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Abstract: High doses of acetaminophen (APAP) result in hepatotoxicity that involves 

metabolic activation of the parent compound, covalent binding of the reactive intermediate 

N-acetyl-p-benzoquinone imine (NAPQI) to liver proteins, and depletion of hepatic 

glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of 

APAP-induced hepatotoxicity. To better understand relationships between toxicity and 

fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain 

acylcarnitines were examined in relationship to established markers of liver toxicity, 

oxidative metabolism, and liver regeneration in a time course study in mice. Male 

B6C3F1 mice were treated with APAP (200 mg/kg IP) or saline and sacrificed at 1, 2, 4, 8, 
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24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts 

were markedly increased. Alanine aminotransferase (ALT) levels were elevated at 4 and  

8 h, while proliferating cell nuclear antigen (PCNA) expression, indicative of hepatocyte 

regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl 

carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver 

sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 

and 48 h. A partial least squares (PLS) model suggested a direct association of acylcarnitine 

accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. 

Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic 

pattern involving early elevation after the metabolism phases of toxicity and later depletion 

of acylcarnitines. 

Keywords: acetaminophen; hepatic; β-oxidation; toxicity; acylcarnitine 

 

1. Introduction 

Acetaminophen (APAP) is the most widely used drug for the treatment of pain and fever around the 

world. While the drug is generally considered to be safe for use when administered in doses 

recommended by the manufacturer, at high doses, APAP produces fulminant hepatocellular necrosis 

and accounts for 50% of all cases of acute liver failure in adults and 14% of cases in children [1,2]. 

The role of metabolism in APAP toxicity is well characterized and involves generation of the highly 

reactive metabolite of APAP known as N-acetyl-p-benzoquinone imine (NAPQI) and hepatic 

glutathione (GSH) depletion [3]. NAPQI is formed through the oxidative metabolism of APAP and 

covalently binds to the amino acid cysteine in proteins, forming APAP protein adducts. APAP protein 

adducts are formed in the liver and other tissues during the early stages of APAP toxicity in mouse 

models [4,5] and released into peripheral blood upon hepatocyte lysis. Even though covalent binding 

and the formation of adducts is considered to be a prerequisite to the development of APAP toxicity,  

a large number of studies have indicated that other mechanisms are involved in the mediation of toxicity. 

Production of reactive oxygen/nitrogen species in hepatic mitochondria, mitochondrial permeability 

transition, and c-Jun N-terminal protein kinase activation are also recognized as mechanisms of APAP 

toxicity in the mouse model [6,7]. 

An evolving body of literature also supports the protective role of the peroxisome proliferator-activated 

receptor alpha (PPARα) in APAP toxicity [8–10]. This nuclear receptor is a member of the superfamily of 

nuclear receptors that controls the expression of genes encoding mitochondrial fatty acid β-oxidation. 

Pre-treatment of mice with PPARα ligands, such as clofibrate or WY-14683, was reported to produce 

resistance to APAP toxicity in mice. Chronic, two-week treatment with clofibrate [9,11] and single dose 

clofibrate treatment prior to APAP [12] attenuated toxicity in the mouse. However, two-week pre-treatment 

with clofibrate also inhibited covalent binding and increased APAP-glutathione levels in bile, showing 

that the PPARα agonist reduced sensitivity to APAP toxicity by altering the metabolism of APAP. In 

contrast, APAP metabolism was unaffected by pre-treatment with a single dose of clofibrate [12], 

suggesting the possible involvement of other mechanisms of hepatoprotection mediated through 
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PPARα [13]. The mechanisms whereby PPARα activation modifies sensitivity to APAP are poorly 

understood. Cell proliferation is a known effect of PPARα activation and could potentially alter the 

sensitivity of mice to APAP, as suggested by two previous studies [10,13]. In addition to the effects of 

PPARα activation on lipid metabolism and gluconeogenesis, activation of this pathway is known to 

have anti-inflammatory effects by suppressing interleukin 1 and reducing NFκB activity [14]. 

Serum elevations of long-chain acylcarnitines, intermediates in the mitochondrial β-oxidation of fatty 

acids, have recently been used as an indicator of impaired fatty acid oxidation in liver in mouse models 

of APAP toxicity [8,15–17]. The β-oxidation of fatty acids is a well-known adaptive response to fasting 

or stress and represents a switch in the cellular energy source from glucose to free fatty acids [16,17]. 

