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Abstract: One of the most significant challenges in the comparative analysis of Nuclear 

Magnetic Resonance (NMR) metabolome profiles is the occurrence of shifts between 

peaks across different spectra, for example caused by fluctuations in pH, temperature, 

instrument factors and ion content. Proper alignment of spectral peaks is therefore often a 

crucial preprocessing step prior to downstream quantitative analysis. Various alignment 

methods have been developed specifically for this purpose. Other methods were originally 

developed to align other data types (GC, LC, SELDI-MS, etc.), but can also be applied to 

NMR data. This review discusses the available methods, as well as related problems such 

as reference determination or the evaluation of alignment quality. We present a generic 

alignment framework that allows for comparison and classification of different alignment 

approaches according to their algorithmic principles, and we discuss their performance. 
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1. Introduction 

Although Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical tool for 

quantitative metabolomics profiling, one of the aspects that hamper robust differential analysis is the 

fact that the resonance frequencies of peaks can undergo shifts. A variety of factors, often related to an 
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imperfect control of experimental conditions, contribute to inconsistent peak shifts, including 

physicochemical interactions and differences in pH, temperature, background matrix or ionic strength [1–3]. 

Some of these effects can be (partially) avoided by using adjusted sample preparation protocols, for 

example by buffering samples to avoid pH-induced chemical shifts [1,3]. On the other hand, there is a 

clear need for computational approaches to correctly align corresponding peaks across spectra. If peaks 

are inconsistently shifted across different spectra, they will not be properly matched and downstream 

univariate or multivariate quantitative analysis of their signal intensities can be compromised. 

A simple and popular solution to extract intensities from multiple spectra prior to comparative 

analysis is spectral bucketing or binning. Binning consists of dividing the spectra into small buckets 

(typically 0.04 ppm), which are ideally large enough to encompass peak shift variations [1,3]. The 

intensity of each bucket is subsequently calculated from the area under the curve. Traditional binning 

overcomes small peak-shifts, and reduces data complexity (Figure 1a). This however comes at a price, 

as it leads to drastic reduction of data resolution. If multiple peaks end up in the same bucket, 

information is lost (Figure 1b). Furthermore, strong shifts may lead to non-corresponding peaks 

incorrectly ending up in the same bin (Figure 1c). Shifts that exceed the boundaries of a bin, will be 

reflected in integrated bin intensities (Figure 1d). After binning, the statistical analysis is carried out on 

the extracted bin intensities, and peaks are assigned to metabolites. It is clear that above-mentioned 

weaknesses can lead to poor metabolite quantitation. 

Figure 1. Hypothetical examples of how binning addresses peak shifts. (a) A good  

binning—each peak corresponding between the red and blue spectrum end up the same bin. 

(b) Multiple peaks end up in a single bin. (c) Incorrect matching of overlapping peaks—the 

first peak of the red spectrum falls in the same bin as the second peak of the blue spectrum. 

(d) Peak shifts across the boundaries of bins. 

 

To deal with these problems, various improvements to the binning approach have been developed. 

For example, instead of using fixed bin sizes, Davis et al. [4] introduced an adaptive binning that 

creates flexible bin sizes based on the peaks detected in the reference spectrum. An improvement of 

adaptive binning is Adaptive intelligent binning [5] which reduces the required user interventions. 

Anderson et al. [6] also applied kernel-based methods for binning and demonstrated that the proposed 

Gaussian binning is more robust than traditional binning. These methods require a certain degree of 

user expertise [7]. Recently, Sousa et al. [7] released a less complicated method, the optimized 
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bucketing algorithm (OBA), in which bin sizes are optimized by setting their boundaries at the local 

minima of the average spectrum. Binning methods are using widely since they are easy to use and 

show acceptable performances. However, binning does not easily handle larger NMR peak shifts. 

The solution to process and compare spectra with peak shifts consists of peak alignment. A number 

of peak alignment approaches have been specifically developed for NMR spectroscopy. Other methods 

were originally proposed for similar data, such as LCMS or GCMS spectra. In this review we discuss 

and compare the available peak alignment methods that are directly and without special adaptation 

applicable to NMR spectra. 

2. A Generic NMR Spectrum Alignment Framework 

NMR spectrum alignment is a process to correct for variations in the position of peaks across NMR 

spectra, by introducing a series of shifts that individual data points undergo. The process is illustrated 

in Figure 2. 

