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Abstract: Mass spectrometry coupled with chromatography has become the major 

technical platform in metabolomics. Aided by peak detection algorithms, the detected 

signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical 

identities often remain elusive for the majority of the signals. Multi-stage mass 

spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation 

(CID) fragmentation of selected precursor ions. These fragment ions can assist in structural 

inference for metabolites of low molecular weight. Computational investigations of 

fragmentation spectra have increasingly received attention in metabolomics and  

various public databases house such data. We have developed an R package “iontree”  

that can capture, store and analyze MS2 and MS3 mass spectral data from high  

throughput metabolomics experiments. The package includes functions for ion tree 

construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building 

platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization 

of the package for the systematic analysis and annotation of fragmentation spectra 

collected in various metabolomics platforms, including direct infusion mass spectrometry, 

and liquid chromatography coupled with either low resolution or high resolution mass 

spectrometry. Assisted by the developed computational tools, we have demonstrated that 

spectral trees can provide informative evidence complementary to retention time and 

accurate mass to aid with annotating unknown peaks. These experimental spectral trees 

once subjected to a quality control process, can be used for querying public MS2 databases 

or de novo interpretation. The putatively annotated spectral trees can be readily 

incorporated into reference libraries for routine identification of metabolites. 
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1. Introduction 

Mass spectrometry, either direct infusion-based (DIMS) or in combination with liquid 

chromatography (LCMS), has become the major technical platform in metabolomics due to its high 

sensitivity, high throughput and direct applicability to complex biological extracts. Signals detected by 

LCMS are characterized as peaks, the pair of mass-over-charge ratio (m/z) and retention time (RT),  

or simply the m/z alone when DIMS is employed. It is a challenging task to translate these signals into 

metabolites. Mass spectrometry-based metabolite identification has received much attention recently and 

common practices appear to be emerging [1–5]. Ultimate structural elucidation of the detected peaks 

with complete structural details is time consuming and impractical in metabolomics. Four levels of 

metabolite identification have been recommended by the Metabolomics Standards Initiative (MSI) [6], 

thus providing guidelines for routine metabolomics studies. Level 1 identification requires 

experimental spectral information to be matched with that of authentic compounds. However, because 

of the lack of authentic compounds in metabolomics to support the identification of all the detected 

chemical species [4], the MSI level 2 identification can be more practically achieved, which refers to 

that compounds can be putatively identified based on physiochemical properties and/or spectral 

similarities with public/commercial spectral libraries, without reference to authentic chemical 

standards. Although the chemical identities of all the detected peaks may not be required to address 

some biological questions, a collection of evidence that supports the annotation of detected signals 

should be provided [6,7]. Accurate mass measurements and other spectral features such as 

chromatographic behavior, isotopic ratios, and adduct ions can provide such useful structural 

information for the annotation of detected signals [8]. 

Spectral trees (or ion trees, used interchangeably hereafter) have been shown to provide unique 

structural information to annotate peaks. Spectral tree data are generated by multi-stage mass 

spectrometry (MSn, n > 1). Briefly, metabolites are ionized in the ion-source of the mass spectrometer 

by electrospray ionization (ESI, in this study), then ions can be automatically selected for isolation and 

fragmentation via collision with gas molecules (collision-induced dissociation, CID) to generate 

tandem mass spectra (denoted as MS2 or MS/MS). Further stages (MSn, n > 2) of ion fragmentation 

can be achieved if sufficient precursor ions can be captured. MSn (n > 2) spectra when available are 

considered to provide greater discriminating power for more precise compound identification [9,10]. 

MS2 spectra have been routinely applied in LCMS-based proteomics for peptide sequencing, and have 

been the subject of extensive computational research [11]. Compared with the method development in 

proteomics, the bioinformatics research of metabolite fragmentation patterns imposes different 

challenges because small molecules often give rise to much more sparse fragmentation spectra [12] 

and the structural diversity of metabolites is enormous. Computational methods have recently been 

developed to process and quantify fragmentation data specific to small molecules [13,14].  