Fatty acids are activated via cytosolic acyl co-A synthetase, and then transported into mitochondria via 

carnitine, concluding with β-oxidation within the mitochondrial matrix. Coen previously reported the 

elevation of triglycerides and monounsaturated fatty acids (MUFA) and the decrease in polyunsaturated 

fatty acids (PUFA) in liver from mice treated with a toxic dose of APAP using conventional solution state 

nuclear magnetic resonance spectroscopy [17]. These findings, accompanied by elevations of glucose, 

acetate, pyruvate, and lactate, suggested that APAP toxicity results in increased glycolysis, as well as a 

mitochondrial inability to use pyruvate in the citric acid cycle and impaired fatty acid β-oxidation in 

liver mitochondria [17]. In addition, Chen and Gonzalez previously suggested that suppression of 

PPARα occurs in APAP toxicity and noted early increases in serum palmitoyl carnitine, that was 

attributed to a disruption in fatty acid β-oxidation in liver mitochondria [16]. Palmitoyl carnitine levels 

were increased in wild type mice treated with APAP and were reduced, but not absent, in CYP2E1 null 

mice, while hepatic GSH depletion, reflecting the drug metabolism, was comparable in the two groups 

of mice. CYP2E1 is the primary CYP450 involved in the metabolism of APAP. The relatively 

decreased (but not absent) serum levels of palmitoyl carnitine in the CYP2E1 null mice implicate the 

potential involvement of other CYP P450’s such as CYP3A4 or CYP1A2 in the oxidative metabolism 

of APAP. In addition, previous studies showing that the administration of carnitine, the carrier for fatty 

acids into mitochondria, provided protection in APAP toxicity, suggest an interaction between fatty 

acid oxidation and the development of toxicity [18,19]. 

In the mouse model and in clinical samples, APAP protein adducts in liver or serum has been shown 

to be a very sensitive and specific biomarker of APAP-induced metabolism and hepatotoxicity [20–22]. To 

further examine the relationship of metabolism (as reflected by depleted hepatic GSH and formation of 

APAP protein adducts) to markers of fatty acid oxidation in APAP toxicity in the mouse, long-chain 

acylcarnitines were measured using a targeted metabolomics approach and examined in relationship to 

the known indicators of toxicity, metabolism, and liver repair. The data presented herein illustrate the 

time course of disruptions of fatty acid β-oxidation in liver and subsequent changes in serum acylcarnitines 

in relationship to early and late phase indicators of APAP toxicity, metabolism, and recovery. 

2. Results and Discussion 

2.1. Indicators of Hepatotoxicity and Oxidative Metabolism in APAP Treated Mice 

Following an overnight fast, B6C3F1 male mice were treated with APAP 200 mg/kg IP and 

sacrificed at 1, 2, 4, 8, 24 or 48 h. This dose of APAP produces significant toxicity without lethality 
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and allows for study of both early (metabolism and liver injury) and late events (hepatic regeneration) 

in toxicity. [23] Control mice were also fasted overnight and treated with saline by IP injection. 

Consistent with previous studies [5,6,23,24] measurement of serum ALT, the biochemical indicator of 

liver injury, indicated significant elevation by 4 h and peak elevation at 8 h following the administration 

of APAP (Figure 1A). Histologic review of mouse liver sections indicated centrilobular pallor in 

hepatocytes at 2 h, followed by frank hepatocellular necrosis at 4 h, consistent with the ALT data 

(Figure 2). The extent of the hepatocellular necrosis progressed to the pattern of bridging necrosis and 

frank hemorrhage by the 24 h time point. Measurement of liver weight is a surrogate marker of liver 

injury and increases throughout the time course of toxicity due to hemorrhage and the pooling of blood 

in liver sinusoids. As shown in Figure 1B, liver weight was significantly increased at 24 and 48 h. 

Figure 1. Indicators of toxicity and metabolism in B6C3F1 male mice treated with 

acetaminophen (APAP) (200 mg/kg IP). (A) Serum alanine aminotransferase (ALT) was 

increased above control at 4 and 8 h (* represents statistical significance at p < 0.05 in 

comparison to control mice, time 0). (B) Liver weights were increased at 24 and 48 h.  

