs4947941 and rs7785013, which were significantly associated with T2DM
(p = 4.84 × 10−10) [69]. EGFR expression was significantly upregulated in T2DM patients,
consistent with the effects of rs4947941 and rs7785013 on T2DM and EGFR expression,
suggesting that EGFR might be a novel T2DM susceptibility gene. Our molecular docking
results showed that the binding energy of CDCA, GUDCA, and UDCA to EGFR was
lower than −9.5 kcal/mol, indicating that EGFR protein might also play important role in
regulating T2DM.

ITGAV and ITGB1 are two important members of the integrin family which play key
roles in cell–matrix interactions and are involved in a variety of physiological and patholog-
ical processes. In T2DM, hyperglycemia is one of the main features, and prolonged hyper-
glycemia could cause direct damage to the kidneys, leading to diabetic nephropathy [70].
ITGAV promoted the epithelial cell proliferation, migration, and epithelial–mesenchymal
transition of high-glucose-mediated lenses, as well as enhancing the activation of TGF-
Smad signaling, which can lead to glomerulosclerosis and mesangial fibrosis, ultimately
resulting in diabetic nephropathy [71]. In our study, the binding energy of GUDCA to
ITGAV was −9.7 kcal/mol, suggesting that GUDCA might prevent T2DM complications
by inhibiting the expression of ITGAV. ITGB1 is involved in the regulation of cell–matrix
adhesion. In inflammatory states, the regulation of cell adhesion might be related to insulin
function and insulin sensitivity [72]. Additionally, ITGB1 is also involved in neovasculariza-
tion, a key pathological feature of diabetic microvascular complications, and an important
factor in maintaining the normal physiological function of adipose tissue [73]. Therefore,
ITGB1 might be a potential therapeutic target for diabetic microvascular complications
and obesity. And recent bioinformatics studies have shown that ITGB1 is a candidate
gene closely related to T2DM and could play a key role in the diagnosis and treatment of
T2DM [74].
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NR3C1 is a glucocorticoid receptor belonging to the nuclear receptor family and reg-
ulates the production of glucocorticoids in organisms [75]. Glucocorticoids have been
associated with insulin resistance, glucose homeostasis, and diabetes risk [76]. Studies have
shown that elevated cortisol levels can trigger insulin resistance, impair pancreatic β-cell
function, and increase the risk of developing T2DM [77,78]. Di et al. extracted berberine
from the Huanglian, aiming to investigate its potential pharmacological mechanism for
the treatment of T2DM and complications. PPI interaction network analysis revealed the
potential mechanism of berberine’s anti-diabetic activity, involving core targets such as
NR3C1, RXRA, and KCNQ1 [79]. In vivo experiments demonstrated increased expression
of NR3C1 in the liver of T2DM mice, suggesting that inhibiting NR3C1 protein expression
could aid in the treatment of T2DM. Our molecular docking results indicated that NR3C1
exhibited the best binding affinity to CA and DCA, which showed that RRS might poten-
tially inhibit NR3C1 expression through metabolized bile acids, thereby treating symptoms
associated with T2DM.

MAPK3, also known as ERK1, is a type of mitogen-activated protein kinase (MAPK),
belonging to the MAPK family. MAPK3 plays an important role in cellular signaling
pathways and is involved in regulating key processes such as cell growth, differentiation,
and survival. A study analyzing the whole transcriptome of patients with T2DM treated
with selegiline found that the continuous administration of 100 mg of selegiline over
12 weeks effectively alleviated hyperglycemic symptoms and significantly reduced the
expression of the MAPK3 gene in serum (p = 0.002). Meanwhile, MAPK3 is involved in the
abnormal activation of the MAPK pathway, which can induce insulin resistance and trigger
T2DM. Therefore, selegiline can reduce insulin resistance by downregulating the expression
of MAPK3, thereby achieving hypoglycemic effects [80]. Additionally, MAPK3 is often
identified as a core target in network pharmacological studies on the treatment of T2DM,
suggesting that MAPK3 might be a potentially important target for treating T2DM and its
complications [81–83]. These findings are consistent with the results of the present study,
indicating that RRS metabolites might exhibit promising hypoglycemic effects through
interactions with the key targets.

In conclusion, our molecular docking results indicated that the core metabolites of RRS,
including CDCA, CA, DCA, GUDCA, LCA, and UDCA, exhibited strong binding with the
core targets EGFR, ITGAV, ITGB1, MAPK3, NR3C1, and RARA, which showed that RRS
might potentially improve T2DM and associated symptoms through these metabolites and
targets. Moreover, this improvement could be attributed to the ability of RRS to enhance
insulin sensitivity, reduce lipid synthesis, inhibit the expression of inflammatory factors,
and modulate intestinal flora disorders.

