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Abstract: Background/Objectives: Determining appropriate cellular objectives is crucial
for the system-scale modeling of biological networks for metabolic engineering, cellular
reprogramming, and drug discovery applications. The mathematical representation of
metabolic objectives can describe how cells manage limited resources to achieve biological
goals within mechanistic and environmental constraints. While rapidly proliferating cells
like tumors are often assumed to prioritize biomass production, mammalian cell types
can exhibit objectives beyond growth, such as supporting tissue functions, developmen-
tal processes, and redox homeostasis. Methods: This review addresses the challenge of
determining metabolic objectives and trade-offs from multiomics data. Results: Recent ad-
vances in single-cell omics, metabolic modeling, and machine/deep learning methods have
enabled the inference of cellular objectives at both the transcriptomic and metabolic levels,
bridging gene expression patterns with metabolic phenotypes. Conclusions: These in silico
models provide insights into how cells adapt to changing environments, drug treatments,
and genetic manipulations. We further explore the potential application of incorporating
cellular objectives into personalized medicine, drug discovery, tissue engineering, and
systems biology.

Keywords: metabolic network; genome-scale metabolic modeling; transcriptomics;
proteomics; metabolomics; metabolic objectives; archetypes; machine learning

1. Introduction
Cells must perform diverse tasks in order to survive, grow, and carry out specialized

functions within multicellular organisms [1]. The specific objectives that dictate a cell’s
behavior, resource allocation, and priorities are fundamental representations of cellular
phenotypes in systems biology. Identifying and mathematically representing these ob-
jectives for different cell types is crucial for systems biology studies that aim to model
and predict cellular processes holistically [2–5]. Assumptions about uniform cellular ob-
jectives, like biomass maximization, are often incorrect. They miss the complex links
between gene expression, metabolic activity, and the different functions of specialized cell
types [6,7]. Furthermore, evolutionary selection can promote phenotypic heterogeneity
within cell populations. A better model of cellular objectives, under different regulations
and environments, could improve phenotype predictions [8–13].

Techniques like flux balance analysis (FBA) rely on mathematically defined cellular
objectives to predict metabolic fluxes and phenotypes using genome-scale metabolic models
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(GEMs) [14]. However, focusing solely on biomass production disregards the complex trade-
offs and constraints that shape a cell’s metabolic strategies [15]. This oversimplification has
spurred research to (i) evaluate common objective functions, (ii) infer new formulations,
and (iii) create metabolic goals that are more biologically accurate [16].

Furthermore, the assumption of biomass production as the dominant objective for
rapidly proliferating cells in systems biology studies may be reasonable for cancer cells
and microbes undergoing rapid division, but is unrealistic for several other cell types
(Figure 1). This assumption oversimplifies the nuanced objectives of non-proliferative cells
like neurons, muscle cells, and embryonic stem cells, which often prioritize tasks beyond
growth, such as tissue maintenance, developmental regulation, or the management of
energy dynamics [17].
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Figure 1. Cellular states, featured metabolic functions, and potential metabolic objectives.
(A) Neurons and astrocytes are two types of brain cells. Neurons govern signal transmission,
which requires active energy metabolism to produce ATP. On the other hand, astrocytes function
as energy repositories. (B) Skeletal muscle mainly consists of fast and slow muscle fibers. Energy
metabolism is required for both, but they consume different types of metabolites to support their
functions. (C) Proliferation is considered the most important phenotype for cancer and tumors
display aerobic glycolysis (Warburg effect). Although another phenotype, migration, relies on similar
metabolic pathways, the relative allocation among various pathways is different from that seen in
biomass synthesis. (D) Embryogenesis progressively changes cellular phenotypes from having low
metabolic activities to high biomasses and energy production. The underlying design principle of
this phenotypic change remains unclear.

This review explores the metabolic and transcriptional facets of cellular objectives
across diverse cell types. We emphasize the limitations of univariate growth assump-
tions and highlight computational methods that address the multi-objective nature of
cellular priorities. By bridging transcriptomic archetypes with metabolic models, we
aim to elucidate how cells coordinate gene expression and metabolism to modulate func-
tions, maintain fitness within multicellular systems, and adapt to changing internal or
external environments.
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2. Metabolic Goals of Mammalian Cell Types
Several types of mammalian cells perform functions within multicellular systems that

are not directly associated with single-cell fitness [18,19]. For instance, human cells are
highly proliferative during development, driven by stem cells, but strict regulations turn
most cells into quiescent states in adults [20,21]. The goals of these cells are the maintenance
and execution of specific tasks for tissue functions, meaning that growth is no longer the
primary objective.

Despite being mostly quiescent, the brain, muscle, and liver remain metabolically
active, consuming 50% of oxygen, which implies that their metabolic objectives support
the function of cells beyond growth [22]. For example, muscle cells tend to be quiescent
until receiving proliferative signals, after which they differentiate to repair tissues [23].
During exercise, ATP production drives muscle contraction, with different types of muscle
relying on different types of metabolism and different energy sources [24]. The metabolic
objectives of muscle tissues can be heterogeneous and dynamic, depending on the type and
intensity of the activity.

Brain cells prioritize oxidative and energy-related metabolism. This supports activity
and prevents issues like hypoxia and cellular stress [25]. The brain consumes oxygen to fuel
its electrical activity and support the functions of the nervous system, stabilizing membrane
potentials through active ion transport [26]. Brain cell maintenance is vital for neuronal
activity. Metabolites like oxygen and glucose are crucial for respiration, neurotransmitter
synthesis, and cell communication [27].

Stem cells and embryos operate differently due to their unique cellular environment.
During embryogenesis, the cellular program is highly regulated to ensure a healthy embryo.
The quiet embryo hypothesis suggests embryos maintain low levels of protein synthesis,
amino acid uptake, and glucose and oxygen consumption. This is to avoid damage and
maintain stability [28]. During early development, embryos rely on maternal sources
since they cannot produce their own biological materials [29,30]. This reliance highlights
the importance of maintaining developmental potential rather than solely focusing on
biomass growth.

Cancer cells typically prioritize growth to maintain proliferation. However, the pres-
ence of the Warburg effect—where aerobic glycolysis occurs with or without sufficient
oxygen—suggests that a different metabolic strategy is used by highly proliferative cancers
in various and noisy environments [31,32]. Pathogenic bacteria adopt a similar metabolic
strategy when rapidly expanding within hosts [33–35]. Growth and division are com-
mon phenotypes associated with biomass accumulation. However, the specific cellular
objectives can vary significantly based on the environment and the cell’s functional state.
Various bioenergetic pathways drive the functions of cytoskeletons, including glycolysis,
glutaminolysis, the pentose phosphate pathway, amino acid metabolism, lipid metabolism,
and the maintenance of the redox state [36–39]. These functions contribute to the metastatic
potential of various cancers and also play a role in cancer proliferation [40]. Studies suggest
that the balance between aerobic glycolysis and oxidative phosphorylation, specifically
the increase in aerobic glycolysis, may be more critical for cancer migration than prolifera-
tion [41,42]. The accumulation of the lactate generated from aerobic glycolysis is considered
a driving force behind the invasiveness of cancers [43]. Therefore, primary and metastatic
tumors may share similar metabolic objectives, but they fulfill them in different proportions.