Figure 2. Example of a spectral region before and after alignment using CluPA [8]. The 

example comes from the Wine dataset [9,10]. 

 

The calculation of the optimal set of shifts to align spectra is computationally non-trivial, and a 

number of choices need to be made along this process, each with repercussions on the final outcome. A 

list of NMR alignment methods is presented in Table 1. Most methods fit in the general alignment 

framework presented in Figure 3. In the next sections, we discuss each step of this framework, as well 

as the methodological choices that are to be made. 

3. Working on Extracted Peaks Instead of Full Spectra 

While most NMR alignment methods work directly on the data points of the spectra, some 

approaches work with representatives of the spectra instead, by first converting spectra into peak lists. 

The size of such a list of peaks extracted or ―picked‖ from the spectrum is much smaller than the 

original spectrum. This improves computational performance of the subsequent alignment, or allows 

for computationally more demanding techniques to be used. 
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Table 1. List of methods and their features. 

Short Name Full Name Reference Technique Target Function Peak Picking? 
Number of 

Parameters 

Original 

Applied Data 
Segment-Wise? Pair-Wise? 

Correction 

Method 
Software 

PLF 
Partial 

Linear Fit 
[11] 

Segmentation model 

by consecutive 

peaks distances less 

than window size D 

Sum of squared 

differences in 

intensity 

No 2 (window D and shift S) 1D NMR Yes Yes Shift NA 

COW 

Correlation 

Optimized 

Warping 

[12] 
Dynamic 

programming 

Pearson 

correlation 

coefficient 

No 

2 (m: length of 

segments and t: slack 

or the max. allowable 

shift) 

Chromatograpic 

data 
yes Yes 

Insert and 

deletion 
(1) 

PAGA 

Peak 

alignment by 

genetic 

algorithn 

[13] Genetic Algorithm 

Pearson 

correlation 

coefficient 

No 

6 - Based on GA 

(normalize geometric 

ranking q=0.8, 

population size, 

number of generations, 

segment size, max. 

allowable shift, linear 

interpolation ra) 

1D NMR Yes Yes 

Shift &  

Insert and 

deletion 

NA 

PARS 

Peak 

alignment 

using 

Reduced Set 

[14] 

Breadth first search 

(BFS), Dynamic 

Programming (DP), 

complexity reduced 

dynamic 

programming 

(crDP) 

Euclidean 

distances 
Yes 

2 (search window size, 

mismatch weight) 

1D NMR, Gas 

Chromatography 
No Yes Shift (+) 

DTW 

Dynamic 

Time 

Warping 

[15] 
Dynamic 

programming 

Squared 

Euclidean 

distance 

No 

2 (T(x,y) local 

continuity constraint;  

x = largest block 

distance covered by 

any of the rules,  

y = max. number of 

horizontal / vertical 

consecutive transition 

allowed for) 

Chromatograpic 

data 
No Yes 

Insert and 

deletion 
(1) 

PABS 

Peak 

alignment by 

Beam search 

[16] 
Beam search 

algorithm 

Pearson 

correlation 

coefficient 

No 

3 (ranges of segment 

number, sideway 

movement and 

interpolation) 

1D NMR Yes Yes 

Shift & 

Insert and 

deletion 

(+) 

PAPCA (*) 

Peak 

alignment by 

PCA 

[17] 

Principle 

Component 

Analysis 

CORREL No 
1 (correlation 

threshold 0.8) 
1D NMR No No Shift (+) 
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Table 1. Cont. 

Short Name Full Name Reference Technique Target Function Peak Picking? 
Number of 

Parameters 

Original 

Applied Data 
Segment-Wise? Pair-Wise? 

Correction 

Method 
Software 

PTW 

Parametric 

Time 

Warping 

[18] 
Global polynominal 

model 

Root mean 

squared (RMS) 
No 

1 (degree of 

polynomial warping 

function) 

Chromatograpic 

data 
No Yes 

Polynomina

l model 
(2) 

PAFFT 

Peak 

alignment by 

FFT 

[19] 

FFT + segmentation 

model by equal size 

segments 

FFT cross-

correlation 
No 

2 (segment size: 

segsize, max. 

allowable shift) 

Chromatograpic 

data 
Yes Yes Shift (3) 

RAFFT 

Recursive 

alignment by 

FFT 

[19] 