(C) Hepatic glutathione (GSH) was depleted by 1 h and remained low at 2 h (*p < 0.05) 

compared to control mice and returned to baseline values by 8 h. (D) Liver APAP protein 

adducts were increased by 1 h (* p < 0.05) and remained elevated at all time points 

compared to saline control mice). Raw data points are represented as “○” in strip plots; 

mean values represented as “×”, and standard error of the mean represented as capped bars. 
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Measurement of hepatic GSH and APAP protein adducts reflect the role of oxidative metabolism in 

APAP toxicity. Consistent with previous data [24] measurement of hepatic GSH in the mice indicated 

marked depletion of hepatic GSH by 90% at 1 and 85% at 2 h compared to control (0 h) mice (Figure 1C). 

In addition, HPLC-EC analysis of APAP protein adducts in the supernatants of liver homogenates 

indicated a 10-fold elevation in adducts at 1 h, followed by a very gradual decline over the time course 

of the study (Figure 1D). Adduct levels at 48 h remained above baseline (Figure 1D). These data 

demonstrate that hepatic GSH depletion and the formation of APAP protein adducts are early events in 

APAP toxicity. 

Figure 2. H and E stained liver sections of representative B6C3F1 male mice treated with 

APAP (200 mg/kg IP). By 2 h, centrilobular pallor was apparent in the cells surrounding 

the central vein (CV). By 4 h, frank necrosis (demonstrated by arrows) was present in the 

region surrounding the CV, which extended to bridging necrosis at 24 h post-APAP. 

 

2.2. Indicators of Hepatocyte Regeneration in APAP Toxicity 

Proliferating cell nuclear antigen (PCNA) expression is an established marker of cells undergoing 

proliferation that indicates cellular replication, expressly the G1 and S phases of mitosis. It is a commonly 

used indicator of hepatocyte regeneration in APAP toxicity [23]. In previous work, immunostaining 

for PCNA of hepatic liver sections demonstrated the initial appearance of proliferating hepatocytes at 

24 h after APAP in the midzonal regions of the liver, bordering the regions of hepatocellular necrosis [23]. 

In the present study quantitative image analysis of PCNA stained hepatic nuclei indicated significantly 

increased staining at 24 h, which progressed in extent through the midzonal regions of the liver at 48 h 

compared to minimal staining in the control mice (Figure 3), consistent with previous data [25]. 
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Figure 3. Immunohistochemical staining for proliferating cell nuclear antigen (PCNA) in 

B6C3F1 male mice treated with APAP (200 mg/kg IP). (A) No staining for PCNA was 

observed in saline treated mice. (B) PCNA staining (blown nuclear stain) was increased in 

the nuclei of hepatocytes throughout the midzonal and centrilobular regions of the liver at 

24 and 48 h (C). (D) Summary data reflecting the percent increase in positive hepatocyte 

nuclei at 24 and 48 h compared to control (0 h). 

 

2.3. Oil Red O (ORO) Analysis and Liver Triglycerides  

Figure 4 illustrates ORO immunohistochemical images of mouse liver. Minimal staining for ORO 

was detected in the liver sections of the mice treated with saline (A). In contrast, ORO staining was 

diffusely present throughout the hepatic lobule by 2 h (not shown) and peaked at 4 h (B). At 8 h, the 

staining decreased in extent (C). By 24 and 48 h, the staining was localized to the regions surrounding 

the hepatic vein (D, E), bordering the areas of ongoing hepatocyte regeneration (Figure 4, arrows). The 

temporal sequence and pattern of ORO staining with the localization of ORO to the centrilobular 

regions suggested that lipid deposition also occurred in the later stages of toxicity and coincided with 

the time periods of hepatocyte regeneration (Figure 3) above.Elevations of hepatic triglycerides have 

been reported in APAP toxicity and likely reflect a switch in energy metabolism that occurs during the 

toxicity [16,26]. Hepatic triglyceride levels were not elevated in the APAP treated mice in the present 

study, likely as a result of the lower dose of APAP utilized (data not shown).  
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Figure 4. Oil Red O (ORO) staining in saline and APAP treated mice. Representative slides of 

ORO staining of mice treated with saline (A) or 200 mg/kg APAP and sacrificed at 4 (B), 8 

(C), 24 (D) or 48 h (E). A diffuse pattern of ORO staining, indicative of hepatic lipid 

accumulation, was observed at 2 h (not shown) and peaked at 4 h. By 24 h, ORO staining was 

localized to the necrotic regions, adjacent to areas of regenerating hepatocytes (arrows). 

