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Abstract: Background: Hepatocellular carcinoma (HCC) is a prevalent and lethal form
of liver cancer with limited treatment options. Silymarin, a flavonoid complex derived
from milk thistle, has shown promise in liver disease treatment due to its antioxidant,
anti-inflammatory, and anticancer properties. This study aims to explore the therapeutic
potential of silymarin in HCC through a comprehensive in silico approach. Methods: This
study employed a network pharmacology approach to identify key molecular targets of
silymarin in HCC. The Genecards and Metascape databases were used for target iden-
tification and functional annotation. Molecular docking analysis was conducted on the
primary silymarin components against VEGFA and SRC proteins, which are critical in
HCC progression. MD simulations followed to assess the stability and interactions of the
docked complexes. Results: Network pharmacology analysis identified several key molec-
ular targets and pathways implicated in HCC. The molecular docking results revealed
strong binding affinities of silymarin components to VEGFA and SRC, with Silybin A and
Isosilybin B showing the highest affinities. MD simulations confirmed the stability of these
interactions, indicating potential inhibitory effects on HCC progression. Conclusions: This
study provides a comprehensive in silico evaluation of silymarin’s therapeutic potential
in HCC. The findings suggest that silymarin, particularly its components Silybin A and
Isosilybin B, may effectively target VEGFA and SRC proteins, offering a promising avenue
for HCC treatment. Further experimental validation is warranted to confirm these findings
and facilitate the development of silymarin-based therapeutics for HCC.

Keywords: silymarin; hepatocellular carcinoma; network pharmacology; molecular
docking; molecular dynamics simulations

Metabolites 2025, 15, 53

https:/ /doi.org/10.3390/metabo15010053


https://doi.org/10.3390/metabo15010053
https://doi.org/10.3390/metabo15010053
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-7946-219X
https://orcid.org/0000-0002-4945-7170
https://orcid.org/0000-0002-8507-9760
https://orcid.org/0000-0003-2209-6405
https://orcid.org/0000-0002-7479-8970
https://orcid.org/0000-0002-9745-664X
https://orcid.org/0000-0003-2622-2384
https://doi.org/10.3390/metabo15010053
https://www.mdpi.com/article/10.3390/metabo15010053?type=check_update&version=1

Metabolites 2025, 15, 53

2 of 28

1. Introduction

Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer,
represents nearly 75% of liver cancer diagnoses [1]. It originates from hepatocytes, the
primary functional cells of the liver [2,3]. The global incidence of HCC varies significantly,
with a higher prevalence in regions with endemic HBV and HCV infections, such as
East Asia and sub-Saharan Africa [4]. Clinically, HCC is often asymptomatic in its early
stages, leading to late diagnosis and poor prognosis. Common symptoms in advanced
stages include abdominal pain, weight loss, jaundice, and hepatomegaly [5]. Treatment
strategies for HCC vary based on the disease stage and liver function, encompassing liver
transplantation, surgical resection, and locoregional therapies [6]. Despite advancements
in therapeutic strategies, the prognosis for HCC remains grim, with a high recurrence rate
and limited survival time. Consequently, there is an urgent need for novel therapeutic
approaches and preventive strategies to combat this aggressive malignancy effectively [7].

Silymarin, a complex mixture of flavonolignans derived from the seeds of the milk
thistle plant (Silybum marianum), has garnered significant attention for its therapeutic
potential, particularly in liver diseases [8]. The primary active components of silymarin
include silybin, isosilybin, silydianin, and silychristin, with silybin being the most potent
and extensively studied [9]. Silymarin exhibits a variety of pharmacological properties,
such as antioxidant, anti-inflammatory, and antifibrotic activities [10]. These properties are
largely attributed to its ability to scavenge free radicals, modulate immune responses, and
inhibit the production of pro-inflammatory cytokines [11]. Furthermore, silymarin has been
shown to enhance protein synthesis and promote liver regeneration, making it a promising
agent in the treatment of liver disorders [12]. Preclinical studies have demonstrated that
silymarin can protect hepatocytes from toxins and oxidative stress, and clinical trials have
indicated its potential in managing conditions such as hepatitis, cirrhosis, and non-alcoholic
fatty liver disease [13]. The multifaceted actions of silymarin on various cellular pathways
underscore its potential as a therapeutic agent in hepatocellular carcinoma, as it may inhibit
tumor growth, induce apoptosis, and reduce angiogenesis in liver cancer cells [14].

Given the significant potential of silymarin components in managing liver diseases
and their promising pharmacological profile, this study aimed to elucidate their specific
molecular targets and relevance in hepatocellular carcinoma (HCC). To achieve this, we
primarily employed network pharmacology to predict and analyze the molecular targets of
the silymarin components. This approach involved identifying key gene targets associated
with HCC through comprehensive database searches and constructing protein—protein
interaction networks. Subsequently, we used molecular docking simulations to explore
the binding interactions between the silymarin components and these identified targets.
To further validate and refine these interactions, we performed molecular dynamics (MD)
simulations to assess the stability and dynamics of the silymarin target complexes over
time. By integrating these methods, we sought to uncover the molecular interactions of
silymarin components that may contribute to their therapeutic effects in HCC. This work
aimed to enhance our understanding of how these components influence critical biological
pathways involved in HCC, potentially guiding the development of targeted therapeutic
strategies and improving current treatment options.

2. Materials and Methods

The molecular structure of silymarin, a complex mixture comprising silybin, isosilybin,
silychristin, and silydianin, was represented as a SMILES notation and retrieved from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 20 October
2024) [15]. This comprehensive SMILES notation, encompassing the various bioactive
components of silymarin, was then used to query the SwissTargetPrediction database
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(http:/ /www.swisstargetprediction.ch/, accessed on 20 October 2024) [16]. The prediction
aimed to identify the most likely molecular targets associated with silymarin and its
individual components.

2.1. Identification of Targets Associated with HCC

To identify targets associated with hepatocellular carcinoma (HCC), we accessed the
Genecards and OMIM databases. The Genecards database [17], known for its comprehen-
sive and user-friendly information on human genes, was utilized to gather data relevant
to hepatocellular carcinoma (https:/ /www.genecards.org/, accessed on 20 October 2024).
Additionally, the OMIM database [18], which provides detailed information on genetic and
hereditary diseases, was consulted (https:/ /www.omim.org/, accessed on 20 October 2024).
By searching for hepatocellular carcinoma in both databases, we identified key targets
related to this condition. Targets identified from Genecards and OMIM (non-redundant)
were merged, and a Venn diagram was created to illustrate the genes common to both
silymarin and HCC targets.