FFT + Recursive 

segmentation model 

from global to local 

FFT cross-

correlation 
No 

1 (max. allowable 

shift) 

Chromatograpic 

data 
Yes Yes Shift (3) 

SpecAlign NA [20] Sliding windows 
Minimal matched 

peak distances 
No 1 (window size w) 

Mass 

Spectrometry 
No Yes 

Insert and 

deletion 
(3) 

FW 
Fuzzy 

Warping 
[21] 

Fuzzy logic for 

matching most 

intense peaks 

Maximize fuzzy 

membership 

Gaussian function 

Yes 
1 (the number of most 

intense peaks) 
1D NMR No Yes 

Insert and 

deletion 
(4) 

GFHT 

Generlized 

Fuzzy 

Hought 

Transform 

[22] Hough transform Hough score Yes 

3 (expansion factor 

alpha, step size, lower 

vote threshold) 

1D NMR No No NA NA 

RSPA 

Recursive 

segment-

wise peak 

alignment 

[23] 
Recursive 

segmentation model 

FFT cross-

correlation 
Yes 

6 (peak height 

threshold, splitting 

threshold, min. 

segment 

size,validation of 

segment alignment, 

max. allowable shift, 

alignment acceptance) 

1D NMR Yes Yes 

Shift &  

Insert and 

deletion 

(+) 

PCANS 

Progressive 

Consensus 

Alignment 

of NMR 

Spectra 

[24] 

Segmentation 

model+Dynamic 

programming + 

progressive 

consensus alignment 

Scoring by 

similarity 

between peaks 

calculated by 

height, half height 

and position of 

peaks 

Yes 

5 (minScoreN, 

minScoreD, gap 

penalty, boundary 

penalty, max. 

allowable shift maxCS) 

1D NMR Yes No Shift (5) 

BAA (*) 

Bayesian 

approach for 

alignment 

[25] Bayesian modeling 
Bayesian 

estimation 
No 

3 (noise variance, two 

parameter values in 

diagonal entries of 

diagonal covariance 

matrix) 

1D NMR No Yes 
Polynomial 

model 
NA 
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Table 1. Cont. 

Short Name Full Name Reference Technique Target Function Peak Picking? 
Number of 

Parameters 

Original 

Applied Data 
Segment-Wise? Pair-Wise? 

Correction 

Method 
Software 

icoshift 

interval 

correlation 

shifting 

[10] 

Segmentation model 

by equal size 

segments or 

manually selecting 

segments 

FFT cross-

correlation 
No 

2 (the number of 

intervals or the length 

of interval l, max. 

allowable shift) 

1D NMR Yes Yes 

Shift & 

Insert and 

deletion 

(6) 

CluPA 

hierarchial 

Cluster-

based Peak 

Alignment 

[8] 

Segmentation model 

by hierarchical 

clustering 

FFT cross-

correlation 
Yes 

1 (max. allowable 

shift) 
1D NMR Yes Yes Shift (7) 

(*): This name is not from the authors, but assigned by us for convenience; NA: The software implementation information is not available; (+): The implementation of the algorithm can be requested  

from the authors; (1): http://www.models.life.ku.dk/DTW_COW/; (2): http://cran.r-project.org/web/packages/ptw/index.html/; (3): http://powcs.med.unsw.edu.au/research/adult-cancer-program/services-

resources/specalign/; (4): http://code.google.com/p/automics/ refer to [26]; (5): http://gomezlab.bme.unc.edu/tools/; (6): http://www.models.life.ku.dk/icoshift/; (7): http://code.google.com/p/speaq/ 
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Figure 3. A general framework of Nuclear Magnetic Resonance (NMR) spectrum 

alignment methods. The stacked blocks with white background represent possible 

methodological variations. 

 

Many effective and advanced peak picking algorithms are available. In all cases, accurate peak 

detection is required to build a quality alignment. For a discussion and comparison of peak picking 

methods we refer the reader elsewhere [27]. Below we will focus on how the extracted peak lists are 

used by different alignment algorithms. 

In general, peak lists are used to compute how individual data points of each spectrum should be 

shifted to optimally align all input spectra. First, the extracted peak lists of different spectra are 

compared to find corresponding peaks. To align these peaks, a set of shifts is computed, which are 

subsequently applied to the intact spectra. Methods differ in how they find corresponding peaks and 

their regions, in how shifts are computed, and in how they are applied. 