 

2.4. Acylcarnitine Profiles in APAP Toxicity in the Mouse 

Targeted metabolomic analysis was performed to determine changes in serum acylcarnitine profiles 

following dosing of mice with APAP 200 mg/kg. A biphasic pattern for long chain acylcarnitines was 

observed following treatment of mice with APAP. Among the long chain acylcarnitines, palmitoyl, oleoyl 

and myristoyl carnitines showed statistically significant increases by 2 h, and peaked by 4 h (Figure 5A–C). 

At 8 h and at later times, the levels fell significantly below the values observed in the control (0 h) mice.  

L-Carnitine levels were increased at 8 h compared to saline controls (0 h), while acetyl-L-carnitine showed 

a downward trend across all time points compared to saline controls (0 h) (Figure 5D,E).  

Overall, the acylcarnitine elevations were gradual and modest (doubling of approximately two fold) 

and appeared to follow the observed changes in markers of metabolism, as reflected by hepatic GSH 

and APAP protein adducts (Figure 1C,D). 

Using a quantitative approach, [16] Chen and Gonzales observed similar elevations in palmitoyl 

carnitine in 129/Sv mice treated with 400 mg/kg of APAP. However, the biphasic pattern noted in the 

present study (Figure 5) was not observed by Chen et al. [16] Chen found that serum palmitoyl 

carnitine levels peaked at 2 h to a median value of approximately 580 nM, and remained above 

baseline at 24 h. A similar, but more modest elevation of palmitoyl carnitine was observed in CYP2E1 null 
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mice and levels returned to baseline by 8 h, but did not fall below baseline at 24 h [16]. Differences in 

the temporal patterns of palmitoyl carnitine in the present study compared to the data of Chen et al.[16] 

may be multi-factorial in nature and could be secondary to differences in APAP dose (200 mg/kg 

versus 400 mg/kg), age (6 weeks versus 2 to 3 months), diet or the length of fasting time prior to the 

performance of the experiments, mouse strain, or differences in analytical approaches. Fasting is 

known to affect β-oxidation and thus, would affect acylcarnitine profiles [17]. In the present study, 

both the APAP treated and saline control mice were fasted for a 16 hour period of time before 

receiving APAP. In contrast, the mice used in Chen’s study were fasted for 24 h, while the saline mice 

were not fasted. Based on the time course data (Figure 5), oleoyl- and myristoyl-carnitine were 

comparable to palmitoyl-carnitine as biomarkers of disrupted fatty acid oxidation in APAP toxicity, 

and thus, complement and extend previous observations in this area [16]. 

Figure 5. Serum acylcarnitine levels in mice treated with saline or APAP 200 mg/kg. The 

long chain acylcarnitines, palmitoyl (A), oleoyl (B) and myristoyl carnitine (C) showed 

statistically significant increases at 2–4 h (*indicates statistically significant at p < 0.05) 

compared to saline control (time 0 h), and decreased below baseline levels at 8–24 h before 

approaching baseline at 48 h. Acetyl-L-carnitine (D) significantly decreased over time 

compared to saline control, and L-carnitine (E) was elevated only at 8 h. Raw data points 

represented as “○”in strip plots; means as ““×”and standard error of the mean as capped 

bars at each time point. 
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Figure 5. Cont. 

 

Spearman rank correlation analysis showed strong correlation (correlation coefficient > 0.81 at  

p values < 2E-10) among the long-chain acylcarnitines (Figure 6,) as would be expected based on the 

similarity of their structure and common routes of metabolism. In addition, our data showing below 

normal levels of acylcarnitines at later time points in the toxicity may have reflected heightened fatty 

acid oxidation to meet ongoing energy demands during the repair of liver injury and onset of hepatocyte 

regeneration [27]. In support of this postulation, previous data have reported increases in mRNA transcripts 

for carnitine palmitoyl transferases I and II occur in regenerating livers and that the administration of 

carnitine accelerates liver repair [27]. In addition, the upregulation of “carnitine shuttle” genes (e.g., 

carnitine-acylcarnitine translocase, carnitine palmitoyltransferase) has been reported in rats treated with 

triiodothyronine, a hepatocyte mitogen [28]. Coen used 1H NMR and showed changes in proton 

resonance peaks related to MUFA in the lipid extracts of liver tissue of mice treated with  

500 mg/kg APAP [17]. Dose-response changes were demonstrated as well, and through PCA analysis, 

doses of 150 and 500 mg/kg APAP clearly separated from control and the 50 mg/kg APAP group. Our 

data demonstrated that a modest dose of APAP (200 mg/kg) is sufficient to impair fatty acid oxidation. 