3.7. Molecular Docking Validation of Key RRS Metabolites with α-Glucosidase and α-Amylase

The 3D structures of α-glucosidase (PDB Entry: 3W37, PDB DOI: https://doi.org/10
.2210/pdb3W37/pdb (accessed on 11 April 2024)) complexed with acarbose and human
pancreatic α-amylase (PDB Entry: 1B2Y, PDB DOI: https://doi.org/10.2210/pdb1B2Y/pdb,
accessed on 10 April 2024) were selected for molecular docking [84,85], and the results are
shown in Table S4. The RMSDs of the original ligands for α-glucosidase and α-amylase after
docking were 0.537 Å and 0.923 Å, indicating that the docking methods and parameters
were reasonably designed, and the docking results were reliable.

As shown in Figure S2, CDCA, CA, DCA, GUDCA, LCA, and UDCA were predom-
inantly linked to α-glucosidase through Tyr515, Ile106, Asn108, Arg113, Glu109, Ser497,
Asp232, Arg552, Ser505, Ser430, Phe476, and Ala234. Acarbose is a carbohydrate inhibitor
which can delay the breakdown of carbohydrates into glucose by α-glucosidase, maintain-
ing blood glucose at normal levels. Tagami et al. reported that acarbose interacted with
α-glucosidase through Ser497, Asp232, Arg552, Phe476, and Ala234 [85], which was similar
to our results, suggesting that CDCA, CA, DCA, GUDCA, LCA, and UDCA might inhibit
the activity of α-glucosidase to regulate blood glucose like acarbose. Six core metabolites of
RRS were predominantly linked to α-amylase through His299, Asp300, Ser3, Thr6, Arg398,

https://doi.org/10.2210/pdb3W37/pdb
https://doi.org/10.2210/pdb3W37/pdb
https://doi.org/10.2210/pdb1B2Y/pdb
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Glu233, His305, Phe406, Gly9, Arg10, Thr6, Glb7, His201, and His 101. The results of Li et al.
showed that His299, Asp300, Glu233, His305, Gly9, and His201 were the binding sites
between α-amylase inhibitory peptides and α-amylase [86], which indicated that six core
RRS metabolites might also inhibit the activity of α-amylase through these known bonding
sites to regulate blood glucose.

3.8. Inhibitory Effects of Bile Acids on α-Glucosidase and α-Amylase

Our molecular docking results indicated that six core metabolites of RRS exhibited
potential hypoglycemic effects. To further validate the hypoglycemic effects of the core RRS
metabolites, in vitro α-glucosidase and α-amylase inhibition experiments were developed.
α-glucosidase served as a crucial enzyme in carbohydrate digestion and glucose break-
down. Inhibiting the expression of α-glucosidase effectively slowed down glucose uptake
and regulated postprandial blood glucose levels [87]. The inhibitory effects of the core
metabolites of RRS on α-glucosidase are illustrated in Figure 8A,C. The inhibition by each
component shows a pattern of gradual increase followed by stabilization. At the maximum
concentration (20 mg/mL), the inhibition rates of CA, LCA, DCA, UDCA, CDCA, and
GUDCA were 84.43%, 83.09%, 57.34%, 72.31%, 88.37%, and 48.79%, respectively, with
CA, LCA, and CDCA exhibiting the most significant inhibitory effects (p < 0.05). These
results indicated a dose–effect relationship between the inhibitory effects of bile acids
on α-glucosidase within a certain concentration range, with CDCA showing particularly
pronounced inhibition, reaching a rate of 88.37% at 20 mg/mL. The overall inhibitory
potency followed the order GUDCA < DCA < UDCA < LCA < CA < CDCA < Acarbose.