The utilization of MSn spectral fragmentation for metabolite annotation has been the subject of much 

recent research [1,7,15–17], where spectral trees were demonstrated to be highly reproducible features 
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useful for the annotation of detected peaks. Experimental spectral trees when compared with MS2 

spectral databases [18,19] or even in silico fragmentation patterns [5,10,20] can facilitate the 

annotation process. 

Although public databases that archive fragmentation spectral data are available our experience 

suggests that these are not comprehensive enough to cover all metabolites detected by LCMS. Modern 

MS instrumentation can rapidly collect a large number of ion fragmentation spectra, which makes it a 

non-trivial task to mine all the spectral trees collected over various projects. Therefore, it is important 

to statistically analyze experimental spectral data particularly given their noisy nature, and to compare 

the fragmentation data generated over different projects in order to probe into the chemical identity of 

measured ions. With an ultimate aim to understanding the metabolome of ryegrass (Lolium perenne) 

we initially developed computational methods to analyze experimental fragmentation data (MS2/MS3) 

collected from DIMS based on low resolution ion trap mass spectrometry to classify and annotate 

nominal mass ions [21,22]. We developed computational methods using R [23] and built a package 

(“iontree”) to facilitate the computational investigation of all ion trees collected from various research 

projects. The package was submitted to Bioconductor in 2011, and the current version can be found at 

the website [24]. 

In this paper, we describe the basic functionalities implemented in the “iontree” package that was 

primarily designed for the analysis of low resolution spectral trees based on direct infusion MS 

(DIMS). The package includes functions for ion tree construction, algorithms for sparse MS2 spectral 

comparison, and tools for building platform-independent ion tree libraries that contain MS2/MS3 

spectra. We have extended the functionalities we developed for the analysis of DIMSn data to the 

analysis of fragmentation data (MS2) collected from liquid chromatography coupled with either low 

resolution (LC-LRMS) or high resolution MS (LC-HRMS). We demonstrate that the developed 

computation tools can be utilized for the systematic analysis of fragmentation data collected in various 

metabolomics platforms to aid peak annotation and metabolite identification. 

2. Results and Discussion 

2.1. Functionalities Implemented in the Iontree Package 

Functions encapsulated in the package were originally designed to process DIMSn data. Raw data, 

collected in either centroid or profile mode, were converted into platform-independent data formats 

such as mzXML [25]. For processing MSn fragmentation spectra, the series of precursor ions (MSn−1) 

must be maintained. The precursor ion series was parsed from the data attribute of “filterline” in 

mzXML data converted from the raw data (Thermo Xcalibur), and maintained in a precursor matrix. 

For example, a series of precursor ions of one MS3 scan (spectrum) could be 1021.5 (MS1)–748.4 (MS2). 

Given a specified m/z (m) tolerance (δ) that depends on the resolution of the mass spectrometer, we 

provide a function to group all ions that are within the specified range, i.e., (m ± δ). For example, all 

the available MS3 spectra derived from the same ancestry of precursor ions (within the tolerance) are 

used to compute a representative MS3 spectrum, where the fragment ions (±δ) are merged by taking 

the median of the masses (in m/z) and computing either the maximum or 95% quantile of the ion 

intensities within a mass bin. Our approach relies on the similarity of the precursor series to collect all 
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the available scans for the analysis, which enables the evaluation of statistical variation of fragment 

spectra. This is different from other methods where only one fragment spectrum is singled out for 

structural inference [26], or where the series of precursor ions may not be kept in the pre-processing 

steps to retrieve MSn spectra [14] making it difficult to construct an ion tree. It should be noted that our 

experiences were largely gained from working on ion trap CID data, Thermo LTQ (Thermo, San Jose, 

CA, USA). Fragmentation methods continue to evolve (e.g., high collision dissociation, electron 

transfer dissociation etc.), thus the types of fragmentation data may be different and require different 

methods to parse [27]; Different manufacturers may have different specifications for collecting data. 

However, as long as the series of precursor ions of MSn scans is maintained in mzXML files (i.e., scan 

header) it is possible to parse spectral trees by following the specifications. An example of automated 

ion tree construction from DIMS can be found in the vignette of the “iontree” package. 