2.5. Relationship of Acylcarnitines to APAP Protein Adducts and Hepatic Glutathione 

A multivariate, partial least squares regression (PLSR) model was used to examine relationships 

between acylcarnitines and APAP metabolism and toxicity parameters. This model captures the 

maximum covariance that exists in the data in the X (predictor variables) and Y (response variables) 

space. The two component PLS model (Figure 7A) captured 74% of the variation in the X variables 

(acylcarnitines and liver weight) that correlated with ~67.2% of the variation in the response variables 

(adducts and GSH). The goodness-of-predictability parameter (Q2(Y)) was 58.9%, which was calculated 

by a seven-round internal cross-validation of the data. The model was further validated by repeated 

permutations of the sample identifiers. A PLS scores plot (Figure 7A) demonstrated a clear separation 

along the first PLS components between the pre-dose, 0, early time points, 1–4 h, during which the 

changes in APAP toxicity parameters and acylcarnitines were maximal and the later time point groups, 

8–48 h, during which all acylcarnitines were below baseline. The corresponding loadings plot, which 
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summarizes the influence and correlation structure between the variables in the X and Y data, is shown 

in Figure 7B. X variables with large weights, positive or negative, were far away from the origin and 

highly correlated with Y, while Y variables with large weights were highly correlated with X. As 

shown in the loading plot, palmitoyl-, oleoyl-, myristoyl-carnitine, and liver weight were significant 

contributors to the separation in the earlier and later time point groups, while L-carnitine, positioned 

close to the origin, had minimal contribution to the model. Moreover, palmitoyl, oleoyl and myristoyl 

closely correlated with adduct values, while liver weight (Figure 1B) correlated with hepatic GSH, 

reflecting primarily the association of rebounding GSH (Figure 1C) in the later stages of APAP 

toxicity. The Variable Importance on the Projection (VIP) parameter summarizes the importance of the 

predictor variables both to explain X and to correlate to Y. Palmitoyl, oleoyl, and myristoyl carnitine, 

as well as liver weight, had VIP values above 1, indicating significant contribution to the model 

(Figure 7D). An overview of the explained variation of the two response variables by the                 

two-component PLS regression model is presented in Figure 7C indicating slightly better modeling of 

GSH in comparison to adducts, based on the higher R2VY and Q2VY values in the former. As would 

be expected, the inclusion of ALT as a response variable in the PLS model resulted in dramatic 

decrease in the R2 and Q2 values (data not shown), indicating a poor association of ALT with the 

acylcarnitines in APAP induced toxicity. ALT is known to be a relatively “late stage” indicator of 

toxicity. Overall, the PLS model suggested a direct association of palmitoyl, oleoyl and myristoyl 

carnitine accumulation in serum to changes in APAP protein adduct levels and hepatic GSH levels in 

mice treated with APAP. 

Figure 6. Spearman rank correlation heatmap between APAP toxicity and metabolism 

parameters and the acylcarnitines. Statistically significant correlations (p value < 0.05) are 

shown in blue (positive correlation) and red (negative correlation) color scale. Insignificant 

correlations are left blank. The larger the circle is the stronger is the correlation.   
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Figure 7. Partial least squares regression model describing the relationship between  

L-carnitine, acetyl, palmitoyl, oleoyl, myristoyl carnitine, liver weight, hepatic GSH and 

APAP protein adducts. (A) Scores plot of the samples showing the separation between the 

different time point groups (6 animals per group) along the two PLS components. The 8, 

24 and 48 h time points clearly separated from the earlier time points (1, 2 and 4 h) and 

pre-dose (0) along the first PLS component. The goodness of fit (R2) and goodness of 

predictability (Q2) of the model were ~74% and 58.9%, respectively. (B) The 

corresponding loadings plot of the model showing the relationship between the 

acylcarnitine predictors and the toxicity/metabolism markers along the two partial least 

squares (PLS) components. The plot shows that palmitoyl, oleoyl and myristoyl carnitine 

correlated well to APAP protein adducts, while L-carnitine had minimal contribution to the 

model. (C) Explained variation of the two responses after the two PLS components in the 

model. Hepatic GSH and APAP protein adducts were well explained by the model and GSH 

performed slightly better based on the R2V(Y) and Q2V(Y) values. (D) VIP plot of the 

predictors showing their pooled contribution over the PLS component and all three responses. 