2.2. Protein—Protein Interaction (PPI) Network Construction

The common gene targets were uploaded to the STRING database [19] (https:/ /string-
db.org/, accessed on 20 October 2024) for analysis. The species was set to Homo sapiens,
and the resulting interaction network was then imported into Cytoscape 3.10.0. Statistical
analysis was subsequently conducted based on degree values. The CytoHubba plugin [20]
was employed to identify the top 10 hub genes using the degree method. Finally, a network
illustrating the connections between silymarin, targets, and pathways associated with
hepatocellular carcinoma was generated.

2.3. Gene Ontology (GO) and Pathway (KEGG) Enrichment Analysis of Potential Targets

We conducted Gene Ontology (GO) functional annotation to categorize genes based
on their biological roles, leveraging sequence similarity, experimental evidence, and the
available literature [21]. Additionally, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was employed to map out the complex interactions between
genes, proteins, and small molecules within various biological contexts [22], For our
study, we utilized the ShinyGo database v 0.80 (http:/ /bioinformatics.sdstate.edu/go74/,
accessed on 22 October 2024) to conduct both GO functional annotation and KEGG pathway
enrichment analyses [23].

2.4. Molecular Docking

The molecular docking simulations were conducted to investigate the binding interac-
tions between silymarin and the target proteins, selected based on the results obtained from
the network pharmacology analysis. Initially, the three-dimensional structures of the target
proteins were retrieved from the Protein Data Bank (PDB). The protein structures were
then prepared using the Molecular Operating Environment (MOE 2015.10) software [24],
which involved adding hydrogen atoms, removing water molecules, and optimizing the
protein structure. The structures of silymarin and reference ligands were obtained from the
PubChem database. To ensure compatibility with the docking software, ligand structures
were subjected to energy minimization and conversion into the appropriate file format
using MOE.
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The active sites of the target proteins were identified using the CASTp 3.0 server (http:
/ /sts.bioe.uic.edu/castp) [25] and the active site search tool within MOE. Molecular dock-
ing was carried out using MOE, employing a semiflexible docking approach. The docking
parameters were set to ensure a thorough exploration of possible binding conformations.

2.5. Molecular Dynamics (MD) Simulation

The initial structures of the protein-ligand complexes were obtained from the molec-
ular docking results, and the protein and ligand structures were prepared using MOE
software to ensure proper protonation states and the removal of any unnecessary crystal-
lographic water molecules. Force field parameters were assigned using the AMBER99SB
force field for the proteins and the General Amber Force Field (GAFF) for the ligands.
The complexes were solvated in a TIP3P water box with a 10 A buffer, and appropriate
counterions were added. Energy minimization was performed to remove any steric clashes
under an NVT ensemble. Equilibration was carried out for 500 ps under an NPT ensemble
to ensure stable pressure and temperature conditions. Production MD simulations were
then run for 100 ns with a time step of 2 fs, maintaining a constant temperature of 300 K
using the Langevin thermostat and a pressure of 1 atm using the Berendsen barostat [26,27].
GROMACS 2024.4 software was employed for all MD simulations [28]. Trajectory analysis
was conducted using the CPPTRAJ module in AMBER.

2.6. MM-PBSA Analysis

To further analyze the binding affinities of the ligands, we applied the Molecular
Mechanics /Poisson-Boltzmann Surface Area (MM /PBSA) methodology. We utilized the
g_mmpbsa package to perform the MM /PBSA calculations, which included evaluating
various energy components. The total binding free energy was determined by summing
these energy contributions. This procedure follows the protocols outlined by Kumari et al.
(2014) [29].

Figure 1 presents a graphical representation of this study’s workflow.
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Figure 1. Overview of the research workflow.
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3. Results
3.1. Identification of Potential Targets of Silymarin and Hepatocellular Carcinoma

A total of 136 potential target genes were identified for silymarin using the Swiss Target
Prediction tool (http://www.swisstargetprediction.ch /). Notably, among the components
of silymarin, only silybin, isosilybin, and silychristin showed identifiable targets, whereas
silydianin did not reveal any known targets. In parallel, we compiled a total of 11,414 targets
related to hepatocellular carcinoma (HCC) by aggregating data from the Genecards and
OMIM databases. To visualize the overlap, Venn diagrams were created. This analysis
revealed 102 targets that are common to both silymarin and HCC, highlighting their
potential intersection.

3.2. Analysis of PPI Interaction and Core Target Networks

The PPI network of the common genes results is illustrated in Figure 2. The network
comprised 102 nodes and 647 edges with an average centrality degree of the neighbors
of 12,947, highlighting its complexity. The interaction degree of the targets is depicted
by varying shades of color, as shown in Figure 2. Additionally, Figure 3B,C present the
top 10 targets with the highest degree values, with vascular endothelial growth factor A
(VEGFA) and tyrosine—protein kinase SRC (SRC) emerging as the targets with the highest
degree value of 47.
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Figure 2. PPI network of 102 coincident targets of HC and silymarin.
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Figure 3. (A) Venn diagram shows the targets of silymarin and HCC. (B) The network of top 10 core
HCC-related targets screened using degree values. (C) Ten core targets ranked by degree values.

3.3. GO Functional Annotation and KEGG Enrichment of Core Targets

For a detailed understanding of the key mechanisms involved in the action of silymarin
against hepatocellular carcinoma, we conducted GO functional and KEGG enrichment
annotation analyses for an in-depth gene annotation. Based on biological process (BP)
results, the main upregulated processes include the apoptotic process, programmed cell
death, intracellular signal transduction, tissue development, catalytic activity, and other
related processes (Figure 4A). Analysis of cellular components (CCs) shows that most
core genes are included in cytoplasmic vesicles, cell projections, intracellular vesicles,
plasma membrane-bounded cell projections, etc. (Figure 4B). Molecular function (MF)
analysis indicates that the genes are involved in activities such as identical protein binding,
transcription factor binding, enzyme binding, anion binding, carbohydrate derivative
binding, and more (Figure 4C). Moreover, the data from KEGG pathway analysis reveal
that silymarin exerts its therapeutic effects primarily by modulating the proteoglycans
in cancer, Kaposi sarcoma-associated herpesvirus infection, the VEGF signaling pathway,
EGFR tyrosine kinase inhibitor resistance, endocrine resistance, the thyroid hormone
signaling pathway, and additional pathways, thereby offering a multi-target approach to
the treatment of the hepatocellular carcinoma (Figure 4D).
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showing the top 20 CCs. (C) Dotplot chart showing the top 20 MFs. (D) Dotplot chart showing the top 20 KEGG pathways.
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Given these data and the combination of key targets, the proteoglycans in the can-
cer pathway, identified as the main pathway by KEGG analysis, were further explored
using KEGG via Pathview (Figure 5). A visual pathway map was created to illustrate
the mechanism of silymarin in the treatment of hepatocellular carcinoma, highlighting its
primary effects on angiogenesis, cell proliferation and survival, and tumor cell migration
and invasion. In the context of HCC, silymarin exerted both direct and indirect regulatory
effects on the condition.
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Figure 5. Diagram of pathways involving potential targets identified through KEGG analysis. The
red sections highlight the silymarin targets associated with HC.