Overall, unique metabolic objectives shape the metabolic characteristics of mammalian
cells, challenging the usual focus on biomass objectives. The specific constraints imposed
on various cell types underscore the need to investigate the intersection between cellular
metabolism and developmental direction.
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2.1. Cellular Objectives, Trade-Offs, and Archetypes

While cells aim to achieve various objectives, it is nearly impossible to optimize all
of them at once, which leads to trade-offs [44]. A trade-off is an idea widely studied in
evolutionary biology [45]. For example, no type of species has been found that can run as
fast as a cat and swim as smoothly as a fish at the same time (Figure 2A). Running and
swimming are biological traits that species tend to optimize as key life history objectives,
which are critical for survival and reproduction. However, realistic limitations, such as the
finite energy available for respiration systems, constrain the design of biological systems.
Cellular objectives are hence shaped by resource allocation constraints [46]. Extreme
resource allocations, known as archetypes, maximize specific functions but may reduce
resilience or adaptability [47], which are essential for buffering noise and responding to
environmental changes. For example, cancer cells often perform multiple tasks due to their
heterogeneity. In contrast, normal tissues have a structured organization with archetypal
goals [48–50].

Metabolites 2025, 15, x FOR PEER REVIEW 4 of 27 
 

 

Overall, unique metabolic objectives shape the metabolic characteristics of mamma-

lian cells, challenging the usual focus on biomass objectives. The specific constraints im-

posed on various cell types underscore the need to investigate the intersection between 

cellular metabolism and developmental direction. 

2.1. Cellular Objectives, Trade-Offs, and Archetypes 

While cells aim to achieve various objectives, it is nearly impossible to optimize all of 

them at once, which leads to trade-offs [44]. A trade-off is an idea widely studied in evo-

lutionary biology [45]. For example, no type of species has been found that can run as fast 

as a cat and swim as smoothly as a fish at the same time (Figure 2A). Running and swim-

ming are biological traits that species tend to optimize as key life history objectives, which 

are critical for survival and reproduction. However, realistic limitations, such as the finite 

energy available for respiration systems, constrain the design of biological systems. Cel-

lular objectives are hence shaped by resource allocation constraints [46]. Extreme resource 

allocations, known as archetypes, maximize specific functions but may reduce resilience 

or adaptability [47], which are essential for buffering noise and responding to environ-

mental changes. For example, cancer cells often perform multiple tasks due to their heter-

ogeneity. In contrast, normal tissues have a structured organization with archetypal goals 

[48–50]. 

 

Figure 2. The Pareto optimality and trade-offs of biological phenotypes. The trade-offs involved in 

optimizing a pair of objectives can be represented by 2D Pareto fronts. (A) Fins and legs are biolog-

ical phenotypes optimized for two distinct objectives—swimming and sprinting, respectively. A fish 

and a cat serve as metaphors for archetypal species, or single-objective species, that have optimized 

their performance for swimming or sprinting. In contrast, the axolotl represents a multi-objective 

species attempting to optimize both swimming and sprinting simultaneously. However, a trade-off 

forces the axolotl to optimize these two objectives along the Pareto front; as a result, its swimming 

and sprinting performance is only 80% and 70% relative to that of the fish and cat, respectively. (B) 

Cancer or microbial populations face trade-offs between survival and proliferation. The choice of 

phenotypes is hypothetically determined by the abundance of resources. 

A classic conceptual model called the Y-model depicts two phenotypes competing 

for limited resources [51]. The Y-model, serving as a fundamental theory, has guided re-

searchers to study pairs of phenotypes with top-down methods like hormone manipula-

tion over a phenotype [52]. However, the formation of biological trade-offs is more intri-

cate [51]. They exist both inter- or intra-species and can be hidden by different environ-

mental conditions [45]. 

Figure 2. The Pareto optimality and trade-offs of biological phenotypes. The trade-offs involved in
optimizing a pair of objectives can be represented by 2D Pareto fronts. (A) Fins and legs are biological
phenotypes optimized for two distinct objectives—swimming and sprinting, respectively. A fish
and a cat serve as metaphors for archetypal species, or single-objective species, that have optimized
their performance for swimming or sprinting. In contrast, the axolotl represents a multi-objective
species attempting to optimize both swimming and sprinting simultaneously. However, a trade-off
forces the axolotl to optimize these two objectives along the Pareto front; as a result, its swimming
and sprinting performance is only 80% and 70% relative to that of the fish and cat, respectively.
(B) Cancer or microbial populations face trade-offs between survival and proliferation. The choice of
phenotypes is hypothetically determined by the abundance of resources.

A classic conceptual model called the Y-model depicts two phenotypes competing
for limited resources [51]. The Y-model, serving as a fundamental theory, has guided re-
searchers to study pairs of phenotypes with top-down methods like hormone manipulation
over a phenotype [52]. However, the formation of biological trade-offs is more intricate [51].
They exist both inter- or intra-species and can be hidden by different environmental
conditions [45].

The Y-model is applied to develop FluTO, which hypothesizes that trade-offs among
metabolic reactions can be mathematically described by the equation Y = Σαixi. In this
model, Y represents a common resource, formulated as a linear combination of traits xi,
where each trait is weighted by a coefficient αi, which determines the allocation of Y. Based
on this assumption, FluTO uses flux variability analysis (FVA) to determine invariant reac-
tion fluxes under specific boundary conditions, with Y serving as the resource constraint.
FluTO then designates a weighted sum of fluxes equal to an invariant flux, identifying
absolute trade-off fluxes that depend on the available carbon sources in Escherichia coli and
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Saccharomyces cerevisiae [53]. An adaptive version, FluTOr, was later developed to identify
relative trade-offs, where the resource Y is variable, allowing for phenotypic plasticity [54].

Similar ideas have been applied in large-scale models, suggesting that a trade-off is
widely present in various phenotypes [55]. For example, the expression of growth and
survival genes in Escherichia coli cannot be optimized at the same time. The expression of
growth was active in the exponential phase, despite a change in culture conditions. In the
stationary phase, survival genes were active [55]. Although the research did not directly
investigate the survival and growth trade-offs during metabolism, it confirmed that Pareto
optimality exists in the phenotype space. These studies focused on extreme cases known as
‘archetypes’, which served as reference points. Specifically, the two archetypes represented
growth-optimized and survival-optimized Escherichia coli. As the transition occurred
from the growth-optimized to the survival-optimized strain, individuals proportionally
optimized these two objectives—growth and survival (Figure 2B). Mathematically, the
performance in these objectives can be represented by a Pareto front, where any individual
hypothetically allocates their resources to the objectives within this front. Similarly, since
microbial species must adapt to rapidly changing environments, other studies have also
suggested that trade-offs exist between the growth rate and other objectives, such as
adaptation [56], survival [57], and mobility [58].