Palmitoyl, oleoyl, myristoyl carnitine, and liver weight had significant VIP values ( >1). 

 

3. Materials and Methods 

3.1. Drugs and Reagents 

APAP was obtained from Sigma-Aldrich (St. Louis, MO, USA). Optima LC/MS grade water, 

acetonitrile formic acid, carnitines and all MS standards were purchased from Fisher Scientific 

(Hampton, NH, USA). 
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3.2. Experimental Animals  

Six-week old male B6C3F1 mice (mean weight, 25.1 g) were obtained from Harlan Sprague 

Dawley (Indianapolis, IN). All animal experimentation was in accordance with the criteria of the 

“Guide for the Care and Use of Laboratory Animals” prepared by the National Academy of Sciences. 

Protocols for animal experimentation were approved by the University of Arkansas for Medical 

Sciences Animal Care and Use Committee. Mice were acclimatized one week prior to the planned 

experiments and fed ad libitum. Animals were housed 3 per cage and maintained on a 12 h light/dark 

cycle. On the day prior to experiments, mice were fasted overnight and dosing studies began at 0800 

the following morning. Food was returned to the mice 4 h after either APAP or saline treatment. APAP 

was administered at 200 mg/kg IP and control mice received saline IP, designated as time 0. Mice 

were sacrificed to harvest liver tissue at 1, 2, 4, 8, 24 or 48 h (6 mice/group) after APAP. Animals 

were anesthetized with CO2 for blood sampling. Blood was removed from the retro-orbital plexus, 

allowed to coagulate at room temperature, centrifuged, and the serum was aliquoted for measurement 

of alanine aminotransferase (ALT) and metabolomic analysis of serum acylcarnitines. Mice were then 

euthanized in a CO2 atmosphere followed by cervical dislocation and removal of the livers. The livers 

were weighed and a portion was preserved in formalin for histological sections. The remaining livers 

were snap frozen in liquid nitrogen and stored at −80 °C for additional analyses. 

3.3. Assessment of Hepatotoxicity 

Serum ALT levels, a widely used indicator of liver injury, were measured using an Alera chemistry 

analyzer (Alfa Wassermann, West Caldwell, New Jersey). 

3.4. Determination of Hepatic Glutathione and APAP Protein Adducts 

Quantitation of hepatic glutathione (GSH) was performed using Ellman’s reagent following 

standard protocols [29]. APAP covalently bound to protein in liver was measured by initial protease 

treatment of liver homogenates followed by high performance liquid chromatography-electrochemical 

(HPLC-EC) analysis for APAP cysteine as previously described [22,30]  

3.5. Oil Red O Analysis of Hepatic Lipid Deposition 

Lipid deposition in mouse liver was assessed by Oil Red O (ORO) staining of frozen hepatic 

sections [31]. For quantification of ORO, liver sections were scanned to a high-resolution digital file 

(Aperio Scanscope CS system; Aperio, Vista, CA) at 200× total magnification. A positive-pixel count 

algorithm within the Aperio system was optimized and used to express ORO counts (red pixels) relative to 

the total slide image. To better visualize positive pixels, a digital mask was applied to identify negative 

(blue), weakly positive (yellow), moderately positive (orange), and strongly positive (red) pixels.  

3.6. Proliferating Cell Nuclear Antigen (PCNA) Immunohistochemistry 

Immunohistochemical assays for PCNA in liver sections was performed as per our previous 

publication [23], using a mouse monoclonal PCNA antibody (Dako, Carpinteria, CA) (1:75) and Gills 
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Hematoxylin II as the counterstain. Quantification of hepatocyte proliferation (PCNA) was performed 

using the Aperio Scanscope described above. Algorithm settings were optimized for PCNA liver 

staining. PCNA-labeled hepatocytes were analyzed over the entire slide using the nuclear algorithm 

and color deconvolution to analyze chromagen staining. Hepatocyte nuclei were recognized by shape, 

size, and staining characteristics. Results were reported as percent positive nuclei. The pathologist was 

blinded to the treatment times of the groups. 