Distance metrics play key roles in searching spectral databases to find clues to the identity of 

unknown compounds. Shared peak count is the most common matching approach [13]; it simply 

calculates the number of masses in common between two spectra. Others, such as dot product and 

correlation-based distances, compare the overall similarity of two spectra. We proposed a method to 

compare sparse MS2 spectra [21] and implemented the procedures (distMS2) in the “iontree” package 

with a few modifications, in which additional normalization approaches were provided. Our method 

requires the number of most intense ions to be specified, and the peak intensities of this selected list of 

ions are then normalized against either the most intense ion (base peak) or the sum of all the selected 

ions. The distance score between two MS2 spectra is the sum of the Manhattan distance between the 

matched ions and the normalized intensities of all those unmatched ions. It can be shown that this 

empirical distance measurement between two spectra, S1 and S2, satisfies some of the properties, such 

as non-negativity d (S1, S2) ≥ 0, symmetry d (S1, S2) = d (S2, S1) and identification mark d (S1, S1) = 0), 

that define a metric except for the triangle inequality. So, this is a type of quasi-metric [28]. 

It has been shown that scan-to-scan signal intensities of fragmentation spectra exhibit significant 

variations [29], but the magnitude of noise of fragmentation spectra is seldom reported nor well 

understood. The construction of ion trees from raw scans allows the detailed study of the variation of 

fragmentation spectra, for example, to evaluate the variation of MS2 spectra derived from the same 

precursor ion among biological samples to ascertain the same chemical entity is measured [22], and to 

evaluate the variation of MS2 spectra at the scan level (see Section 2.3) to ensure quality spectra to be 

identified for structural interpretation. With the design goal to mine all the ion trees collected in a 

metabolomics project and to deposit them into a database, we have imposed two simple quality control 

(QC) criteria to remove noisy spectra: (1) weak spectra tend to have large variation, we therefore 

remove the MS2 spectra with a base peak (ion) intensity <100 (arbitrary units); (2) the number of 

MS3spectra collected from the same series of precursor ions varies among samples, currently only the 

ion tree with the highest number of MS3 spectra is identified and deposited into the database. The most 

branched ion tree likely captures the most information on the fragmentation pathways of a nominal 

mass ion. However, the proper setting of the QC criteria depends on data variation. Our “iontree” 

package provides tools for the initial assessment of ion trees built from all samples [22]. 

A relational database (“mzDB”) was designed and implemented in SQLite [30], and embedded in 

the “iontree” package. Two tables (“experiment” and “mz”) were designed to capture all the necessary 

information to make valid comparisons of ion trees and to facilitate annotation. Meta-data modeled by 
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the table “experiment” currently include information on biological origin such as species, tissues and 

experimental treatments applied; along with information on analytical methods such as extraction 

methods, chromatography conditions, ionization methods, polarity, collision energy and data  

pre-processing methods. Table “mz” was designed to record m/z, RT, MS2/MS3 spectra and custom 

annotation. The database schema can be found in the file “mzDBSchema.sql” within the package.  

The schema can be easily extended to accommodate other information that may be of particular 

interest, such as MSn (for n > 3) spectral data, which are usually collected from targeted analyses of  

the selected ions. 

The lack of comparative studies and standardized ESI-based fragment spectral libraries limits robust 

compound identification based on fragmentation data. Open-source computational tools and resources 

developed in our study enables comparative analysis of ion trees generated from different platforms or 

for different studies; and allows better use of fragmentation patterns for reliable metabolite annotation 

and identification. 

2.2. Direct infusion Low Resolution Ion Trap Mass Spectrometry 

Direct infusion mass spectrometry (DIMS) allows fast screening and fingerprinting of complex 

biological samples [31,32]. In a DIMS study with a LRMS instrument, where only nominal m/z 

features can be obtained, the MS2/MS3 spectral data provide indispensable information to annotate ions 

as a particular class of metabolites (MSI level 3 identification [6]). 