3.4. Silymarin-Target—Pathway Network

To explore the multi-target effects of silymarin in HCC, two separate networks were
constructed: the compound-target network and the target-pathway network. These two
networks were subsequently merged to form an integrated compound-target-pathway
network, resulting in a structure with 33 nodes and 112 edges (Figure 6).
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Figure 6. Silymarin—target—pathway network. The orange circles represent the three active compo-
nents of silymarin, the cyan rectangles represent the core genes, and the green triangles represent the
pathways linked to the core genes.

3.5. Molecular Docking

Among the 10 hub targets identified in our network pharmacology analysis, VEGFA
and SRC exhibited the highest degree of centrality, with degree values of 47, and were
closely associated with the pathways identified in the KEGG analysis. Consequently,
we obtained the three-dimensional structure of VEGFA (PDB ID: 1VPF) and SRC (PDB
ID: 1USE) from the Protein Data Bank to use as the protein receptors in our docking
simulations. The structures of silymarin’s active components were retrieved from PubChem.
Molecular docking with these components was performed using MOE software, employing
a semiflexible docking approach.

In the case of VEGFA, 1,2,3 4,6-penta-O-galloyl-beta-D-glucose (PGG) was used as the
reference for comparison due to its reported direct inhibitory effects on VEGFA [30]. The
investigation of the active site of VEGFA was conducted using the CASTp program and
the active site search tool in MOE software. Both methods consistently identified the same
geometric localization of the binding pocket. The identified site comprises key residues,
including Gly58, Gly59, Cys60, Cys61, Asn62, Asp63, Glu64, Leu66, Glu67, Cys68, and
Lys107 from chain 1 and Leu32, Asp34, Phe36, Tyr45, Ile46, Phe47, Lys48, Ser50, and Cys51
from chain 2. This consensus between CASTp and MOE confirms the reliability of the
docking results and the significance of these residues in the binding interactions.
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The results of the interaction energy, hydrogen bonding, and hydrophobic interactions
are summarized in Table 1. Additionally, the geometric disposition of silymarin’s active
components within the active site of VEGFA, along with the established interactions, are
illustrated in Figure 7 and Supplementary Figure S1.

Among the compounds analyzed, PGG exhibited the highest binding energy of
—8.0997 kcal/mol, surpassing that of the primary silymarin components. This suggests a
stronger affinity for VEGFA. PGG also formed an extensive network of 10 hydrogen bonds
involving key residues such as Cys68, Cys61, Asp34, GIn37, Thr31, Ser50, Val33, Gly58,
and Cys57, which highlights its ability to establish stable interactions within the VEGFA
binding site. Additionally, PGG demonstrated hydrophobic interactions with Pro70, Cys57,
Cys61, and Cys60 and an electrostatic interaction with Glu64, further supporting its robust
binding affinity and specificity.

Silybin, a major component of silymarin, displayed a competitive binding energy of
—7.7234 kcal /mol, which, while slightly lower than the binding energy of PGG (—8.0997
kcal/mol), remains highly indicative of a strong binding affinity for VEGFA. Notably,
silybin formed 10 hydrogen bonds with key residues, such as Cys61, Gly59, Gly58, Leu32,
Asp34, Asp63, and Leu66, matching PGG in its ability to establish a robust hydrogen
bonding network. Additionally, its hydrophobic contacts with Cys60 and Cys68, alongside
an electrostatic interaction with Glu64, mirror the diverse interaction profile observed for
PGG. These findings suggest that silybin holds comparable potential to PGG as a VEGFA
inhibitor, particularly given its strong network of interactions and its position as a natural
compound with therapeutic promise.

Isosilybin, another active component of silymarin, demonstrated a binding energy of
—7.6397 kcal/mol, forming nine hydrogen bonds involving key residues such as Cys61,
Glu64, Asn62, Gly58, Gly59, Asp63, and Ser63. The extensive hydrogen bonding network
and interactions with hydrophobic residues, like Cys60, Cys68, and Phe36, along with
an additional interaction with Anp34, indicate a substantial binding affinity and stability
within the active site of VEGFA.

Silychristin displayed a binding energy of —6.7097 kcal/mol, forming four hydrogen
bonds with residues Glu64, Gly59, and Asp34. Despite the lower number of hydrogen
bonds, the involvement of key hydrophobic residues Phe36, Ile46, and Cys60, and an
electrostatic interaction with Glu64, suggest a moderate but significant interaction with the
VEGFA protein.

The molecular docking analysis was extended to include SRC (PDB ID: 3U51), which,
along with VEGFA, exhibited the highest degree of centrality in our network pharmacology
analysis. The co-crystallized inhibitor MC1 was included as a reference for comparison.
To ensure the reliability of our docking procedure, a re-docking of the co-crystallized
ligand MC1 was performed, yielding a Root Mean Square Deviation (RMSD) value of
0.651. This RMSD value, being below the commonly accepted threshold of 2.0, confirms
the accuracy and validity of our docking protocol. The results of the docking simulations
are summarized in Table 2. Additionally, Figure 8 and Supplementary Figure S2 illustrate
the spatial arrangement of silymarin’s active components within the SRC active site, along
with the established interactions.

The co-crystallized inhibitor MC1 displayed a binding energy of —10.6949 kcal/mol
and formed an extensive network of 17 hydrogen bonds. The high number of hydrogen
bonds, along with hydrophobic interactions, involved 1le336, Gly279, and Cys277 and
electrostatic interactions with Asp404 and Asp348.
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Table 1. Docking results of silymarin active components and the reference inhibitor PGG with the highest degree hub target VEGFA (1VPF).