Interestingly, similar trade-offs are observed in cancers. Aktipis et al. reviewed studies
of cancer phenotypes and summarized that cancers push the optimization of proliferation
and survival simultaneously toward Pareto optimality until they exhaust limited resources.
In other words, a trade-off emerges between proliferation and survival within a cell pop-
ulation [59]. However, Hausser et al. argued that spatial and temporal variations create
selection pressures that force cancer cells to switch phenotypes [60]. For example, late-stage
cancers tend to optimize survival under hypoxic conditions, contrasting with early-stage
cancers that are proliferation-optimized due to ample oxygen availability, as depicted in
Figure 2B [61]. Spatially, environmental niches, such as when proximity to blood vessels
affects nutrient and oxygen supply, can also lead to trade-offs between proliferation and
survival phenotypes [62,63]. Although this trade-off influences the selection of cancer phe-
notypes in response to the environment, Aktipis et al. noted that cell migration, specifically
cancer invasion, enables cancers to dynamically optimize either proliferation or survival.
In fact, proliferation and migration have been reported to exist as a pair of phenotypes that
potentially form a trade-off in cancer [64], implying that more complicated interactions
among objectives construct a high-dimensional trade-off embedded in the evolution of can-
cer (Figure 3A,B). Changes in constraints or resources can lead to the bifurcation of cancer
phenotypes driven by these trade-offs (Figure 3C). Although bifurcation theory is beyond
the scope of this review, the way bifurcation interacts with the biological trade-offs is worth
discussion in future studies [65,66]. Given that trade-offs can consist of multiple objectives
in reality, leveraging genomics data has become a promising direction for studying the
interactions among objectives, trade-offs, and archetypes at the cellular level.

2.2. Brief Overview of Metabolic Modeling and Flux Balance Analysis (FBA)

The FBA approach simulates genome-scale metabolic network models (GEMs) to
predict reaction fluxes based on objective functions and constraints. GEMs are the math-
ematical representation of the interconnection of chemical reactions, metabolic enzymes,
and genes [67]. Numerous studies have taken advantage of the flexible mathematical
nature of GEMs and have used it to interpret transcriptomics [67–73], proteomics [74,75],
metabolomics [76], and epigenomics datasets [77–80]. FBA applies various constraints from
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omics and thermodynamics to optimize the flux distributions through metabolic networks
through linear programming (Equation (1)).

max Z = cTv
s.t.{vlb<v<vub

Sv=0
(1)
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Figure 3. The switch of cancer phenotypes in relation to trade-offs and environmental changes.
Inspired by Aktipis et al., a model for the switching of phenotypes during the expansion of a cancer
population is shown. (A). The dynamics of cancer phenotypes are governed by trade-offs among
proliferation, survival, and mobility (B). In the lag phase, cells tend to optimize proliferation. As
the population reaches the stationary phase, the focus shifts toward optimizing survival. When the
population ceases to grow and resources like oxygen become depleted, mobility is optimized (A).
The switching of cell phenotypes can be characterized by bifurcation (C).

In Equation (1), Z is the objective function; c is the vector of weights, indicating the
contribution of each reaction to the objective function; and v is the vector of reaction
fluxes. Flux balance analysis uses two additional constraints. The first constraint is that
the product of the fluxes and stoichiometric matrix should be zero, which represents a
steady state condition shown by Sv = 0 (Equation (1)). Here, the stoichiometric matrix is a
mathematical representation of the interlinked metabolic reactions. The matrix bypasses the
need for kinetic parameters, which are unknown, and the model does not exhibit dynamic
behavior. The second constraint describes the constraints on the solution spaces through
the upper and lower bounds of each reaction. FBA uses linear programming techniques
to find the best flux solution for the optimization function. Biomass is widely used as the
optimization objective in order to model proliferative cells, including bacteria, yeast, and
cancers. However, maximizing biomass production can be counterintuitive when modeling
non-proliferative cells, such as adult brain cells [17].

2.3. Refining Biomass Objective Functions

Biomass objective function (BOF) is the most commonly used objective and consists of
essential metabolites, representing the growth and division of cells [14]. Mathematically,
BOF is a linear combination of amino acids, nucleotides, lipids, and other growth-related
metabolites, and it has been successfully used to model the proliferation and growth rates
of many cell types [81–85]. Determining which metabolites should be involved and how
their coefficients can be applied to individual cells is a research challenge [4,14].

The mathematical equation of BOF is often formulated during the network construc-
tion procedure. For instance, the SEED model presents an automated model reconstruction
approach to GEMs. SEED helps to draft GEMs to predict organism phenotypes from
genotypes and translate enzymatic processes into quantitative predictions [86]. The SEED
framework helps to increase the rate of new model development and the number of se-
quenced genomes corresponding to metabolic models. The model translated the gene
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annotations into a metabolic reaction list via the annotation ontology map, and provided
template biomass equations for 130 organisms [86].

In addition to the genotype, different growth conditions and cell types may lead to
different BOFs. Beck et al. 2018 designed a protocol to experimentally measure and select
macromolecules (carbohydrate, DNA, lipid, protein, and RNA) for biomass synthesis, con-
sidering culture conditions. Their condition-specific biomass objective functions can predict
biomass production best in three different bacterial species [87]. Furthermore, the coefficients
of metabolites in biomass objectives can affect growth prediction. Nevertheless, the changes
in biomass objective coefficients are notably less crucial in the assessment of cancer gene
essentiality compared to the network structure and the gene-protein-reaction rules [8].

To address the uncertainty of biomass objectives in different environmental condi-
tions, Biomass Tradeoff Weighting (BTW) and higher-dimensional-plane interpolation
(HIP) approaches can be used. They identify biomass objectives with consideration of
environmental changes that are reflected in exchange reactions [88]. BTW incorporates
multiple biomass equations into a model by weighting their coefficients to fit the maximal
growth. In contrast, HIP assumes linear relationships between environmental changes
and biomass compositions, thus applying interpolation to approximate the coefficients of
metabolites in the biomass equation with experimental data about environmental changes
(Figure 4). The research emphasizes the influences of the environment on the biomass
objectives. Instead of inferring or summarizing single biomass objectives, the pFBAwEB
pipeline alternatively considers the variation in the biomass compositions of different cells
and assesses possible ranges of coefficients in biomass objectives [89]. This work identifies
DNA and fatty acids as the only two groups of metabolites with low variation (Figure 4).
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Figure 4. Methods leveraging experimentally measured reaction fluxes to infer or refine objective
functions. The methods illustrated share a common principle: minimizing the difference between ex-
perimental fluxes and simulated fluxes within their optimization frameworks. However, approaches
to handling draft objective functions differ. Knorr et al. rank candidate objectives, invFBA identifies
the smallest suboptimal space, objFIND assigns weights to metabolites, and BOSS randomizes the
coefficients of metabolites. For BTW and HIP, experimental flux data—specifically uptake fluxes and
growth rates—are utilized. BTW combines multiple draft objectives with equal weights to define its
objective function, while HIP adjusts the coefficients of biomass precursors dynamically based on
changes in uptake rates [88,90–93].
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Despite the success of BOF, studies have found that maximizing energy, such as in ATP
production, aligns better with physiological conditions [94–96]. Evolutionary optimization
models have shown that the metabolic networks optimized for the production of ATP
and NADH have similar structural designs in terms of glycolysis [97,98]. Another study
alternatively leveraged the optimization of NADPH production as the objective function to
successfully model the metabolic states of NCI-60 cancer cell lines [99]. However, a rich
culture medium was better predicted via non-linear optimization of ATP production [6].
That being said, Schuetz et al. suggested that combining two or more objective functions
was required to estimate reaction fluxes with better validation outcomes. This accentuates
the necessity of the calibration of objective functions or the employment of multi-objective
functions in specific conditions.