To exemplify the systematic analysis of ion trees, we used the MS2 spectra collected from the 

previously published DIMS data (in positive ion mode, ESI) [21]. Of all 851 MS1 nominal m/z bins, 

52% of the MS1 bins had MS2 data captured, and more than 1/3 of the MS1 bins rendered MS2 and 

subsequent MS3 data. For example, MS2 scans derived from the MS1 bin of m/z 867 (±0.5) were 

acquired for all analytical samples but not all of those gave MS3 scans, mainly due to insufficient ion 

intensity. Figure 1 shows the most branched tree of m/z 867 with 3 MS3 spectra constructed 

automatically from samples using the “iontree” package. Discussion of the m/z 867 bin on its ion type 

[M+K]+ and its relationship with other ions can be found in our previous publication [21]. MS3 spectra, 

whenever available, provide structural information on MS2 ions, thus more discriminating power for 

the identification, and should therefore be deposited in the spectral tree database. 

MS2/MS3 ion trees from 447 MS1 nominal ions were retained after the quality control procedures 

(see Section 2.1) were applied. All these ion trees and the associated meta-information were deposited 

into the SQLite-based database, i.e., “mzDB”, which was included in the “iontreeData” package 

(Bioconductor). This database provides a persistent data repository for data curation and the annotation 

of mass ions based on spectral tree. As an example, the structural analysis of ion trees for m/z 867 

allowed this nominal mass to be annotated as a penta-hexoside, [M+K]+, and therefore its annotation 

can be updated in the database. 

In many situations, de novo interpretation of ESI fragment patterns of small compounds is beyond 

the reach of non-experts in the field of mass spectrometry [33]. These fragmentation spectral data, 

along with their interpretation, have often been published by plotting, and/or recorded in text format 

such as “248–206 (175, 149), 231”, which can be read as the precursor ion m/z 248 has major MS2 

product ions m/z 206 and 231, and the MS2 ion m/z 206, in turn, gives rise to the MS3 product ions of 
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m/z 175 and 149 [22]. By comparing the published information with the experimental spectral tree of 

m/z 248, the ion tree of which was also captured in this experiment (data not shown) and included in 

the “mzDB”, the nominal mass can be annotated as peramine, a pyrrolopyrazine alkaloid produced by 

an endophytic fungus residing in ryegrass. Although useful the data representation of ion trees in the 

literature makes re-use of the information difficult [12] and the information on relative intensity of 

fragment ions lost. Our tools allow us to record the invaluable structural information embedded in 

MS2/MS3 fragment spectra into a reference library for subsequent analyses. This practice enables rapid 

annotation of mass ions by automatically searching experimental spectral trees (mostly MS2) with 

public databases that house MS/MS data. 

Figure 1. An ion tree derived from the precursor MS1 ion m/z 867 ± 0.5. The MS2 

spectrum is the average of all MS2 product ion scans derived from m/z 867 ± 0.5,  

and the three MS3 spectra were derived from all the MS3 scans with the precursor series 

(MS1–MS2) of m/z 867–525, 867–543, 867–705, respectively. m/z 867 is an 

oligosaccharide with molecular mass of 828 plus a potassium adduct (penta-hexoside, 

[M+K]+). Its MS2/MS3 spectra show a series of losses of m/z 162 (hexose-H2O) supporting 

the proposed annotation. 

 

2.3. Liquid Chromatography Low Resolution Mass Spectrometry 

Liquid chromatography mass spectrometry (LCMS) allows the chromatographic separation of 

metabolites and provides more sensitivity for metabolite identification compared with DIMS. Here we 

show that ion trees captured from LCMSn experiments can be computed by the given range of m/z and 

retention time (RT), and that fragmentation patterns provide complementary information to RT for 
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structural inference. We also demonstrate that distMS2 serves as an alternative metric (in comparison 

to a correlation-based metric) to study sparse MS2 spectra, providing quality fragmentation spectra for 

robust peak annotation. 

As an example, we used data from a study of ryegrass polysaccharides [34] and investigated the 

variation of MS2 spectra derived from one MS1 bin (m/z 503 ± 0.5) corresponding to several isomeric 

forms of a trihexoside. 145 ryegrass sheath samples were analyzed in negative ionization mode and 

3636 MS2 spectra were acquired from 126 samples across the elution time (20 min). Wavelet-based 

peak detection [35] was conducted to identify peaks with the extracted ion chromatogram (XIC) of  

m/z 503. Four chromatographically separated peaks with m/z 503 were identified among the samples. 