Compounds

Binding Energy
(Kcal/mol)

Hydrogen Interactions
(Distance A)

Number of
Hydrogen Bonds

Hydrophobic
Interactions

Electrostatic
Interactions

Silybin

—7.7234

Cys61 (3.07), Gly59 (2.14),
Gly58 (3.06), Leu32 (2.70),
Leu32 (2.26), Leu32 (2.49),
Asp34 (2.45), Asp34 (2.43),
Asp63 (3.00), Leu66 (2.07)

10

Cys60, Cys68

Glu64

Silymarin active
components

Isosilybin

—7.6397

Cysb61 (2.92), Glu64 (1.79),

Asn62 (2.39), Asn62 (2.87),

Gly58 (2.40), Gly58 (2.70),

Gly59 (2.56), Asp63 (2.91),
Ser63 (2.87)

09

Cys60, Cys68, Phe36

Anp34

Silychristin

—6.7097

Glu64 (2.14), Gly59 (2.72),
Gly59 (2.60), Asp34 (2.28)

04

Phe36, Ile46, Cys60

Glu64

1,2,3,4,6-penta-O-galloyl-

Reference inhibitor beta-D-glucose (PGG)

—8.0997

Cys68 (3.52), Cys61 (3.12),
Asp34 (2.94), GIn37 (3.01),
The31 (3.13), Ser50 (3.52),
Val33 (2.75), Gly58 (2.41),
Cysb57 (2.84), Glu67 (3.07)

10

Pro70, Cys57, Cys61,
Cys60

Glu64
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Figure 7. Molecular docking 2D and 3D diagrams of silybin with the highest degree hub target VEGFA (1VPE).
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Table 2. Docking results of silymarin active components with the highest degree hub target SRC (3U51).
Compounds Binding Energy Hydrogen Interactions Number of Hydrophobic Electrostatic
P (Kcal/mol) (Distance A) Hydrogen Bonds Interactions Interactions
Cys277 (2.93), Asp404 (2.25),
GIn275 (2.92), GIn275 (2.57),
Silybin 87466 GIn275 (2.49), Gly274 (2.55), 09 TneRTS SInTh Cys277, Aspd0d
Gly274 (2.87), Gly406 (2.36), !
Asp386 (2.45)
Silymarin active Ala403 (2.68), Asp386 (1.87),
components Tsosilybin 87382 Aspd04 (2.80), Aspd04 (2.63), 05 Valzcgl's 57117‘275' Lyszii' %Ztg’ 14,
Glu280 (2.60) y p
Glu280 (2.77), Gly279 (2.21),
. - _ Gly279 (2.82), Leu273 (2.77), Leu393, Val281,
Silychristin 8.6096 Gly344 (1.94), Asp348 (2.73), 07 Let273 Asp404, Cys177
Asp348 (2.54)
Ala390 (1.88), Ser345 (2.26), Ser345
(3.02), Asp348 (2.81), Asp404
(1.91), Asp404 (1.88), Asp404
C°'i;r15l';§*i‘:i‘rzed Macrocyclic inhibitor MC1 ~10.6949 (1.81), Phe278 (2.62), Gly279 (2.32), 17 Te336, Gly279, Cys277 ~ Asp404, Asp348

Gly279 (2.34), Gly276 (1.69),
Glu280 (3.83), Lys295 (1.86),
Met341 (2.91), Met341 (2.80),
Glu339 (1.88), GIn275 (2.69)
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In comparison, silybin exhibited a binding energy of —8.7466 kcal/mol and formed
nine hydrogen bonds with key residues Cys277, Asp404, GIn275, Gly274, and Gly406.
These hydrogen bonds, along with hydrophobic interactions involving Phe278, GIn275,
Val281, and Leu393, contribute to the stability and specificity of silybin’s binding within the
active site of SRC. Additionally, electrostatic interactions with residues Cys277 and Asp404
further reinforce the binding affinity of silybin.

Isosilybin showed a binding energy of —8.7382 kcal/mol and formed five hydrogen
bonds with residues Ala403, Asp386, Asp404, and Glu280. The hydrophobic interactions
with Val281, GIn275, and Cys277 coupled with electrostatic interactions involving Lys295,
Met314, and Asp404.

Silychristin demonstrated a binding energy of —8.6096 kcal/mol, forming seven
hydrogen bonds with residues Glu280, Gly279, Leu273, Gly344, and Asp348. Hydrophobic
interactions were observed with Leu393, Val281, and Leu273, while electrostatic interactions
involved Asp404 and Cys177.

3.6. Molecular Dynamics Simulations

After conducting the molecular docking analysis, we proceeded with molecular dy-
namics (MD) simulations for three complexes: VEGFA with silybin, SRC with its co-
crystallized inhibitor MC1 as a reference, and SRC with silybin. Silybin was chosen for this
extended study because it showed the best molecular docking results among the three sily-
marin components with the two best core targets: VEGFA and SRC. Additionally, silybin is
known to be the most represented molecule in the silymarin complex. The MD simulation
analysis is summarized in Table 3 and illustrated in Figures 9 and 10.

Table 3. The average values of Rg, SASA, RMSD, and RMSF and the number of H-bonds for the
studied complexes.

Complex Average Average Average Average ) Max Number of
RMSD (nm) RMSF (nm) Rg (nm) SASA (nm?) H-Bond
VEGFA-PGG 0.12 £ 0.01 0.05 £ 0.04 2.05 4+ 0.02 179.42 £ 3.07 7
VEGFA-silybin 0.14 £ 0.01 0.07 £0.03 2.07 £0.07 187.85 + 3.10 7
SRC-MC1 0.20 4= 0.01 0.06 4= 0.03 2.08 = 0.06 178.86 &= 1.80 6
SRC-silybin 0.21 £0.01 0.07 £0.03 2.10 £ 0.07 179.82 £ 1.66 9

The results of the molecular dynamics simulation for the studied complexes are sum-
marized in Table 3. For the VEGFA-PGG complex, the average RMSD was 0.12 £ 0.01 nm,
the RMSF was 0.05 = 0.04 nm, the Rg was 2.05 £ 0.02 nm, the SASA was 179.42 + 3.07 nm?,
and the maximum number of hydrogen bonds was 7. For the VEGFA-silybin complex,
the average RMSD was 0.14 = 0.01 nm, the RMSF was 0.07 £ 0.03 nm, the Rg was
2.07 + 0.07 nm, the SASA was 187.85 + 3.10 nm?, and the maximum number of hydrogen
bonds was also 7. Comparing these results, the VEGFA-PGG complex demonstrated a
slightly lower RMSD compared to the VEGFA-silybin complex, suggesting marginally
higher stability. The RMSF for VEGFA-PGG was also lower, indicating less flexibility
within this complex. The Rg values were close, with VEGFA-PGG showing a slightly more
compact conformation. The SASA for VEGFA-PGG was slightly lower than that of VEGFA-
silybin, suggesting marginally reduced solvent exposure. Both complexes exhibited an
equal maximum number of hydrogen bonds (7), highlighting their comparable ability
to establish strong and stable interactions with the VEGFA binding site. These findings
suggest that while VEGFA—silybin demonstrates good binding characteristics, VEGFA-PGG
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Figure 9. (A) RMSD of the VEGFA-silybin and VEGFA-PGG complexes during 100 ns MD simulation.
(B) RMSF of the VEGFA-silybin and VEGFA-PGG complexes during 100 ns MD simulation. (C) SASA
of the VEGFA-silybin and VEGFA-PGG complexes during 100 ns MD simulation. (D) Radius of gyra-
tion of the VEGFA-silybin and VEGFA-PGG complexes during 100 ns MD simulation. (E) Number of
H-bonds of the VEGFA-silybin and VEGFA-PGG complexes during 100 ns MD simulation.
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Figure 10. (A) RMSD of the SRC-silybin and SRC co-crystallized inhibitor complexes during 100 ns
MD simulation. (B) RMSF of the SRC—silybin and SRC co-crystallized inhibitor complexes during
100 ns MD simulation. (C) SASA of the SRC-silybin and SRC co-crystallized inhibitor complexes
during 100 ns MD simulation. (D) Radius of gyration of the SRC—silybin and SRC co-crystallized
inhibitor complexes during 100 ns MD simulation. (E) Number of H-bonds of the SRC-silybin and
SRC co-crystallized inhibitor complexes during 100 ns MD simulation.