Unlike studies on cancer or pathogens that are modeled by optimizing biomass, studies
on aging and lifespan utilize alternative objective functions. In this case, the sequential
optimization of objective functions was used, including maximal biomass production, non-
growth-associated maintenance, and ATP production [100]. Maximal biomass production
was found to be essential to prolonging the lifespan in yeast, which could be extended
by optimizing non-growth-associated maintenance as the second objective. In addition,
potential trade-offs were introduced in another study where aging, reproduction, and
growth competed with each other when optimizing their values [101]. The balance of
multiple objectives might be essential to optimizing yeast fitness.

2.4. Multi-Objective Frameworks for Predicting Metabolic Behaviors

The trade-off between multiple objectives can be described by Pareto optimality. For
example, the microbial growth rate forms a trade-off with the yield of reaction fluxes [102–104].
This trade-off reveals that although high-yield fluxes require larger amounts of enzymes, the
protein production burden of those enzymes results in the decreased growth of cells. A
previous study suggested that the maximization of ATP and biomass and the minimization
of total fluxes competed with each other quantitatively [6]. Intriguingly, the authors found
that microbial species allocated their objective fluxes close to the level of Pareto optimality.
Nonetheless, the distance between the fluxes and the Pareto optimality is still remarkable
compared to the flux allocations in different conditions, such as switching from aerobic to
anaerobic metabolisms. The study concluded that the distance of the fluxes from the Pareto
optimality allowed them to maintain the flexibility to quickly respond to environmental
changes [6]. In other words, cells would rather sacrifice optimality to minimize flux adjustment
efforts than change their metabolic objectives [6]. Inspired by these studies, parsimonious
FBA (pFBA) improves the accuracy of metabolic modeling by considering the enzyme costs as
an additional objective function [105]. Mathematically, pFBA solves a multi-objective problem
by maximizing the biomass objective and minimizing the sum of reaction fluxes.

In bioproduct production, the goal is to maximize the production of valuable chemicals
in bacterial, yeast, or mammalian cell factories. However, the production of the target
chemicals impedes the growth rates of cells, which ultimately reduces the total product
yield. Thus, both the growth rate and the production of the target chemicals should be
optimized. The OptKnock framework is an example that optimizes bioproduct yield
by coupling it with biomass fluxes [106]. OptKnock relies on a bi-level nested linear
programming problem. It maximizes chemical production, subject to maximizing biomass
production (an FBA problem).

A related method is multi-objective metabolic mixed-integer optimization (MOMO).
Inspired by Pareto optimality, MOMO was designed by treating the production of target
chemicals and biomass as a trade-off [107]. In other words, MOMO maximizes biomass
and target chemicals simultaneously, instead of solving a bi-leveled linear programming
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problem with maximized biomass as a priority. The algorithm minimizes the differences
between the fluxes of knockout and wild-type strains, which is derived from the idea of
minimum flux adjustment in knockout strains. The integration of evolutionary algorithms
can solve complex multi-objective problems in large networks. Methods like OptGene and
multi-objective metabolic engineering (MOME) use genetic algorithms (GAs) to find the best
knockout strains for growth and biochemical production [108,109]. These methods are able to
suggest the best knockout strain for lactate production while maintaining cell growth.

2.5. The Inference of Metabolic Objective Functions Based on Experimental Fluxes

Knorr et al. applied Bayesian statistics to determine the objective functions in E. coli in
relation to a set of experimental fluxes (Figure 4). The likelihood of a function serving as
a true objective could be estimated by comparing the deviation of predicted fluxes from
the experimental data. The authors prepared 5 candidate objective functions, including
the maximum growth rate, the minimum redox potential, maximizing or minimizing ATP
production, and the minimum nutrient uptake. Surprisingly, minimizing the production
rate of redox potential eventually achieved the highest probability as an objective function
for E. coli growing on succinate. The function of the maximizing growth rate also predicted
acetate production closer to experimental data [93]. A drawback of this method is that it
requires candidate objective functions. Another drawback is that each candidate function
is evaluated individually, which implies that the linear or non-linear combination of the
candidate functions is not considered.

The Biological Objective Solution Search (BOSS) method infers the objective func-
tion of biological systems from the network’s stoichiometry and experimental fluxes [91].
Conceptually, BOSS solves a bi-level optimization problem. The goal is to minimize the
sum-squared error between experimental fluxes and in silico fluxes subjected to an FBA
problem. Mathematically, the bi-level optimization problem is transformed into a single-
level problem with the duality principle. A putative objective function is selected from
a pool of randomly generated objective functions, and the putative functions are then
clustered based on similarity. The largest cluster is eventually chosen as the most common
objective. BOSS successfully estimated that precursor biomass synthesis reaction was the
objective of yeast central metabolism.

BOSS builds upon ObjFIND, which minimizes the distance between the experimental
flux data and flux distributions when optimizing a hypothetical objective function [90].
Instead of creating a new reaction in BOSS, ObjFIND utilizes coefficients of importance
(CoIs) to explain the experimental flux data, quantifying the fraction of the additive contri-
bution of a given flux to an objective function. A greater CoI represents a higher degree of
importance of the flux, in which the fraction of each flux is consistent with the experimental
flux data. Interestingly, CoIs of either aerobic or anaerobic growth conditions were found to
be similar whereas their flux distributions were different. ObjFIND determines how likely
a reaction is likely to be a component of an objective function. In contrast, BOSS defines
the objective function as an additional reaction in the stoichiometric matrix and can avoid
choosing objective functions from suboptimal solutions, but the non-convex problems may
lead to local minimum solutions.

Given the non-convex problems in ObjFIND and BOSS, inverse flux balance analysis
(invFBA) can ensure global optimality and polynomial computation when looking for
objective functions [92]. Specifically, invFBA assumes the existence of noises in experimen-
tal flux measurements. The assumption leads to the first step of invFBA that minimizes
the errors between modeled and observed fluxes. Since the objectives that generate the
near-optimal fluxes may not be unique, the L1 norm is applied in the second step to narrow
down a set of candidate objectives. In the third step, the objective coefficients are set to
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be sparsest, which is equal to fewer non-zero coefficients in the objective. In terms of the
performance of invFBA in toy models, the algorithm successfully recovered the biomass
objectives in three culture conditions. Additionally, FBA-optimizing alternative objectives,
including the maximization of ATP synthase and the minimization of glucose uptake, were
also captured by invFBA. A study validated the invFBA approach by experimenting with
time-dependent fluxes from gene expression data of S. oneidensis and fluxes within the
central carbon of E. coli [92]. invFBA showed the strains optimizing respiratory efficiency
in addition to their growth rates, providing insight into the species’ metabolic rate through
the depletion of a carbon source. Computationally, invFBA only seeks to solve objective
functions by linear programming, which guarantees computational efficiency and global
minimums of the solutions.