On average, the four peaks eluted at RT 300 [281,313], 336 [314,345], 378 [345,391] and  

402 [392,414], respectively, with the median time in seconds (s) and the time range specified in 

brackets. Relative standard deviation (RSD) of the RTs for the four peaks was 1.4, 1.2, 1.6, and 0.8%, 

respectively. The expression of the peak RT variation in terms of the time range allows the comparison 

of RT variation and MS2 spectral variation (see below). These four peaks are referred to as peak 1 (300 s), 

peak 2 (336 s), peak 3 (378 s) and peak 4 (402 s), hereafter. 

After filtering out weak MS2 spectra (base peak intensity <100) we compared the top five most 

intense ions among 3039 spectra with two distance measurements, i.e., distMS2 and Pearson’s 

correlation coefficient (r) -based distance metric (1-r). The clustering of all the MS2 spectra was 

carried out by multidimensional scaling analysis with the results shown in Figure 2. By superimposing 

the retention times of the four peaks in the clustering plot it clearly indicates that the four peaks are 

better differentiated by distMS2 compared with 1-r. The distMS2 metric performed better probably 

because it takes both the ion identity and relative intensity into account while the correlation-based 

metric only measures the overall similarity of relative ion intensities. Additional comparisons in the 

context of database queries can be found in the vignette of the “iontree” package. These results suggest 

that distMS2 could provide an alternative way for the comparison of MS2 spectra, which would enable 

more reliable metabolite identification. 

The four clusters revealed by the clustering analysis based on distMS2 (Figure 2) also suggest that  

m/z 503 corresponds to four isomers displaying the characteristic MS2 spectra. The most intense MS2 

spectrum was retrieved from each of the four clusters, and plotted in Figure 3. The first two spectra 

were later confirmed by comparison with authentic compounds as 6-kestose (peak 1) and1-kestose 

(peak 2). The corresponding MS2 spectra of the two standards (published in Harrison et al. [36]) are 

identical with the two fragmentation patterns of peak 1 and peak 2 indicating the two peaks were 

positively identified (MSI Level 1). To annotate peak 3 and peak 4 we searched public MS2 databases 

including METLIN and MassBank, the results suggested peak 3 is more similar to raffinose 

considering the relative intensity of fragment ion m/z 221. These two spectra derived from peak 3 and 

peak 4 exhibit different ratios of fragment ions (for example m/z 323/341) which may reflect structural 

differences compared to 1-kestose and 6-kestose. Evidence from the spectral similarity allows peak 3 

to be putatively identified as raffinose (MassBank ID:MT000046), but peak 4 remains classified as an 

unknown trisaccharide. These two spectra should therefore be deposited into the database for further 

annotation when more evidence becomes available, while the two verified spectra can be used directly 

for the routine identification of 1-kestose and 6-kestose. 
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Figure 2. Multidimensional scaling analysis of 3039 tri-hexoside MS2 spectra based on 

distMS2 and 1-correlation coef. Retention times of all the MS2 scans are superimposed to 

show the correspondence between the fragmentation patterns and LC column behavior.  

(A) Distance metric based on distMS2. (B) Distance metric based on 1-r. r refers to 

Pearson’s correlation coefficient. 

 

Figure 3. Four MS2 spectra retrieved from the four clusters with the strongest spectrum 

from each cluster plotted. The retrieved spectra provide information to infer the four 

isomeric peaks of m/z 503. With the MS2 spectra available from authentic compounds, 

peak 1 can be annotated as 6-kestose, and peak 2 as 1-kestose. Peak 3 can be putatively 

annotated as raffinose. 
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This analysis not only demonstrates the power of the distMS2 metric in the context of comparing 

sparse MS2 spectra, but also provides candidate MS2 spectra for structural elucidation. Given the wide 

range of variation of MS2 spectra it is a non-trivial task to retrieve quality fragment spectra in high 

throughput settings where a large number of MS2 scans can be captured for a large number of samples. 