The first example is PARS [14]. Extracted peaks of a reference and the sample spectra are first 

matched using search algorithms on distance maps of derived peak lists. The derived shift that 

corresponding peaks need to undergo is subsequently used to align the sample spectra against the reference. 

In FW [21], feature vectors are created from the most intense peaks of reference and sample spectra. 

Through fuzzy warping, it then establishes the correspondence between the most intense peaks of the 

sample spectra. The alignment is done through piecewise interpolation of the sample spectrum to the 

corresponding regions of the reference spectrum. 

PCANS [24] uses a ―Naive Alignment scheme‖ to match highly similar peaks between peak lists of 

spectrum pairs. Then it builds the corresponding segments from the matches. Finally, it undergoes 

another alignment on the segments following a dynamic programming scheme. 

RSPA [23] and CluPA [8] both use peak lists to find the shifts needed to align corresponding 

segments, in a recursive scheme from global (the entire spectrum) to local (a small subsection of the 

spectrum), in order to go from a crude to a more refined alignment. RSPA merges consecutive peaks to 

build segments and finds the corresponding segments based on their proximity defined by the closest 

center positions. CluPA uses hierarchical clustering on peak list of reference and sample spectra to find 

the corresponding segments. 
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GFHT [22] also uses peak detection approaches, but the detected peaks are used in a different way. 

The approach does not work directly with the peak lists to align corresponding peaks, but applies 

image-processing techniques on the entire dataset to detect corresponding peaks via the spectral  

peak patterns. 

The major advantage of an intermediate peak-picking step is the reduced data size. Consequently, 

these methods are generally faster than methods working on whole spectra, like COW [12] or DTW [15]. 

4. Alignment with or without a Reference Spectrum 

A second criterion by which we can classify alignment approaches is the fact whether a reference 

spectrum is needed or not. In pairwise methods, a reference spectrum is selected to which all the other 

spectra are subsequently aligned. With inter-sample methods, all samples are taken into account for  

the alignment. 

4.1. Pairwise Methods, Based on a Selected Reference Spectrum 

Most NMR alignment methods are based on pairwise approaches, which are generally less 

complex. In pairwise methods, a reference spectrum is selected or created first. Other spectra are 

aligned to this reference one by one. The reference spectrum should be representative for the whole 

dataset and ideally contains all peaks of interest. Due to its strong impact on the ultimate alignment, a 

number of reference selection approaches have been proposed. There are generally two reference 

types. Either the reference is a virtual spectrum that is artificially created from the dataset, or the 

reference is a directly selected spectrum from the dataset. 

A virtual reference spectrum can be built in different ways. The reference spectrum may be a 

median or average spectrum constructed from the dataset [10,11]. In DTW [15], a virtual spectrum is 

recalculated from the first PCA loading vectors, resulting from a PCA analysis of the untreated data. 

The virtual spectrum can be used directly as a reference against which the other spectra are aligned. 

However, artifacts introduced during the creation of a virtual spectrum may lead to distorted peaks 

after alignment. A solution consists of selecting from the experimental spectra as a reference the 

spectrum that is most similar to the virtual spectrum, rather than using the virtual spectrum itself. For 

example, Skov et al. [28] proposed to use the spectrum that is most similar to the loading of the first 

principle component in a PCA model of the untreated data. 

Alternatively, users can select the reference from multiple trials. In FW [21], several reference 

candidates are selected, according to the mean value of the correlation coefficient of individual spectra 

with all the remaining spectra. A higher value indicates a better reference. The final reference is 

selected after evaluation of the alignment. More simply, a user can sometimes manually select the 

reference [14]. The reference may also be selected as the spectrum with the highest (Pearson) 

correlation to other spectra, under the assumption that this will yield the most representative reference 

and best alignment to all experimental spectra. Skov and coauthors [28] recommended using the 

spectrum that has the largest similarity index, which is defined as the product of the correlation 

coefficients to the other spectra. Veselkov et al. [23] modified the similarity index of Skov et al. [28] 

to avoid a dominant influence of large peaks on the correlation coefficient values, by scaling local 

areas to equal variance prior to computing the correlation coefficient. Vu et al. [8] selected the 
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reference based on a goodness value, which summarizes how close its peaks are to the corresponding 

peaks of all other spectra. This method also allows users to manually set the reference to specific 

segments, since a single spectrum may not be the best reference for all segments. MacKinnon et al. [29] 

automated this by dividing the length of the spectra into m global segments and assigning as a 

reference for each segment the one having the largest similarity to the others. 