2.6. The Inference of Metabolic Objectives from Genomics Data

Flux data have been effective in inferring objective functions in bacteria and yeast.
However, the lack of fluxomics in most bacterial species and eukaryotic cells impedes the
application of the methods mentioned in the last section. For example, even with invFBA’s
expansion of metabolic modeling and the success of identifying the flux’s objective function,
the method is limited due to the insufficiency of fluxomics in terms of enabling invFBA
to distinguish between similar metabolic reactions [92]. As a whole, genomics, including
transcriptomes, proteomes, and metabolomes, can provide evidence and constraints to
narrow down the range of putative metabolic objectives.

One such algorithm that addresses this is the biomass objective function algorithm
(BOFdat), which pulls from experimental data and utilizes a standardized computa-
tional platform to determine the species-specific biomass objective functions of various
species [110]. BOFdat takes an unbiased, data-driven approach. The algorithm consists
of three independent categories: major macromolecules, coenzymes and inorganic ions,
and species-specific metabolic end goals. After defining the candidate metabolites from
the three categories, BOFdat seeks the best metabolic objective with which to predict gene
essentiality using a genetic algorithm (GA). Specifically, each generation of genetic algo-
rithm performs the muting and mating of the objective functions that can better predict
gene essentiality. Since every candidate metabolite in GA only has binary values, the
objective function generated by genetic algorithms represents the necessity of predicting
cell growth. BOFdat was used to reconstruct the biomass objective functions of E. coli and
it outperformed BOSS and SEED in terms of the phenotypic predictions. Additionally,
BOFdat was also employed to estimate objective functions in cancer cells and improve
predictions of drug targets [8].

There are two key limitations of BOSS. First, genetic algorithms may result in unrealis-
tic objectives if they fail to account for network structure, even though they can still predict
gene essentiality effectively. Essential genes predicted with BOFdat-based objectives were
suspected to be overestimated due to the identification of uncommon genes [8]. Second,
BOFdat relies on omic datasets, growth rate measurements under various conditions, and
the assessment of growth rate changes in knockout strains to identify essential metabo-
lites. The association between omics data and growth largely determines how BOFdat
summarizes the metabolic goals of organisms. BOFdat might not fit slowly growing cells
or terminally differentiated cells in the muscle and brain.

Numerous methods have been developed to tackle the uncertainty inherent in cellular
objective estimation. However, there is no consensus regarding the preferred approach. This
challenge is especially pronounced when dealing with GEMs of mammalian cells, where
the larger number of metabolites and metabolic genes introduces complexity. Moreover,
the interrelated nature of metabolic networks means that objective values are indirectly
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shaped by the setup of gene–protein reaction (GPR) rules in GEMs and the environmental
conditions [8]. Consequently, a comprehensive evaluation of various objective functions
and GEMs becomes imperative for leveraging metabolic modeling in drug discovery.

2.7. Beyond Metabolism: Discovery of Cellular Objectives with Gene Expression Profiles

Integrating transcriptome-level objectives with metabolic models could provide a more
comprehensive view of how gene expression patterns interface with metabolic activity to
determine a cell’s functional priorities. Data-driven approaches can use transcriptomic
profiling to predict lineage trajectories and “archetypes” that represent dominant cellular
programs or extreme phenotypic states [111–117].

A transcriptional change can be connected with trade-offs among objectives associated
with biological traits [55]. Given that biological traits cannot be optimized simultaneously,
the traits form trade-offs or Pareto fronts. Schuetz et al. relied on Pareto fronts to build a
scalable theoretical framework called the Pareto task inference method (ParTI) [116]. ParTI
assumed that all phenotypes fall into a trait space formed by transcriptomics observations.
The method includes two parts. First, deep learning methods are used to extract features
from transcriptomics data that can represent certain biological tasks. Second, archetypical
computing relies on the features to infer the most important biological tasks, known as
archetypes. ParTI has been applied to many biological systems. In cancers, ParTI identifies
biological tasks for five types of cancers and determines the differential sensitivities to
drugs according to the perturbations of the tasks [118].

There is a spatial division of labor in tissues. For example, the cells positioned at the
center of the liver have distinct metabolic activities compared to the cells at the edge. Based
on this idea, Adler et al. extended the ParTI framework by adding a spatial dependent
function. Adler et al.’s integrated method reported spatial patterns of biological tasks in
the intestinal villus and liver hepatocytes that were not clearly shown with t-SNE [119].
Interestingly, their work found that the assumption of the crosstalk between archetypes
increased the predictability of spatial patterns that mimic cell–cell communication in tissues.
For example, local inhibition between archetypes can represent Delta–Notch interactions in
mouse colon fibroblasts [120].

Modeling the transitions of phenotypes or biological tasks provides quantitative
evidence of adaptation to selective pressures, such as drug treatments. Another study
leveraged ParTI to analyze longitudinal transcriptomics during therapy. It identified three
archetypes—metabolism, cell defense, and DNA repair—that led to resistance in high-
grade serous ovarian cancer [121]. A related study identified 12 immune archetypes across
pan-cancers using only 10 different compositional features, such as CD4+ cells [122]. Clus-
tering cancers based on these pre-selected features helps to explain the immune functions
observed in pan-cancers. An analysis of transcriptomes linked to the 12 archetypes found
that the genes were enriched in tumor proliferation, diverse tumor transcriptome programs,
and overall survival. The study heavily relied on experimental results to demonstrate
that the heterogeneity of transcriptomic states among archetypes did not stem from tis-
sue origins but rather choices in terms of immune functions [122]. Weistuch et al. also
hypothesized that the cancer heterogeneity results from the trade-offs. They developed
a method to approximate the archetypes relying on non-negative matrix decomposition
(N-NMF) because the count of RNA-seq data involves non-negative values. Mathematically,
a matrix of the gene expression levels of samples can be separated into expression levels
using archetypes multiplied by archetypes multiplied by samples. This extracts hidden
information about archetypes. Learning from the Genotype Tissue Expression (GTEx) data,
which contain gene expression levels of normal tissues, they uncovered six archetypes. The
same procedure revealed that drug sensitivities and mutated genes in the Cancer Cell Line
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Encyclopedia (CCLE) were significantly associated with the six archetypes. For example,
the anti-cancer drug Irinotecan is associated with archetype 2, which is enriched in DNA
repair, and mutated genes are sensitive to topoisomerase inhibitors [123].

Non-linear archetypal analysis of the transcriptome assumes the existence of a non-
linear link between archetypes and gene expression. It can identify extreme biological
functions. It can also group single cells to represent distinct states based on scRNA-seq and
transposase-accessible chromatin sequencing (scATAC-seq) data. Single-cell aggregation
of cell states (SEACells) leverages a Gaussian kernel to capture non-linear relationships
between cells using similarity graphs of single cells [114]. The SEACells mtehod then
employs archetypal analysis to group cell states based on the kernel matrix. This method ef-
fectively addresses the sparsity of single-cell data while maintaining sufficient resolution to
recover cellular phenotypes, such as healthy and COVID-19-enriched cells. However, SEA-
Cells does not focus on the biological meanings of archetypes; instead, it uses archetypes
as references to group single cells. In contrast, scAANet introduces an autoencoder to
single-cell transcriptomics, mapping them to a latent space of archetypes. Similar to the
ParTI method, scAANet can identify biologically meaningful archetypes of gene expression
profiles and enhance downstream analyses, such as gene set enrichment analysis [115]. The
key concepts of these methods are summarized in Figure 5 and Table 1.