Regarding the SRC-MC1 complex, the average RMSD was 0.20 = 0.01 nm, the RMSF
was 0.06 & 0.03 nm, the Rg was 2.08 & 0.06 nm, the SASA was 178.86 & 1.80 nm?2, and the
maximum number of hydrogen bonds was 6. For the SRC—silybin complex, the average
RMSD was 0.21 + 0.01 nm, the RMSF was 0.07 £ 0.03 nm, the Rg was 2.10 £ 0.07 nm,
the SASA was 179.82 4 1.66 nm?, and the maximum number of hydrogen bonds was 9.
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Comparing these results, the SRC—silybin complex showed slightly higher RMSD values
than the SRC-MC1 complex, indicating slightly more backbone movement. The RMSF for
SRC-silybin was also higher, suggesting increased flexibility. The Rg values indicated that
SRC-silybin had a less compact structure compared to SRC-MC1. The SASA values were
similar, with SRC—silybin having a slightly higher value. The SRC-silybin complex formed
more hydrogen bonds compared to the SRC-MC1 complex.

3.7. MMPBSA Analysis

The results of the MMPBSA analysis, summarized in Table 4, provide a comprehensive
evaluation of the binding interactions and energetics for the VEGFA and SRC protein—
ligand complexes.

Table 4. Results showing the electrostatic, van der Waals, SASA, polar salvation, and binding energy
in k] mol~! for the studied complexes.

ProtCe(i)II;l—;.liegxand VanEcIlleerr;\}’,aals El‘;;tl:;tic Polar Salvation SASA Energy T((;(t; lni?lirlg)y
VEGFA-PGG —102.16 £9.05 —4.25 +2.05 19.36 £ 8.57 —9.21£2.18 —96.26 +11.32

VEGFA-silybin  —89.47 4+ 11.25 —5.02 +0.35 22.18 £13.15 —5.10 £ 0.42 —77.41 £1295
SRC-MC1 —200.78 £7.95 —17.55 £1.92 45.60 £+ 6.75 —12.02 £ 0.65 —184.75 + 13.70
SRC-silybin —148.32 £ 10.68 —22.05 £ 2.65 38.50 £+ 8.12 —11.75 £1.59 —143.62 £12.88

For the VEGFA-PGG complex, the total binding energy is —96.26 + 11.32 k] mol—1,
indicating a stronger interaction compared to the VEGFA-silybin complex. The van
der Waals energy contributes the most significantly to the binding energy, with a
value of —102.16 £ 9.05 k] mol !, emphasizing the importance of hydrophobic inter-
actions in stabilizing this complex. The electrostatic energy, though relatively lower
at —4.25 +2.05 k] mol !, still supports the binding. The polar solvation energy is
19.36 + 8.57 k] mol !, indicating a desolvation penalty, which is effectively mitigated by
the SASA energy of —9.21 + 2.18 kJ mol 1, reflecting efficient burial of hydrophobic re-
gions. In contrast, the VEGFA-silybin complex shows a less favorable total binding energy
of —77.41 + 12.95 k] mol~!, suggesting weaker binding. The van der Waals energy is
—89.47 4 11.25 k] mol !, which is lower compared to PGG, indicating reduced hydropho-
bic interactions. The electrostatic energy is comparable at —5.02 + 0.35 k] mol !, while
the polar solvation energy is slightly less favorable at 22.18 + 13.15 k] mol !, further con-
tributing to the weaker binding. Additionally, the SASA energy of —5.10 + 0.42 k] mol !
suggests less efficient burial of hydrophobic regions compared to PGG.

For the SRC-MC1 complex, the total binding energy is —184.75 4 13.70 k] mol !, indi-
cating a very strong binding interaction. The van der Waals energy is the most significant
contributor at —200.78 4 7.95 k] mol~!, underscoring the dominant role of hydropho-
bic interactions in stabilizing this complex. The electrostatic energy is also favorable at
—17.55 + 1.92 k] mol !, enhancing the interaction further. However, the polar solvation
energy contributes a penalty of 45.60 + 6.75 k] mol !, which is partially offset by the
favorable SASA energy of —12.02 = 0.65 k] mol !, reflecting efficient burial of hydrophobic
surfaces. In comparison, the SRC—silybin complex exhibits a less favorable total binding
energy of —143.62 + 12.88 k] mol !, suggesting weaker binding compared to MC1. The van
der Waals energy is —148.32 & 10.68 k] mol !, which is lower than that of MC1, indicating
reduced hydrophobic stabilization. Interestingly, the electrostatic energy is slightly higher
in magnitude at —22.05 + 2.65 k] mol~!, suggesting that electrostatic interactions play a
more prominent role in this complex. The polar solvation energy is 38.50 & 8.12 k] mol !,
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reflecting a slightly lower desolvation penalty compared to MC1. However, the SASA
energy is comparable at —11.75 & 1.59 k] mol 1.

4. Discussion

Silymarin, traditionally used for its hepatoprotective properties, has been shown to
have significant therapeutic potential in treating hepatocellular carcinoma through various
studies [12,31]. However, the underlying molecular mechanisms by which silymarin exerts
its effects remain incompletely understood. Thus, exploring the interactions between
silymarin’s active compounds and key molecular targets can help elucidate its beneficial
effects and optimize its therapeutic use. In this study, we employed network pharmacology,
molecular docking, and MD simulation analyses to investigate the mechanisms by which
silymarin influences HCC.

Through our network analysis, derived from the intersection of target genes associated
with both HCC and silymarin, we identified 10 hub genes that play a critical role in the
disease’s progression. Additionally, we performed KEGG pathway enrichment and GO
functional annotation analyses to identify the main pathways and biological processes in-
volved. These analyses revealed crucial insights into the signaling pathways and functional
annotations that silymarin may influence, thereby providing a deeper understanding of its
potential therapeutic mechanisms against HCC. In this study, we focused on two critical
proteins that emerged as the hub targets with the highest degree values from our network
pharmacology analysis, VEGFA and SRC.