Even though reference-based approaches are relatively simple and popular, there are some 

disadvantages. Due to the variability between spectra not all important peaks are present in all 

individual spectra and thus in the selected reference. Significant differences may exist between spectra 

depending on the group they belong to. The quality of the results therefore depends on the selected 

reference spectrum. 

4.2. Inter-Sample Methods, without Using a Reference Spectrum 

Although most alignment methods follow pairwise approaches that depend on a reference, there are 

a few that can do alignment without a reference. 

PAPCA [17] detects peak regions of whole spectra in which peak shifts occur and then aligns the 

regions by shifting. It derives orthogonal principle components by applying PCA on the whole spectral 

data. Then it slides the first derivatives of a variety of simulated peak-shapes along the second 

component. The correlation coefficient between the first derivatives and the underlying part of the 

second component at each frequency point is calculated. The spectral regions of interest (SROI) are 

selected for alignment if the points in the regions show high correlation. 

By considering the whole spectral data as an image, GFHT [22] finds the shift-pattern based on an 

image processing technique called generalized fuzzy Hough transform. The shift pattern is the inter-sample 

peak position of a peak. First, peak detection is applied on the spectra and an indicator matrix is 

constructed. The model peak is selected for the whole spectra. To model the peak shifts, the shift 

pattern is multiplied by an expansion parameter. The Hough is then iterated through the parameter. 

Meanwhile, it records the Hough scores (the values indicate the fitting of the current shift pattern to the 

peak shifts) into a matrix H. The procedure starts with the global maximum in H, assigns peak identity, 

iterates the local maximum in H and stops when all peaks are extracted. An improved version of 

GFHT [30] incorporates a multicomponent peak shift model (MCSM) by using PCA to deal with more 

complex data. The advantage of generalized fuzzy Hough transform methods is their capacity of 

dealing with the fact that the spatial order of peaks in the spectra can change, or in other words that the 

positions of peaks in a given spectrum are reversed in other spectra. 

A third inter-sample method is PCANS [24], which avoids selecting a reference spectrum by 

repeatedly creating consensus spectra through integration of pair-wise spectrum comparisons until a 

final consensus spectrum remains. The final output includes the set of input spectra aligned to the final 

consensus spectrum. 

5. Alignment of Whole Spectra or Alignment of Spectrum Segments? 

The next distinction between different alignment workflows can be made according to whether they 

align complete spectra or smaller segments. 
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A first group of methods,considers the whole spectra for alignment. For example PTW [18] and 

BAA [25] both present each spectrum as a function of data points, build the models of the shifts 

between two spectra and minimize the difference between the spectra. FW [21] uses Fuzzy warping to 

find maximally corresponding peaks in whole spectra, and then uses an interpolation function for 

alignment. GFHT [22] considers whole spectra as a 2-dimensional image and aligns based on the 

Hough transform. DWT [15] uses a dynamic programming algorithm to warp two spectra. It builds a 

warping path to match points from the reference with the sample spectra. This method has the 

disadvantage that the peak shapes of aligned spectra are easily distorted due to artifacts. In an 

improvement, VPdtw [31] uses a variable penalty in the Dynamic Time Warping process. SpecAlign [20] 

uses a sliding window to move from point to point and aligns by insertion and deletion. 

These methods usually get slow when the size of the spectra increases. To address this performance 

problem, a class of methods was developed to divide spectra into smaller corresponding segments, to 

which the alignment is subsequently applied. PLF [11] uses a window size D to separate adjacent 

segments. PAFFT [19] and icoshift [10] divide the spectra into equal segments (or allow to manually 

select segments, in the case of icoshift) and align each segment. COW [12] divides spectra into equal 

segments used for alignment but it compresses or stretches (insertion and deletion) the segments 

instead of aligning them separately. PAGA [13] and PABS [16] use search algorithms such as genetic 

algorithm and beam search to determine the division points of segments. CluPA [8], RSPA [23] and 

RAFFT [19] find the corresponding segments by recursive strategies from global to local to refine the 

alignment. Doing alignment on segments instead of on the whole spectra significantly speeds up the 

computational time. 