While these methods are useful for identifying the goals different cells aim to achieve,
considering only gene expression profiles may not accurately determine cellular objectives.
In fact, assuming the existence of imperfect correlations between the transcriptional and
enzymatic activities improves the predictive power of metabolic modeling [124]. Thus,
trade-offs between metabolic pathways might not be represented in transcriptomes [53,125].

Table 1. Methods to infer transcriptomic objectives and archetypes.

Method Input Output Summary Study Ref.

ParTI Transcriptome Archetypes

The computational
framework relies on principal

convex hull algorithms to
discover archetypes from

transcriptomics data.

Both microorganisms
and cancer cells [116]

ParTI+spatial
gradient model Transcriptome Archetypes

A spatial gradient of
performance was formulated

based on ParTI.
Multicellular/tissue [119]

ParTI+Markov chain
models

Single-cell
transcriptome and

RNA velocity
Archetypes

Probabilistic transitions
between parts based on ParTI

to retrieve sequential
dependencies between parts.

Cancer [117]

ParTI+longitudinal
analysis

Longitudinal
single-cell

transcriptome
Archetypes

The method was adapted
from the ParTI framework to
identify archetypes of ovarian
cancer and how they evolved

after treatments and
therapies.

Ovarian cancer [121]

Clustering with
knowledge-based

features
Transcriptome Archetypes

Uses domain knowledge and
clustering algorithms to

identify archetypes.
Pan-cancer study [122]

N-NMF Transcriptome Archetypes

Decomposes a non-negative
matrix into two lower-rank
matrices representing parts

and features.

Cancer and drug
discovery [123]
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Table 1. Cont.

Method Input Output Summary Study Ref.

SEACells scATAC-seq and
scRNA-seq Metacells/archetypes

SEACells leverages
archetypal analysis and an

adaptive Gaussian kernel to
identify archetypes based on
similarity matrix of estimated

single-cell data.

Hematopoietic
differentiation and
COVID-19 samples

[114]

scAANet Single-cell
transcriptome Archetypes

Utilizes an autoencoder with
a count distribution-based

loss to extract gene
expression profiles (GEPs) of

archetypes and infer their
relative activity across cells.

Samples of pancreatic
islet, lung IPF, and
prefrontal cortex

[115]
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Figure 5. Methods leveraging genomics data to infer cellular objectives. An overview of methods
used to infer cellular objectives and archetypes based on transcriptomics data is shown as an example.
The flow chart shows shared features, similar inputs/outputs, or common techniques used in differ-
ent methods. While the methods on the top-right corner only suggest cellular archetypes/objectives
in transcriptional levels, the other methods are all capable of deriving metabolic objectives. It
should be noted that transcriptome but also proteome and growth rate data are required for
BOFdat [89,110,116,117,119,121,126–129].

2.8. Integration of Pareto Framework, Multiomics and GEMs to Define Metabolic Objectives

Evolutionary biology aspects are commonly considered in metabolic modeling meth-
ods such as pFBA and MOMA. Gao et al. applied multi-objective genome-scale metabolic
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models to identify the metabolic tasks executed in TCGA cancer cells [129] (Figure 5). The
computational framework was based on the Pareto task inference method (ParTI) [116].
ParTI assumed that all phenotypes fall into a trait space formed by transcriptomics obser-
vations. Using ParTI, Gao et al. identified important metabolic tasks that competed with
each other in cancer subtypes. For instance, the luminal B subtype of breast cancer has
significant metabolic tasks, including steroid synthesis and oxidative phosphorylation. The
authors then mapped the significant metabolic tasks to GEMs and predicted reaction fluxes.
Coupling with flux minimization served as the new objective function, and the method out-
performed metabolic modeling methods with the maximization of biomass production as
the objective function used to predict gene essentiality. A related study developed CellFile,
which summarizes tissue- and cell-specific metabolic tasks using context-specific models
based on transcriptomics datasets [128]. Reactions associated with a certain metabolic task
were calculated with fluxes in context-specific models. Since the series of studies also care-
fully addressed the bias of constraint-based modeling methods based on transcriptomics,
the metabolic tasks identified by CellFile could account for essential genes and crucial
metabolic pathways in different cells.

While these methods are based on the expression levels of metabolic genes, post-
transcriptional and post-translational regulation may modify the association between
transcription and metabolism [80]. In addition, the biomass objective function was required
in the method developed by Gao et al. and CellFile, leading to the inevitable assumption of
cell growth.

To avoid the issue and answer the metabolic goals for cells with different prolifer-
ative abilities such as quiescent cells, a method called Single-Cell Optimization Objec-
tive and Trade-off Inference (SCOOTI) was developed. SCOOTI formulates cell-type-
specific and cell-specific metabolic objectives, considering the optimization trade-offs seen
in metabolism [126]. SCOOTI accurately differentiated the objectives of quiescent and pro-
liferative cell types. It also correctly inferred metabolic objectives during different phases of
the cell cycle. This shows that individual cells do not optimize all biomass components at
the same time. Mathematically, SCOOTI uses regression models to fit a combination of flux
vectors optimizing each metabolite to predict condition- or cell-specific fluxes. The coeffi-
cients estimated from the regression models are used to formulate cell-specific metabolic
objectives. SCOOTI separated cell types in single-cell datasets by pursuing metabolic
objectives, and identified trade-offs in cell states. For example, it uncovered trade-offs in
redox metabolism and biomass synthesis, which explained the metabolic properties of
distinct cell states during embryonic development. This trade-off was also seen during the
cell cycle and may explain the division of metabolic tasks during cell cycle phases.

SCOOTI was applied to analyze cellular objectives during embryogenesis and mea-
sure uncertainty in metabolic tasks using Shannon entropy. Early-stage cells (zygotes to
1-cell) exhibited higher entropy, reflecting diverse metabolic tasks, compared to later stages
(2-cell to blastocyst), which aligned more closely to archetypes (Figure 6). This suggests
a link between objective entropy and cellular organization: differentiated cells optimize
for specific tasks, while more pluripotent cells diversify their metabolic functions. These
findings indicate that entropy could serve as a metric for pluripotency and cellular differ-
entiation [130]. However, current entropy calculations are simplified and could benefit
from approaches that consider objectives or cell interactions, like the maximum-entropy
methods used in genomics and metabolic modeling [131,132].
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Figure 6. The use of entropy to summarize the resource allocation of cellular objectives. (A) A
three-dimensional trait space, for example, theoretically shows higher entropy at the center of the
triangle away from the archetypes. (B) When we project the metabolic objectives of tissues and
embryos onto the trait space, the data points of the embryo are expected to be located closer to the
center and display higher entropy. (C) In contrast, tissues or differentiated cells are expected to
hypothetically stay away from the center and display lower entropy.

Energy landscapes provide another perspective on cellular objectives. Hopfield net-
works, based on recurrent neural networks, model how systems settle into stable states
(attractors) [133]. Deeper energy wells represent stable biological states (e.g., adult cells),
while shallow wells reflect flexibility for differentiation (e.g., pluripotent cells) [134]. The
mapping of cellular objectives to energy landscapes can quantify the stability of states and
their transitions under perturbations, such as resource changes or drug treatments. For ex-
ample, during embryogenesis, transitions between cell types can be understood by tracking
shifts in energy wells. Integrating omics data with Hopfield networks enables predictions
of cellular responses to environmental changes, offering insights into adaptation and ro-
bustness. By combining entropy, Hopfield networks, and systems biology, researchers
can better understand how cells allocate resources, balance trade-offs, and maintain op-
timized functions. These tools open new possibilities for advancing bioengineering and
medical interventions.