Vascular endothelial growth factor A (VEGFA) plays a central role in angiogenesis, the
formation of new blood vessels from existing ones. This process is essential for metastasis
and tumor development, supplying nutrients and oxygen for dividing cancer cells [32].
The overexpression of VEGFA has been observed in many cancers, including HCC, and is
associated with poor prognosis and increased tumor aggressiveness [33]. In HCC, VEGFA
promotes the proliferation, migration, and invasion of endothelial cells, contributing to the
formation of a dense network of blood vessels within the tumor. This not only supports the
rapid growth of the tumor but also facilitates the spread of cancer cells to other parts of the
body [34]. Therapies targeting VEGFA, such as sunitinib, have shown efficacy in inhibiting
angiogenesis and controlling tumor growth in HCC patients [35]. Thus, the identification
of VEGFA as a key target in our study underscores its importance in HCC progression and
highlights the potential of silymarin to interfere with angiogenesis pathways.

SRC is a tyrosine kinase that operates without a receptor and plays a role in numerous
cellular processes, including proliferation, survival, migration, and angiogenesis [36]. It
acts as an oncogene in many cancers, including HCC, where its overactivation is correlated
with metastasis and tumor progression [37]. In HCC, SRC is implicated in the activation of
multiple downstream signaling pathways that promote oncogenic behaviors. For example,
SRC activation leads to the phosphorylation and activation of several substrates involved
in cell motility and invasion, such as focal adhesion kinase (FAK) and paxillin [38,39].
Furthermore, SRC can modulate the tumor microenvironment by promoting angiogenesis
and altering immune responses, thereby facilitating tumor growth and dissemination [40].
The inhibition of SRC has been explored as a therapeutic strategy in HCC. SRC inhibitors,
such as dasatinib, have shown promise in preclinical studies by reducing metastasis and
tumor growth [15]. The selection of SRC as a hub gene in our network analysis suggests
that silymarin’s active compounds might exert their anti-HCC effects partly through the
modulation of SRC-related pathways.

Given their central roles and high degree values, we selected these proteins for detailed
molecular docking studies to explore the binding affinities and interaction mechanisms of
silymarin’s active components compared to known anti-VEGF and anti-SRC drugs. The
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insights gained from these docking simulations aim to elucidate the potential therapeutic
effects of silymarin in inhibiting these critical pathways in hepatocellular carcinoma.

The molecular docking results reveal promising interactions between the active compo-
nents of silymarin, especially silybin, and VEGFA. Silybin demonstrated a binding energy
of —7.7234 kcal /mol, forming ten hydrogen bonds with key residues such as Cys61, Gly59,
Gly58, Leu32, and Asp34. This strong binding affinity is further supported by hydrophobic
interactions with Cys60 and Cys68 and an electrostatic interaction with Glu64. The exten-
sive network of interactions suggests that silybin may have the potential to stabilize the
VEGFA binding site, which could indicate its role as a possible inhibitor of VEGFA. This
finding points to the potential utility of silybin in cancer therapies targeting angiogene-
sis; however, further experimental validation is essential to confirm these computational
predictions and fully evaluate its therapeutic relevance.

Similarly, isosilybin, another significant component of silymarin, demonstrated a
binding energy of —7.6397 kcal/mol, along with a robust hydrogen bonding network
and interactions with hydrophobic residues such as Cys60, Cys68, and Phe36. These
computational findings suggest that isosilybin may contribute to the potential therapeutic
applications of silymarin in inhibiting VEGFA. These results lay the groundwork for
future experimental studies to confirm and build upon the insights gained from this
computational analysis.

In this study, PGG (1,2,3,4,6-penta-O-galloyl-3-D-glucose) serves as a reference VEGF-
A inhibitor compound. The selection of PGG as a reference molecule is strongly supported
by the promising findings reported in the study by Ren et al. (2023) [30]. In their work,
PGG was ranked as one of the most effective small molecular compounds among several
candidates. Notably, PGG demonstrated the best inhibitory effect on the proliferation
of AGS and HGC27 cells in a concentration- and time-dependent manner. This study
also revealed that PGG significantly inhibited cell cloning, migration, and invasion, while
inducing apoptosis in AGS and HGC27 cells, underscoring its potent biological activity.
Furthermore, the molecular dynamics simulations conducted in Ren et al.’s study showed
that PGG exhibited superior binding to the VEGFA target protein compared to other small
molecules. These results were consistent with the molecular docking findings, reinforcing
the notion that PGG has a strong affinity for VEGFA and is a promising candidate for
inhibiting angiogenesis. Based on these in silico and in vitro results, PGG serves as an
ideal reference molecule for comparison, as it has demonstrated both potent biological
activity and strong molecular interactions with VEGFA, making it an appropriate standard
for evaluating the potential of other VEGFA inhibitors, such as the active components
of silymarin.

The docking results for PGG revealed a binding energy of —8.0997 kcal/mol, showing
a highly favorable interaction with VEGFA. PGG forms an extensive network of interactions,
including ten hydrogen bonds with residues like Cys68, Cys61, and Asp34, along with
hydrophobic interactions at Cys60, Cys57, and Pro70 and an electrostatic interaction with
Glu64. The high binding affinity and extensive interaction profile observed for PGG in
this study align with its promising anti-VEGF activity, as demonstrated in both in silico
and experimental in vitro studies. This makes PGG a valuable reference compound for
comparing the binding efficacy of other potential VEGFA inhibitors, such as silymarin’s
active components.

Despite PGG showing a stronger binding affinity, silybin’s interaction with VEGFA
remains noteworthy due to its comparable binding energy and the formation of a sub-
stantial network of hydrogen bonds and key interactions. These findings suggest that
silybin could serve as a competitive alternative to PGG, offering the potential for VEGFA
inhibition. While these results underscore the therapeutic promise of silymarin’s active com-
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ponents in targeting VEGFA, further experimental validation is required to confirm these
computational observations and assess their practical relevance in therapeutic applications.

The molecular docking analysis for SRC complements our investigation of VEGFA,
both of which exhibited high centrality in our network pharmacology analysis. The dock-
ing results, summarized in Table 2 and illustrated in Figure 6, highlight the potential of
silymarin’s active components as effective SRC inhibitors. The co-crystallized inhibitor
MC1, used as a benchmark, displayed a binding energy of —10.6949 kcal/mol and formed
an extensive network of 17 hydrogen bonds, supplemented by significant hydrophobic and
electrostatic interactions. This strong binding profile highlights the efficacy of MC1 as an
SRC inhibitor.

In comparison, silybin exhibited a binding energy of —8.7466 kcal/mol, forming
nine hydrogen bonds with critical residues, such as Cys277 and Asp404. The presence
of hydrophobic interactions with residues like Phe278 and electrostatic interactions with
Cys277 further strengthens the stability and specificity of silybin’s binding to SRC. Isosilybin
demonstrated a slightly higher binding energy of —8.8382 kcal/mol and formed five
hydrogen bonds with residues, including Ala403 and Asp404. Its binding is reinforced by
hydrophobic interactions with Val281 and electrostatic interactions involving Lys295.