3.7. Targeted Analysis of Serum Acylcarnitines Using a UPLC-TQ  

Samples were removed from storage at −80 °C and placed at −4 °C for two hours. 50 μL of serum 

was spiked with isotope labeled L-carnitine, acetyl-L-carnitine, myristoyl-carnitine, palmitoyl carnitine 

and oleoyl carnitine. The sample was then de-proteinized with 300 μL of 3:1 mixture of 

Acetone:MeOH (Optima grade, Fisher scientific) and centrifuged for 15 minutes at 13,000 × g (4 °C). 

The supernatant was transferred into a total recovery auto-sampler vial (Waters, Milford MA) and the 

solvent was evaporated under a stream of nitrogen. Samples were reconstituted in 50 μL of 50:50 

acetonitrile/75% methanol. The chromatographic separation was done using an Acquity UPLC 

equipped with a BEH C8 column (2.1 × 100 mm, 1.7 μm particle size) and VanGuard C8 pre-column 

(Waters). 10 μL was injected and the flow rate was set to 0.4 mL/min with a column temperature of 40 °C. 

Mobile phase A consisted of 90:10 water:acetonitrile with 0.5 g/L ammonium acetate adjusted to pH 

7.4. Mobile phase B consisted of acetonitrile with 0.5 g/L ammonium acetate. The gradient started 

with 50% mobile phase B, held for 1 minute, increasing to 86% at 5 minutes then to 100% at  

7 minutes, after which initial conditions were restored at 8.5 minutes and the system was equilibrated 

for an additional 1.5 minutes. Blank injections were made between each sample injection. Mass 

spectrometric analysis was done on a Xevo triple-quadrupole instrument (Waters) operated in positive 

electrospray ionization mode. Multiple Reaction Monitoring (MRM) was carried out using transitions 

previously optimized for each carnitine species by the direct infusion of standards. The capillary 

voltage was 4.5, the source and desolvation temperature were 150 °C and 400 °C, respectively. The 

desolvation gas flow rate was 800 L/h. 

3.8. Data Analysis 

Non-parametric Mann Whitney U-Test was used to detect differences between each time point 

group vs. baselines for all toxicity and metabolic markers using SPSS Version 10.0 (SPSS Inc, 

Chicago, IL) and the open source statistical software package R. A p value < 0.05 was considered 

significant for all analyses. Spearman rank and/or Pearson’s correlation was calculated between the 

measures of average intensity and positivity from ORO staining and acylcarnitines. Correlation 

analysis was also performed to examine the relationship between the metabolites and the recognized 

markers of APAP toxicity and metabolism. Multivariate data analysis was performed by the R package 

chemometrics [32] and SIMCA-P+ software (Umetrics, Kinnelon, NJ, USA). The data matrix was 

transformed by autoscaling and a partial least squares (PLS) regression model was generated in order 

to identify the acylcarnitines that closely associated with the toxicity markers. Major latent variables in 

the data were represented in a scores scatter-plot and the significant predictors were identified by their 
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contribution to the PLS vectors in the loadings scatter plot as well as based on their variable importance on 

the projections (VIP) scores. Data are presented as mean ± standard error of the mean.  

4. Concluding Remarks 

The present study was conducted to examine the temporal relationships between known indicators 

of APAP toxicity and metabolism (hepatic GSH and APAP protein adducts) and recognized 

intermediates of fatty acid β-oxidation in mitochondria, the long-chain acylcarnitines. High-resolution 

LC-MS based targeted metabolomics identified several serum long chain acylcarnitines (palmitoyl, 

myristoyl and oleoyl carnitine) which were elevated early in the toxicity following early changes in 

APAP adduct levels and hepatic GSH. APAP protein adducts in liver remained elevated through the 

time course of the toxicity. In the later stages of toxicity, at the time of liver recovery and hepatocyte 

regeneration, acylcarnitines fell below base-line, possibly due to heightened energy needs associated 

with the hepatocyte regeneration stages of toxicity. The data have relevance for future studies of APAP 

toxicity and support the role of impaired fatty acid β-oxidation as one mechanism in the development 

of toxicity. Understanding the relationship of drug metabolism to impaired β-oxidation is relevant to 

future studies focused on identifying human susceptibility to APAP toxicity, in particular for pathologic 

conditions associated with alterations in metabolic homeostasis and energy supply. 
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