Cellular phenotypes, such as differentiation, development, migration, and apoptosis,
are not only linked to cellular or tissue functions, but also to individual fitness. Future stud-
ies can align cellular phenotypes with inferred metabolic objectives to elucidate how and
why cells modulate their metabolic functions to alter phenotypes. Leveraging trade-offs
and Pareto analysis in multi-omics data (i.e., a combination of the concept of ParTI and
SCOOTI) may help to uncover the driving forces that lead cells to adjust their metabolism to
maintain a particular phenotype. In the long term, associating inferred metabolic objectives
with gene regulatory and signaling networks can introduce “controls” into metabolic
trade-offs, potentially providing biologically meaningful insights into fitness within
multicellular systems.

All the methods share a similar concept, i.e., minimizing the difference between
experimental fluxes and simulated fluxes in their optimization problems. Draft objective
functions, however, are treated differently in the methods. While Knorr et al. only ranks
candidate objectives, invFBA looks for the smallest suboptimal space, objFIND weighs
metabolites, and BOSS randomizes the coefficients of metabolites. Uptake fluxes and
growth rates are the experimental flux data required for BTW and HIP. BTW sets the
objective function to the combination of multiple draft objectives with equal weights,
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whereas HIP interpolates the coefficients of biomass precursors with changes in uptake
rates. GEFMAP differs from other methods by inferring metabolic objectives using graph
neural networks (GNNs) [127]. It assumes that interconnected and highly active reactions
are strong candidates for metabolic objectives. However, GEFMAP does not estimate
objectives for individual conditions or single cells, as SCOOTI does.

SCOOTI was primarily designed to estimate metabolic objectives during cell-type tran-
sitions. In this regard, SCOOTI addresses the heterogeneity and uncertainty of metabolic
objectives at single-cell resolution, a capability not present in other methods. Additionally,
SCOOTI can identify trade-offs between metabolites. Furthermore, while tools such as
Pareto optimization (Gao et al.), ObjFind, pFBAwEB, and Bayesian-based selection focus on
only one aspect, such as addressing objective uncertainties or ranking objectives, SCOOTI
integrates all these considerations simultaneously. Nevertheless, methods grounded in
rigorous mathematics remain valuable as references or baselines for validating fully or
semi-data-driven methods like SCOOTI and GEFMAP. Similarly, BOFdat follows a rigorous
protocol for formulating biomass objective functions. However, BOFdat depends heavily
on input data quality, does not address multi-objective problems, and cannot formulate
non-proliferative objectives, while SCOOTI can (Table 2).

Table 2. Methods to infer metabolic objectives/tasks via GEMs.

Name Input Output Summary Organisms Ref.

ObjFIND Fluxomics Objective functions

Bi-layer optimization problems firstly
minimizing the distance between

predicted and experimental fluxes to
solve coefficients of candidate

demand reactions

Bacterial cells [90]

BOSS Fluxomics Objective functions

Bi-layer optimization problems firstly
minimizing the distance between

predicted and experimental fluxes to
solve coefficients of randomly

scanned objective functions

Bacterial cells [91]

SEED Fluxomics Objective functions

Approximate coefficients with
experimental data and select biomass
components with a template in which

non-universal metabolites were
chosen when meeting certain criteria

Bacterial cells [86]

invFBA Fluxomics Objective functions
Two-step optimization problems that
minimize the error between measured

and predicted objective functions
Bacterial cells [92]

Bayesian-based
selection Fluxomics Score of objective

functions

Score each candidate objective
functions with probabilities calculated
based on a Bayesian-based function of

measured fluxes

Bacterial cells [93]

BOFdat Multiomics Objective functions

Draft coefficients of biomass
components based on omic datasets

and phenotypes (e.g., growth)
measurements and finalize the

functions with genetic algorithms

Bacterial cells [110]

BTW and HIP Fluxomics Objective functions

BTW weighs multiple pre-built
objective functions to fit phenotype

measurement such as growth rate and
HIP interpolates between different

biomass compositions

Bacterial cells [88]

pFBAwEB
Transcriptomics,
proteomics, and

fluxomics

Ensemble
representations of

biomass

Gather coefficient of variation to
generate a range of biomass

composition

E. coli, S. cerevisiae,
and CHO cells [89]
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Table 2. Cont.

Name Input Output Summary Organisms Ref.

Gao et al. Transcriptomics Metabolic tasks

Leverage ParTI method to identify
metabolic tasks from transcriptomics

datasets and predicted fluxes and
phenotypes corresponding to the

metabolic tasks

Cancer cells [129]

CellFile Transcriptomics Scores of metabolic
tasks

Summarize flux solutions of
transcriptomics-based context-specific

models with metabolic subsystems
Mammanlian cells [128]

GEFMAP Single-cell
transcriptomics

Objective function
and scores

GEFMAP-constructed graph neural
network from single-cell data and the

association between gene to infer
objective functions

E. coli, S. cerevisiae,
and hESC [127]

SCOOTI Single-cell and
bulk multiomics

Metabolic
objectives

Infer condition- or cell-specific
metabolic objectives based on any

type of omics dataset and identifies
metabolic traits with these objectives

Mammanlian cells [126]

2.9. Current Challenges of Inferring Metabolic Objectives Based on Omics Data

The integration of omics data enables the inference of metabolic objectives, but not all
data types provide the same level of information for this purpose. Fluxomics data are the
most direct and powerful support for objective inference since models can be generated
by minimizing the differences between predicted and experimental fluxes. While less
direct, time-course metabolomics can also yield good objective inferences. Changes in
metabolite levels over time can be converted into estimated fluxes [76], which constrain
metabolic models. However, fluxomics and metabolomics data are often less accessible
than transcriptomics and proteomics, particularly in studies involving mammalian cells.
Additionally, these data types are frequently noisy and limited, with many metabolites or
reactions unrecorded.

In contrast, transcriptomics and proteomics are more readily available and can provide
sufficient information for constraint-based modeling and statistical analysis. However,
using transcriptomics and proteomics for objective inference introduces potential biases
due to the assumption of a linear dependency between functional metabolic enzymes and
their corresponding RNAs or proteins. This assumption oversimplifies the complexities
introduced by post-translational modifications and other regulatory mechanisms. The
integration of other data types, such as epigenomics [80], can partially address this issue.
The integration of multi-omics data, as demonstrated by tools like SCOOTI, significantly
improves objective inference, although the constraint effects from transcriptomics, pro-
teomics, and metabolomics are not equivalent. Assigning appropriate weights to different
constraints could enhance inference accuracy.