α-amylase is a digestive enzyme primarily active in the mouth and small intestine.
The main function of it is to hydrolyze starch into glucose, and α-amylase inhibitors can
slow down carbohydrate digestion in the small intestine and reduce postprandial blood
glucose levels [88]. The effects of core metabolites of RRS on α-amylase inhibition are
shown in Figure 8B,D. The inhibition of α-amylase by each component showed a trend of
gradual increase followed by stabilization. At the maximum concentration (20 mg/mL),
the inhibition rates of CA, LCA, DCA, UDCA, CDCA, and GUDCA were 92.4%, 83.75%,
76.12%, 93.15%, 88.24%, and 79.95%, respectively, with CA and UDCA exhibiting the most
significant inhibition effects (p < 0.05). These results indicated that there was also a certain
dose–effect relationship between the inhibitory effects of bile acids on α-amylase within a
certain concentration range, with UDCA demonstrating particularly prominent inhibitory
effects, with an inhibition rate of 93.15% at the highest concentration (20 mg/mL). The
overall inhibitory capacity was classified as follows: DCA < GUDCA < LCA < CDCA < CA
< UDCA < Acarbose.
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Bile acids are important endogenous steroid molecules that have been proven to play
a critical role in maintaining lipid levels, regulating blood glucose and energy metabolism,
and preventing diabetes and obesity [89]. Activating FXR has the potential to enhance glu-
cose metabolism. A previous reports indicated that bile acids ameliorate insulin resistance
and glucose metabolism impairments in streptozotocin-induced diabetic mice by upregulat-
ing FXR expression, and the order of activation ability was CDCA > LCA = DCA > CA [90].
The results of bile acid inhibition on α-glucosidase also showed the best hypoglycemic
effect of CDCA. Additionally, the intestinal bile acid–FXR signaling pathway was able to
mediate the expression of FGF15/19, which bound to hepatic FGFR4/βKlotho, promoting
hepatic glycogen synthesis and lowering blood glucose levels [91]. TGR5 was found to be
expressed in numerous tissues and organs. Bile acids can bind to TGR5, inducing cAMP
production and activating the protein kinase A pathway in various tissues and cell types,
thereby regulating the organism [92]. The activation of TGR5 by bile acids in intestinal L
cells induces the secretion of GLP-1 and regulates glucose metabolism by acting on pancre-
atic β-cells to increase insulin secretion [93]. The regulatory pathway by which metformin
improves T2DM by increasing TUDCA and GUDCA levels in the intestine also involves
the expression of TGR5 [60]. Additionally, bariatric surgery (MBG), such as Roux-en-Y
gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), was reported to improve
insulin sensitivity and diabetes. Although the underlying mechanism of diabetes remission
is unclear, an increase in fasting serum bile acids, especially conjugated bile acids, might
play an important role in glycemic control [94].

It is evident that CA, LCA, DCA, UDCA, CDCA, and GUDCA, as core metabolites
of RRS, exhibit certain inhibitory effects on α-glucosidase and α-amylase in vitro, with
CDCA and UDCA showing the most significant effects on the inhibition of α-glucosidase
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and α-amylase, respectively. Additionally, the results of our molecular docking validation
indicated that CDCA and UDCA had the best docking affinity with EGFR, suggesting
that CDCA and UDCA might be potentially important metabolites of RRS and act as
hypoglycemic agents in vivo. However, current research on RS metabolites in T2DM
mainly focus on SCFAs, and the specific role of bile acid metabolism and its potential in
disease treatment have not been fully investigated. In addition to being involved in fat
digestion and absorption, and regulating the composition of the intestinal flora, our study
suggested that bile acids can control blood glucose by inhibiting the activity of digestive
enzymes. Therefore, gaining a deeper understanding of the effects of RS on bile acid
metabolisms is crucial, and it could also provide new strategies for the prevention and
treatment of T2DM.

4. Conclusions

In the present study, network pharmacology was employed to predict the mechanism
by which RS exerts its hypoglycemic effects through differential metabolites, which was
further validated by molecular docking and hypoglycemic experiments in vitro. The results
showed that CA, LCA, DCA, UDCA, CDCA, and GUDCA were the core metabolites of RRS
and had great docking effects on the core targets EGFR, ITGAV, ITGB1, MAPK3, and NR3C1.
RRS might have exerted hypoglycemic effects through the neuroactive ligand–receptor
interaction pathway, cancer pathway, and arachidonic acid metabolic pathway. Mean-
while, core RRS metabolites, including six bile acids, were able to bind to α-glucosidase
and α-amylase through known binding sites, and hypoglycemic tests in vitro showed
that there was a certain dose–effect relationship between the inhibitory effect of these
bile acids on α-glucosidase and α-amylase within a certain concentration range, with the
prominent inhibitory effect observed for CDCA and UDCA. This study reveals the po-
tential hypoglycemic pathway of RRS in terms of molecular mechanisms and provides a
new perspective for understanding the role of bile acids in the prevention and treatment
of T2DM.
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docking information of target proteins; Table S3: Molecular docking information of target proteins
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and α-amylase.
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