Silychristin, with a binding energy of —8.6096 kcal/mol, displayed seven hydrogen
bonds with residues, such as Glu280 and Gly279. The hydrophobic interactions with
Leu393 and electrostatic interactions with Asp404 contribute to its binding affinity. Al-
though the binding energy of silychristin is slightly lower than that of silybin and isosilybin,
the observed interactions suggest a meaningful and significant affinity for SRC. Our results
indicate that silymarin’s active components, particularly silybin and isosilybin, exhibit sub-
stantial binding affinity to SRC, with values comparable to those of known inhibitors. These
findings highlight the potential therapeutic value of silymarin in targeting SRC, suggesting
that it is a promising candidate for further investigation in the treatment of hepatocellular
carcinoma. However, given the computational nature of this study, these results should be
considered preliminary and warrant additional experimental confirmation.

In both targets, VEGFA (1VPF) and SRC (3U51), hydrogen bonding interactions are the
dominant force governing the binding of silymarin active components. The docking results
clearly demonstrate that silybin, isosilybin, and silychristin form multiple hydrogen bonds
with key residues on both targets, with silybin showing the highest number of hydrogen
bonds in both cases. These hydrogen bonds are essential for stabilizing the ligand-target
complex and significantly contribute to the overall binding affinity. While hydrophobic
and electrostatic interactions also play a role in the stabilization of these complexes, they
are secondary to the hydrogen bonding interactions, which appear to be the primary
drivers of binding. This observation indicates that the strong hydrogen bond formation
by silymarin components with critical residues on both VEGFA and SRC could contribute
to their potential therapeutic activity, especially in the modulation of angiogenesis and
cellular signaling pathways. These findings provide a basis for further experimental studies
to validate and expand upon these computational insights.

The docking results of silybin, isosilybin, and silychristin with VEGF and SRC reveal
important insights into the binding mechanisms, particularly in relation to the secondary
structure elements of the proteins. Our analysis shows that these compounds predomi-
nantly interact with 3-sheets and o-helices, which are crucial structural domains in both
VEGF and SRC. In VEGF, key interactions occur with residues in the (3-sheet regions, such
as GIn275, Gly274, and Asp404, and hydrophobic interactions are observed with residues
in o-helical regions, like Cys277 and Leu393. Similarly, for SRC, significant binding in-
teractions are observed in both 3-sheet regions (Glu280, Asp386) and x-helical regions
(Leu273, Val281), with additional stabilizing electrostatic interactions with Asp404 and
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Cys177. These findings highlight the importance of both secondary structure elements in
stabilizing the binding of the compounds, reinforcing their potential therapeutic efficacy.

The molecular dynamics (MD) simulation provides an in-depth understanding of
the interactions and stability of the protein-ligand complexes under near-physiological
conditions. In this study, we conducted MD simulations to evaluate the stability and
dynamics of interactions between silybin, the most active component of silymarin, and the
identified molecular targets, VEGFA and SRC.

The Root Mean Square Deviation (RMSD) analysis for the VEGFA-silybin and VEGFA-
PGG complexes over a 100 ns molecular dynamics simulation, as shown in Figure 9A,
offers key insights into the conformational stability of these complexes. The VEGFA-silybin
complex exhibits initial RMSD values around 0.07 nm, which increase and stabilize at
approximately 0.15 nm after 20 ns. This stabilization, with minor fluctuations, suggests
that silybin forms a consistently stable complex with VEGFA throughout the simulation.
Comparatively, the VEGFA-PGG complex starts with slightly lower initial RMSD values
(~0.05 nm) and stabilizes around 0.12 nm after 20 ns, showing slightly less fluctuation
overall. While the VEGFA-PGG complex demonstrates marginally lower RMSD values, the
VEGFA-silybin complex remains stable, indicating that silybin is capable of forming robust
and enduring interactions with VEGFA.

The Root Mean Square Fluctuation (RMSF) analysis, depicted in Figure 9B, highlights
the flexibility of VEGFA residues when bound to silybin or PGG. The VEGFA-silybin
complex displays slightly higher RMSF values for certain residue regions, such as residues
50, 120, and 180, with peak fluctuations reaching approximately 0.3 nm. This indicates
that silybin introduces moderate flexibility in specific regions of the VEGFA structure. In
contrast, the VEGFA-PGG complex exhibits lower RMSF values (ranging from 0.1 to 0.2 nm)
across most residues, suggesting reduced flexibility.

The Solvent Accessible Surface Area (SASA) analysis, illustrated in Figure 9C, provides
insights into the exposure of VEGFA'’s surface to the solvent in the presence of the ligands.
The VEGFA-silybin complex exhibits higher SASA values, fluctuating between 180 and
190 nm? over the simulation period, indicating that silybin maintains VEGFA in a more
open conformation. This could enhance the accessibility of certain binding sites, potentially
favoring interactions with other biomolecules or cofactors. In comparison, the VEGFA-PGG
complex shows lower SASA values (~170-180 nm?), reflecting tighter packing and reduced
solvent exposure.

The radius of gyration (Rg) analysis, shown in Figure 9D, sheds light on the structural
compactness of the VEGFA-silybin and VEGFA-PGG complexes. The VEGFA-silybin
complex exhibits slightly higher Rg values (2.06-2.09 nm) with moderate fluctuations,
suggesting a less compact but flexible structure. This contrasts with the VEGFA-PGG
complex, which maintains lower and more stable Rg values (~2.05-2.07 nm).

The hydrogen bond (H-bond) analysis, illustrated in Figure 9E, reveals the dynamic
interactions between VEGFA and the two ligands, silybin and PGG, during the 100 ns molec-
ular dynamics simulation. Both VEGFA-silybin and VEGFA-PGG complexes demonstrate
the potential to form up to eight hydrogen bonds throughout the simulation, highlighting
their strong binding capacity. However, distinct patterns emerge in the frequency and
stability of these interactions. The VEGFA-silybin complex exhibits a dynamic profile,
with the number of H-bonds fluctuating between two and eight during the simulation.
This variability suggests that silybin maintains strong hydrogen bonding interactions with
VEGFA while allowing flexibility in the binding interface. In comparison, the VEGFA-PGG
complex shows a more consistent H-bond profile, with the number of hydrogen bonds
also fluctuating between two and eight but remaining closer to the upper range for longer
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durations. This indicates that PGG forms more stable hydrogen bonding interactions with
VEGFA, leading to a more rigid and compact binding mode.