Single-cell data, while inherently noisy and sparse, offer more detailed information
on cell-to-cell variation in metabolism compared to bulk data. High-quality control proce-
dures can substantially improve the quality of objective inferences from single-cell data.
Nonetheless, the primary challenge of integrating single-cell data for objective inference
relates to computational demands. Considering cellular heterogeneity further exacerbates
the computational burden, making high-performance computing essential for single-cell
objective inference, as seen with SCOOTI. Grouping and approximation methods, such as
COMPASS and SEACells, can help to mitigate these challenges by reducing computational
complexity while preserving biological insights [135].
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2.10. Validation of Inferred Metabolic Objectives

The validation of inferred metabolic objectives is critically important yet challenging.
First, there is no consensus on how to formulate metabolic objectives. For instance, both
metabolites and reactions can serve as components of metabolic objectives, and non-
linear objectives are also proposed as potential candidates. This lack of standardization
complicates the validation of inference models due to the absence of consistent references.
Second, the lack of curated phenotype-to-metabolic-objective mappings makes precise
validation difficult without ground truth data. Third, metabolic objectives may represent
combinations of multiple phenotypes. For example, a metabolic objective could comprise
70% growth and 30% maintenance, further complicating validation efforts.

To address these challenges, we propose validation methods spanning four
different aspects:

Synthetic data testing: Inference models can first be tested using synthetic data, such
as flux predictions with known objective functions. This provides a controlled environment
for evaluating model performance.

Component recapitulation: The components of inferred metabolic objectives (e.g.,
weights of metabolites or reactions) should reflect the metabolic features of a cell. For
instance, proliferating cells prioritize biomass accumulation, and so the weight of biomass
in the metabolic objective should be the highest.

Gene essentiality analysis: Gene essentiality predictions can be validated experimen-
tally using knockout strains as an independent source of verification for model outputs.

Phenotype similarity: Inferred metabolic objectives should exhibit relative similarity to
known phenotypes. For example, growth phenotypes are typically represented by biomass
objectives, and the metabolic objectives of a proliferating cell are expected to closely resem-
ble biomass objectives compared to non-proliferative objectives. While some phenotypes
lack corresponding metabolic objectives for direct comparison, reference objectives can
be accumulated by inferring objectives from cells with well-defined phenotypes, such as
migration [136]. Comparing unknown metabolic objectives to this reference dataset could
provide insights into relative cellular phenotypes.

Although challenges remain, these strategies provide a foundation for systematically
validating metabolic objective inference methods and advancing our understanding of
cellular metabolism.

2.11. Bioengineering Applications of Cellular Objectives

Various fields of bioengineering, including biomanufacturing, drug development,
personalized medicine, and regenerative medicine, can gain from understanding and
manipulating cellular objectives. Objectives can help design targeted interventions and
optimize biological systems for industrial and therapeutic uses. The identification of
objectives can inform strategies to engineer cells to enhance the production of biofuels,
pharmaceuticals, or novel biomaterials. Multi-objective optimization frameworks like
OptKnock and MOMO use trade-off analysis to improve yields of bioproducts while
maintaining cellular viability [106,107]. Applications include the production of biofuels
like ethanol, secondary metabolites such as antibiotics, and complex biopharmaceuti-
cals such as monoclonal antibodies. These advancements enable the fine-tuning of re-
source allocation to maximize target metabolite synthesis while minimizing unintended
metabolic burdens.

The field of synthetic biology can benefit from the integration of cellular objectives into
the design of novel biosystems. In synthetic circuits, engineered cells can be programmed to
prioritize specific phenotypes, such as rapid adaptation to environmental changes or precise
metabolite production [137]. Understanding trade-offs between growth and metabolic
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productivity allows researchers to design robust synthetic systems that function efficiently
under industrial conditions [138]. For example, Nilsson and Nielsen demonstrated that
constraint-based models’ support for trade-offs between glycolysis and respiration, known
as the Crabtree Effect, is caused by ATP synthases in yeast [139]. The authors suggest that
the trade-offs between a synthetic pathway and the total protein pool can be identified
the same way. These previous studies showed that modeling cellular objectives can be
important for helping the design of genetic circuits and strain genomes.

Incorporating cellular objectives into computational models can enhance drug discov-
ery pipelines. Personalized metabolic objectives inferred from patient-specific omics data
allow tailored therapeutic strategies, optimizing treatment efficacy while minimizing side
effects [140]. For instance, a graph model based on genome-wide association study (GWAS)
data linked casual genes and metabolites to clinically relevant phenotypes [141]. Despite
the success, metabolic modeling offered more interpretability and outperformed traditional
genome-wide association study (GWAS) in predicting phenotypes from genotypes [142].

Personalized metabolic objectives can be used to integrate genetic data. For instance,
AGORA2 reconstructed metabolic models for over 7000 microbial species to predict gut
microbial responses for a cohort of 616 patients [143]. Foguet et al. also constructed organ-
specific metabolic models for more than 520,000 individuals from the INTERVAL and UK
Biobank cohorts. These models facilitated a fluxome-wide association study that identified
reactions associated with coronary artery disease [144]. While these studies primarily
focused on flux solutions, the correlation between fluxes and disease phenotypes hinted at
the potential for extracting personalized metabolic objectives. This could enable us to rank
the significance of metabolites in relation to a disease phenotype, as well as corresponding
coefficients, as inferred by ObjFIND and SCOOTI.

In tissue engineering, cellular objectives can guide the differentiation of stem cells
and the maintenance of tissue-specific phenotypes. During embryogenesis or stem cell
differentiation, metabolic and transcriptional objectives shift dynamically. Modeling these
shifts enables precise control over differentiation pathways, crucial for engineering func-
tional tissues [145]. The integration of cellular objectives into bioengineering applications
promises to revolutionize fields spanning biotechnology, medicine, and environmental
science. Emerging methods such as SCOOTI- and Pareto-based frameworks offer new
opportunities to refine cellular objectives and optimize trade-offs between competing
functions. While various metabolic objective inference methods expand the horizons of
metabolic modeling approaches, the standardization of user-friendly pipelines and opti-
mization of computational efficiency remains essential in order to facilitate the utilization
of customized objectives.

3. Conclusions
The exploration of cellular objectives, trade-offs, and archetypes offers a comprehensive

framework for understanding how cells regulate and optimize their functions across diverse
biological systems. The development of computational methods such as ParTI and SCOOTI
has enabled researchers to link high-dimensional omics data to phenotypic outcomes. These
tools provide a quantitative foundation with which to model cellular behavior, resource
allocation, and adaptive strategies, shedding light on how cells balance competing tasks like
growth, maintenance, and differentiation under varying environmental conditions.

Despite these advances, significant challenges persist. The complexity of cellular
systems, especially in non-proliferative or specialized cells, makes it difficult to identify
universal objectives that fully explain cellular phenotypes. Current models, while effective
for proliferative cells such as bacteria and cancer cells, often fall short in accurately predict-
ing the behavior of cells that prioritize maintenance, differentiation, or other specialized
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functions over biomass production. Furthermore, the non-linear and dynamic interactions
between transcriptional, proteomic, and metabolic networks complicate the task of linking
gene expression patterns directly to metabolic activity and phenotype.

Future research should focus on improving computational methods for multi-objective
optimization, refining the accuracy of inferred objectives and developing user-friendly
pipelines that allow the broader application of these models in personalized medicine,
drug development, and bioengineering. By exploring the dynamic interplay between
transcriptional programs and metabolic activity, we can gain a deeper understanding of
how cells navigate complex biological landscapes to maintain functionality and fitness
across diverse environments.
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