6. Criteria or Target Function 

Alignment is an optimization problem, in which a set of parameters needs to be estimated. A typical 

factor in optimization techniques is the ―target function‖, which is the criterion by which candidate or 

partial solutions are evaluated throughout the alignment process. Even though different NMR 

alignment methods have different underlying principles, they often use similar optimization criteria.  

A common criterion is Pearson correlation coefficient, which can be maximized between segment 

pairs [12,13,16]. Intuitively, well-aligned spectra should have a high Pearson correlation. This 

coefficient is also commonly used for the evaluation of a completed alignment, as discussed later. 

Other methods use distances between the spectra. PARS [14] uses Euclidean distance, DTW [15] uses 

squared Euclidean distance, and vpDTW [31], which is an improved version of DTW, uses L1 norm, 

i.e. the sum of the absolute differences between data points in the spectra. Other criteria are derived 

specifically from the underlying algorithms. In PAPCA [17], a PCA algorithm is applied to all the 

spectra. It finds the regions that maximize the correlation CORREL that is created from the 

information of the simulated first derivatives along the second principle component and the underlying 

part of the second principle component. GFHT [22] uses a fuzzy membership Gaussian function as 

optimization criterion. More recently, because of their high speed, some groups started using FFT 

cross-correlation as the criterion for segment alignment. This was first introduced by Wong et al. in 

PAFFT and RAFFT [19], and was later used effectively by others [8,10,23]. 
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7. Correction Methods 

After finding the corresponding points or segments in spectra, the alignment methods need to 

correct the misalignment. A first class of methods uses stretching/compression (or insertion/deletion) 

to correct the misalignment spectra. Usually, stretching/compression is done by a linear interpolation 

to fit the corresponding segments in the reference [12,15,21]. Alternatively, it can be done by least 

squares quadratic polynomial fit as in SpecAlign [20]. Stretching/compression may lead to information 

loss and can also cause artifacts in the spectra. A second, widely used way to correct for the 

misalignment is shifting [8,14,17,19,24]. Shifting just moves a segment to the left or right for several 

data points, to match the reference spectrum. Shifting also leads to some information loss, and some 

new lines are added to the spectra. Ideally, the points that are selected to shift are at the baseline of the 

spectra or are the lowest intensity point, in order to avoid distorted peak shapes. Instead of adding lines to fill 

gaps, an interpolation function can be used. Nevertheless, artifacts remain hard to avoid. Some methods 

combine shift and interpolation to smooth the spectra [10,13,16,23]. Besides stretching/compression and 

shifting, a third group of methods uses a polynomial model for correction. Eilers et al. [18] and  

Kim et al. [25] directly estimate the aligned spectra from their warping functions through polynomial models. 

8. Alignment Assessment and Evaluation 

After alignment, the aligned spectra need to be evaluated to assess the quality of alignment 

methods. Below we discuss different levels of evaluation of aligned spectrum sets. 

8.1. Visualization 

Visualization is a powerful approach to rapidly assess the properties of a dataset, and in the context 

of this review, to evaluate the quality of an alignment procedure. We can visualize a number of 

relevant features in a few different ways, as illustrated in Figure 4. A simple visualization are spectral 

plots [10,13,16,19–21,23,25] in which whole spectra or a region are overlaid and plotted to see how 

the spectra were aligned (Figure 4a). A related and effective approach consists of presenting all spectra  

in a single image of size NxM, where N is the number of spectra and M is the number of data points  

in each spectrum. The color of each pixel reflects the intensity of a given peak in a given spectrum  

as in GFHT [22] (Figure 4b). Somewhat less information-rich are the equivalent grey scale 

representations [8,18,23], where the intensity of each pixel (from grey to white) corresponds to peak 

intensity (from low to high) (Figure 4c). High intensity peaks prominently show up in these 

visualizations, and the effects of the alignment can thus be evaluated. Alternatively, a heatmap can be 

constructed from the correlation coefficient matrix [8,21,23]. Correlations between all sample pairs are 

computed to create the matrix. The matrix is then plotted as an image in which the color of each pixel 

represents the degree of correlation between spectrum pairs. 