Unlike the ion tree construction based on DIMSn data it is still difficult to automatically construct ion 

trees from LCMSn data because the retention time must be carefully taken into consideration. With the 

integration of retention time information our clustering analysis based on distMS2 was able to identify 

quality spectra for de novo structural interpretation and database searching. 

2.4. Liquid Chromatography High Resolution Mass Spectrometry 

High-resolution MS2 data were collected from a quadrupole Orbitrap instrument, Q-Exactive 

(Thermo, Waltham, MA, USA) in order to investigate lipid profiles of perennial ryegrass. Ryegrass 

samples of a single cultivar (Grasslands Impact) were used here to illustrate the usefulness of 

systematic MS2 analysis for the annotation of lipid species. 

From eight ryegrass samples analyzed in different analytical batches, a total of 5426 MS2 spectra 

were collected in profile mode with negative ESI setting. Profile mode data must be centroided so that 

fragment ions can be assigned identities (by either formula prediction or database searching).  

Data processing was similar to that described for the DIMS data (see Section 2.1) except that m/z bin 

width (δ) was set to 20 ppm (parts per million) for the HRMS data. Briefly, all MS2 spectra derived 

from the precursor ions within a ±20 ppm window were grouped to compute a representative MS2 

spectrum. All fragment ions also within a ±20 ppm window were aggregated by taking the median of 

masses (in m/z) and the maximum ion intensity within the window to represent a centroid fragment 

spectrum. As a result, a centroid MS2 spectrum was computed from each sample. Plotted in Figure 4 

are examples, where the centroid MS2 was computed from the precursor m/z 831.5050 (ranging from 

831.5005 to 831.5057 among the four samples). 

Such centroid spectra enable the robust annotation of each fragment ion. We used the centroid MS2 

spectrum computed from the second sample (Figure 4) to search various databases including METLIN, 

MassBank, HMDB and LipidMaps, positive hits were obtained from the LipidMaps database only. 

Each of the top five most intense fragment ions matched accurately with the theoretical prediction 

(within 8 ppm), i.e., m/z 255.2340 (sn1 RCOO−), 277.2148 (sn2 RCOO−), 241.0110 (inositol 

phosphate ion), 152.9946 (glycerol-3-phosphate ion with loss of H2O), and 391.2249 (neutral loss of 

sn2 RCOOH group, and inositol from the deprotonated ion) suggesting that the detected lipid species 

with m/z of 831.5050 can be annotated as phosphatidylinositol PI (16:0, 18:3). Other possible isomers 

of lipid species with the same mass, such as PI (17:2, 17:1) can be excluded based on the MS2 

fragmentation patterns. The same procedure can be applied to mine all the 5426 MS2 spectra collected 

to classify lipid species by searching LipidMaps. This database searching is based on comparison of 

experimental spectra with predicted fragment ions. The relative intensity of fragment ions has not yet 

been taken into account for the annotation but should provide important information on the position of 

acyl chains and the position of double bonds in the chain. Further analysis of multi-stage spectral trees 

is needed to achieve more detailed structural annotation. 
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Figure 4. The centroid MS2 spectra of m/z 831.5050 [M-H]− computed from four ryegrass 

samples, with the number of MS2 scans included in the computation from each sample 

being of n = 15, 14, 10, 10. The four computed MS2 spectra are highly correlated (with r > 0.9) 

and the fragment ions suggest they are highly consistent across samples (with distMS2 

score < 0.15). Each of the ions labeled can be matched with the theoretical fragment ions 

from the Lipid Maps database. Besides the top 5 ions discussed in the text regarding the 

second sample, m/z 831.5057 is shown as the pseudo molecular ion (deprotonated), and  

m/z 78.9579 as a PO3 ion; m/z 223.000 as inositol phosphate ion with the loss of H2O;  

m/z 297.0379 as glycerophosphoinositol with the loss of 2H2O; and m/z 553.2765 as 

neutral loss of sn2 RCOOH (C18:3) group from [M-H]−. 