The RMSD analysis of the SRC-MC1 and SRC-silybin complexes over a 100 ns molec-
ular dynamics simulation reveals important insights into their stability and conformational
behavior (Figure 10A). Both complexes begin with RMSD values around 0.205 nm, indicat-
ing an initial state of stability. Throughout the simulation, the SRC-MC1 complex maintains
relatively stable RMSD values, fluctuating slightly between 0.205 and 0.21 nm, demon-
strating that the co-crystallized inhibitor MC1 ensures a stable conformation of the SRC
protein. On the other hand, the SRC—silybin complex shows slightly higher fluctuations in
RMSD, ranging from 0.205 to 0.215 nm. Despite these fluctuations, the RMSD values for
SRC-silybin stabilize around 0.21 nm towards the end of the simulation, indicating that
silybin binds stably to the SRC protein, albeit with slightly more conformational flexibility
compared to MC1. Overall, both complexes exhibit stability, with the SRC-MC1 complex
showing marginally better stability and lower RMSD fluctuations, while the SRC—silybin
complex maintains structural integrity with minor conformational changes. This suggests
that silybin is a viable ligand for SRC, capable of maintaining the protein’s structural
integrity during binding.

The Root Mean Square Fluctuation (RMSF) plot provides insights into the flexibility of
individual residues within the SRC-MC1 and SRC-silybin complexes (Figure 10B). For the
SRC-MC1 complex, the RMSF values are generally lower, averaging around 0.06 £ 0.03 nm,
indicating that most residues exhibit low flexibility. This suggests a stable interaction
between the SRC protein and the MC1 inhibitor. The residues maintain their positions with
minimal deviations, reflecting the rigidity of the complex. In comparison, the SRC-silybin
complex shows slightly higher RMSF values, averaging 0.07 £ 0.03 nm. This indicates that
certain residues exhibit more flexibility in this complex. The plot demonstrates peaks at
specific residue positions, suggesting areas where the protein experiences more significant
fluctuations. Despite these variations, the overall flexibility remains within a stable range,
highlighting that silybin maintains a strong interaction with SRC while allowing for a bit
more conformational freedom compared to MC1. The RMSF plot reveals specific regions
within the protein that are more flexible. For both complexes, there are noticeable peaks
around residues 50, 150, and 250, which could correspond to flexible segments within
the SRC structure. The highest peak is observed near residue 270, indicating significant
flexibility at this position, which could be part of a terminal or loop region that is inherently
more dynamic.

The Solvent Accessible Surface Area (SASA) plot provides insights into the surface
exposure of the SRC protein when complexed with either MC1 or silybin over the course
of the molecular dynamics simulation (Figure 10C). The SASA values for the SRC-MC1
complex fluctuate between 175 nm? and 180 nm?, with an average of 178.86 + 1.80 nm?.
This indicates that the SRC-MC1 complex maintains a relatively stable surface area exposed
to the solvent, reflecting a consistent interaction between the protein and the inhibitor. The
SASA values exhibit minor fluctuations, suggesting that the complex undergoes limited
conformational changes and maintains a stable structure throughout the simulation. In
contrast, the SRC-silybin complex shows SASA values that range between 175 nm? and 185
nm?, with an average of 179.82 & 1.66 nm?. This slightly higher average SASA indicates
that the SRC—silybin complex has more surface area exposed to the solvent compared to
the SRC-MC1 complex. The increased fluctuations in the SASA values for the SRC—silybin
complex suggest that it experiences more significant conformational changes during the
simulation. This could be due to the slightly more flexible interaction between SRC and
silybin, allowing for more dynamic rearrangements of the protein surface.
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The radius of gyration (Rg) plot, as shown in Figure 10D, measures the compactness
of the SRC protein when complexed with MC1 and silybin over the course of the 100 ns
molecular dynamics simulation. The Rg values for the SRC-MC1 complex fluctuate within
a narrow range, generally between 2.06 nm and 2.09 nm. This consistent range indicates
that the SRC-MC1 complex maintains a relatively stable and compact structure throughout
the simulation. The stable Rg values suggest that the MC1 inhibitor helps maintain the
structural integrity and compactness of the SRC protein. In contrast, the SRC—silybin
complex exhibits slightly higher Rg values, fluctuating between 2.07 nm and 2.12 nm. The
higher and more fluctuating Rg values compared to the SRC-MC1 complex indicate that
the SRC-silybin complex experiences more significant conformational changes. However,
these fluctuations stabilize around 2.10 nm towards the end of the simulation, suggesting
that while silybin allows for more conformational freedom, it ultimately maintains a stable
interaction with the SRC protein.

The number of H-bonds formed between the SRC protein and its ligands, MC1 and
silybin, is a crucial determinant of the stability and strength of these complexes. The
H-bonds graph (Figure 10E) illustrates the dynamics of these interactions over the 100 ns
molecular dynamics simulation. For the SRC-MC1 complex, the number of hydrogen bonds
fluctuates between 1 and 9, with an average of around 5-6 hydrogen bonds throughout
the simulation. This relatively high and consistent number of hydrogen bonds indicates a
strong and stable interaction between the SRC protein and the MC1 inhibitor. In comparison,
the SRC-silybin complex exhibits fewer hydrogen bonds, fluctuating between 1 and 6, with
an average of around 3-4 hydrogen bonds. This lower number of hydrogen bonds suggests
that the interaction between SRC and silybin is slightly weaker than that of the SRC-MC1
complex. However, the hydrogen bond formation remains relatively stable throughout the
simulation, supporting the notion that silybin maintains a significant interaction with the
SRC protein.

The interaction of silybin with SRC, as revealed by the molecular dynamics simulation,
shows that silybin binds stably to the SRC protein. The RMSD, RMSF, SASA, Rg, and
hydrogen bond analyses collectively indicate that while the SRC-silybin complex exhibits
slightly more flexibility and conformational changes, it maintains its structural integrity
and significant interactions throughout the simulation. These findings suggest that silybin
is a viable ligand for SRC and is capable of maintaining the protein’s structural integrity
during binding.

5. Conclusions

This study employed an integrated in silico approach to investigate the therapeutic
potential of silymarin in hepatocellular carcinoma (HCC). We identified 136 potential target
genes for silymarin and 11,414 targets associated with HCC with 102 common targets,
suggesting a possible overlap and therapeutic relevance. Network analysis highlighted
VEGFA and SRC as potential key targets, with functional annotation and KEGG enrichment
analyses indicating that silymarin may modulate multiple pathways, including the VEGF
signaling pathway and proteoglycans in cancer. Molecular docking studies showed that
silybin, isosilybin, and silychristin exhibited strong binding affinities for VEGFA and SRC,
comparable to known inhibitors. Molecular dynamics simulations suggested the stability of
these interactions, particularly for silybin. These findings provide a theoretical basis for the
potential therapeutic role of silymarin in HCC. However, given the computational nature
of this study, further experimental and clinical investigations are essential to validate these
results and assess the practical applicability of silymarin as a multi-target therapeutic agent
against HCC.
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