8.2. Quantitation of Similarity between Spectra 

A good alignment usually leads to an increased correspondence between spectra. Inter-spectrum 

similarity is thus a useful criterion for the evaluation of alignments. The most popular approach to 

evaluate inter-spectrum similarity consists of comparing average Pearson correlation coefficients of 
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spectra before and after alignment [2,8,12,13,16,21–23,25]. The Pearson correlation coefficient can 

also be combined with a Wallis filter [28] to avoid the fact that the correlation is mainly affected by the 

highest peaks while the low peaks are almost ignored. Kim et al, 2010 [25] compared the average root 

mean squares of spectra from different alignment methods. A smaller value then indicates a better 

alignment. Torgrip et al. [14] evaluated the correlation of spectra using the inner product of the first 

derivatives of the two data vectors scaled to unit norm, because this value is sensitive to differences in 

peak location and peak shape. They also introduced an evaluation using the peak match score ―PMS‖ 

to measure the number of corresponding peaks and also the presence or absence of corresponding 

peaks in samples. Alternatively, the average peak shifts [19] can be used, which are the average shifts 

of several top intense peaks. Lower average peak shifts indicate a better alignment. 

Figure 4. Examples of evaluation by using visualizations for a region in the Wine data [9–10]. 

(a) Spectral plot. (b) Spectra image. (c) Grey scale plot. (d) The heatmap of spectra correlation.  

 

8.3. PCA Analysis 

Principle Component Analysis (PCA) is a technique to project high-dimensional data into linearly 

uncorrelated vectors or principle components, in such a way that the first component represents the 

majority of the variance in the data, with subsequent components representing decreasing variance. 

PCA is a natural way to express data and discover data patterns based on their similarities. The fact 
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that features of PCA before and after alignment are different can be used for evaluation of alignment in 

several ways. Vogels et al. [11] introduced a ratio inter-intra distance that is the average Euclidean 

distance for p principle components of samples to their group mean divided by the average distance 

between groups. Higher ratio values indicate a better group separation. The variance of principle 

components can also be used for evaluation [14,17,21–24] based on the principle that after alignment, 

the variance of the first principle component should increase while the variance of the second PC 

decreases. Several methods [10,13,15,21] based the evaluation upon the fact that after alignment, the PCA 

scoring plots typically present more clearly the group separation or trend of the data. Forshed et al. [13] 

proposed an evaluation method using the linear combination of loadings from PCA that describes the 

orthogonal direction from a line separating the two groups in the scoring plots. One of its strengths is 

the fact that it reveals the spectral information (the distinct peaks) that separates two groups. 

8.4. Classification Model Analysis 

In studies where metabolome profiles are used to compare or classify different sample classes, the 

classification accuracy itself gives an indication on alignment quality. A good alignment should 

improve the accuracy. In general, any classifier that is used for classifying metabolome profiles can be 

used for this purpose, for example SVM [32,33], Random Forests [34] and PLS-DA [35]. For a 

detailed description of classification techniques that are applicable to metabolome data we refer to 

relevant reviews [3,36]. 

Instead of using classifiers as a black box, we can also evaluate alignment according to specific 

properties derived from a classification model. For example, a back-scaled loading coefficients of an 

OPLS classifier has been used [24,37]. The loadings coefficients are positive (negative) if the spectral 

features are higher (lower) in control (treated) groups. Other authors used a PLS model [2,10,11,21,22] 

and used performance metrics such as the root-mean square error of cross validation (RMSCV) for 

evaluation. Forshed et al. [13,38] measured the distance between groups from their approximated 

distributions generated from two scoring vectors of PCA and PLS-DA which show good group 

separation. A higher value reflects a better separation between classes and thus a better alignment. 

8.5. Other Evaluation Approaches 

There are a number of other metrics to evaluate alignment quality. One is the relative standard 

deviation of peak intensity as in GFHT [22]. After alignment, the variance between spectra should be 

very low. Wu et al. [21] use hierarchical clustering, under the assumption that alignment should lead to 

improved clustering and spectra from the same groups should cluster together. After alignment, 

Statistical Total Correlation Spectroscopy (STOCSY) analysis [23,39,40] should improve 

identification and determination of structural and biological correlations. An example of STOCSY can 

be found in RSPA [23]. To evaluate the alignment, Skov et al., [28] proposed a simplicity value, a 

peak factor and the warping effect (the combination of the two other parameters). The simplicity value 

is based on the properties of the singular value composition (SVD). In unaligned data less total 

variation is explained by the first few singular values then in aligned data. The peak factor indicates 

how much the total spectra have changed, and is derived from normalizing the difference between 



Metabolites 2013, 3            

 

 

272 

Euclidean norms of aligned and unaligned spectra. Giskeødegård et al. [2] and MacKinnon et al. [29] 

also used these approaches for evaluation.  