 

As shown in Figure 4, the MS2 spectra are consistent among the four samples. However,  

the examination of the XIC of m/z 831.5050 [M-H]− among the four samples (data not shown) revealed 

a noticeable shift in RT (about 1 min) between analytical batches (date shown in the name of data file) 

due to the change of the LC column. Such RT shifts impose additional challenges for correct peak 

alignment and identification. Our results indicate that the MS2 fragment patterns might be more stable 

structural features than RT for annotating peaks. This important observation deserves further 

investigation, as if the fragmentation patterns derived from the same peak m/z (within the tolerance) 
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can be determined to be algorithmically similar, this peak can be added to a set of landmark peaks [37], 

which can be used to guide or evaluate the peak alignment process. 

3. Experimental Section 

3.1. Plant Material and Analytical Methods 

All data discussed in this paper were collected from various metabolomics experiments on perennial 

ryegrass (Lolium perenne). The experimental details on direct infusion mass spectrometry (DIMS) 

have been reported previously [21,29]; In brief, MS analysis was performed using an LTQ linear ion 

trap mass spectrometer (Thermo, San Jose, CA, USA) with electrospray ionization (ESI) in positive 

ion mode. MS2/MS3 data were collected by the isolation (2 m/z) and fragmentation (35% CE;  

relative collision energy) of the most intense ions from the MS1/MS2 spectra. Liquid chromatography 

coupled with low-resolution mass spectrometry was applied to the analysis of oligosaccharides in 

ryegrass [32]. Ryegrass sheath tissues were extracted with boiling water, and the extracts were 

subjected to chromatographic separation via a Thermo Hypercarb column. MS analysis was conducted 

using the same mass spectrometers as for DIMS but in negative ion mode. Only MS2 data were 

collected for oligosaccharide analysis. The methods developed for lipid analysis in ryegrass are 

unpublished yet. Very briefly, the freeze dried ryegrass blade tissues were extracted using 

chloroform/methanol buffer, and subjected to Thermo C1 column for the analysis of non-polar 

components. MS data were collected in profile mode (with negative ESI on a Q-Exactive MS (Thermo, 

Waltham, MA, USA) over the mass range of m/z 200–2,000. The mass resolution was set at 35,000  

(at m/z 400) for both MS1 and MS2. MS2 data were collected with an isolation of 1.5 m/z and 

fragmentation at 30% CE from the MS1 spectra. 

3.2. Software Tools and Database Resources 

Details for data manipulation and analysis have been discussed in the main text. Software tools and 

database resources are listed here for convenient reference. The raw data (Thermo Xcalibur) collected 

in either centroid or profile mode were converted into mzXML by msconvert [38]. A Java library 

JRAP [39] or ProteoWizard toolkits [40] was used to parse mzXML data. MS2/MS3 raw data (low 

resolution) retrieval and analysis can be referred to in the previous publication [21]. All tools used for 

the analysis presented here are available from the “iontree” package [24] except for the scripts 

developed for the analysis of high resolution fragmentation spectra. The computational tools for high 

resolution MS2 analysis and annotated spectral tree data discussed in this paper can be made available 

upon request. Data inspection and statistical investigations were conducted in R [23]. The databases 

used for MS2 spectral queries were MassBank [41], METLIN [42], Lipid Maps [43] and HMDB [44]. 

4. Conclusions 

In conclusion, we have developed the computational tool “iontree” as an R package to facilitate the 

construction of low and high resolution fragmentation data, the statistical investigation of fragmentation 

data and the development of in-house databases for peak annotation. As demonstrated we provided an 

alternative algorithm (distMS2) for the analysis of sparse MS2 data and pattern discovery of MS2 
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spectra, which allows subtle information to be collected and utilized for elucidating the structure of 

isomers. Although public databases that house MS2 spectral data are available, our experience suggests 

that these are not comprehensive enough for routine annotation by querying the large number of 

spectral trees generated in metabolomics studies. Our approach encourages the systematic analysis of 

experimental spectral trees and the compilation of quality fragment spectra (MS2/MS3) into an in-

house database via a quality control process. Quality spectral trees can be interpreted manually, or used 

for searching against public MS2 data depositories or even in silico fragmentation data to aid 

metabolite identification. Spectral trees, together with retention time, accurate mass and other mass 

features, can be readily incorporated into reference libraries for possible routine metabolite identification. 
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