9. Method Complexities 

9.1. Computational Complexity 

Comparing the speed of all NMR alignment methods is not trivial, since the computational time of 

some algorithms depends on parameter setting. For example, searching in PABS [16] is faster than in 

PAGA [13], but both heuristic algorithms are stopped according to user-defined stop criteria. If they 

stop too early, the global search optimum may not be reached. Some implementations are not freely 

available. Therefore, we rely on published results [2,39,41] to try to collect information for 

computational time comparison. 

SpecAlign [20] and PLF [11] can be considered to be the fastest since their time is linear to the 

number of data points in a spectrum. Peak-picking approach-based methods such as RSPA [23] and 

CluPA [8] take additional time for the peak detection process. They are generally a bit slower than 

non-peak-picking methods such as icoshift [10], PAFFT [19] and RAFFT [19], which use the same 

FFT cross-correlation method for finding the shift steps. Recently, Giskeødegård et al. [2] made a 

detailed comparison of five popular NMR alignment methods, listed according to speed (from high to 

low) as follows: icoshift [10] > vpDTW [31] > PABS [16] > PTW [18] > COW [12]. Furthermore 

methods that use dynamic programming, like COW [12] and DTW [15], are more computationally 

demanding. Even though COW [12] is considered faster than DTW [15], it was reported to take 

minutes to several hours for high-resolution NMR spectra (~10000 up to 64000 data points) [2,10,23] 

on a personal computer. The faster methods listed above typically require seconds to minutes to 

complete, depending on the dataset size. For several other methods we have no performance information. 

9.2. Usage Complexity (Method Meta-Parameters) 

Most NMR alignment methods rely on a set of user-defined parameters. Optimizing these 

parameters is a challenge for most users. Different data sets may require different parameter settings. 

In practice, most users try a few parameter sets and select the set that yields the best result, without a 

guarantee that they selected the best possible set of parameters. The more parameters a method 

requires, the more complicated and difficult it becomes to use. Consequently, some methods attempt to 

reduce the number of user-set parameter without sacrificing (as much as possible) the performance of 

the alignment. An overview of the numbers of parameters of several algorithms is presented in Table 

1. Peak-picking based methods additionally require setting the parameters of the peak detection step, 

which is outside the scope of this discussion and omitted from the table. 

10. Alignment of 2D NMR Data 

1D 
1
H-NMR is used in the majority of NMR-based metabolome profiling studies because it is a fast 

approach to determine the biomolecular constituents of a sample. When working on complex 

biological samples however, there is often significant overlap between different signals. 2D NMR, 

usually in the combination 
1
H-

13
C, is a good alternative to overcome this problem. 2D NMR improves 
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the understanding of the structure of an organic compound, but it is also affected by peak shifting 

problems. Since 1D NMR alignment methods cannot be applied directly on 2D NMR data, dedicated 

2D NMR alignment methods are needed. Only a few methods are available for this type of data. 

Binning can be used to compare imperfectly aligned 2D NMR datasets, but has the disadvantages 

discussed earlier for 1D NMR. Since 2D NMR datasets can be considered as images, image-processing 

techniques from the computer vision field could be applied for finding matching points in the image. 

However, applying them to high-resolution 2D NMR data remains a challenge. Zheng et al. [42] 

proposed a heuristic algorithm and a similarity measure to maximize an objective function that 

captures the alignment quality. Recently, Robinette et al. [43] proposed a hierarchical strategy for 2D 

NMR alignment. 

11. Conclusion and Future Work 

NMR spectrum alignment remains a difficult problem for which there is no golden standard 

solution. For example the problem of peak order changes mentioned by Csenki et al. [22] cannot easily 

be solved, as most alignment methods are restricted by the assumption of similar peak order between 

spectra. Furthermore the time complexities and in particular the number of parameters that need to be 

optimized remain significant problems in which there is room for improvement. Nevertheless, the 

extensive list of available methods for NMR spectrum alignment addressed in this review offers 

metabolome researchers a powerful toolbox to extract the maximum out any dataset for which peak 

shifts are a practical issue. 
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