
Metabolites 2013, 3 S1 

 

Supplemental Materials 

1. Derivation of Isotopologue Correction 

1.1. Single Isotope Label 

Equation (1) is a generalized representation of the relative distribution of carbon (C) isotopologues 

from natural abundance only. In this equation IM+0 represents the theoretically untainted 
12

C monoisotopic 

peak. The term IM+i;NA represents the expected intensity of the ith isotopologue peak containing i 
13

C atoms. 

       

     

 
 
 
 
 

  
    

            
        

 
       

 
       

        

     
      

   

 
 
 
 
 

 
(1) 

The terms      represent the fractional natural abundance of the x isotope of carbon. The number 

of carbons in the molecule is represented by CMax. This equation uses the multinomial theorem with 3 

variables to express the number of isotopomers of identical mass for a molecule with CMax carbons 

given the 3 isotopes of carbon: 
12

C, 
13

C, and 
14

C. Because 
14

C is extremely rare, FT-MS peaks 

containing this isotope are not observed for charged molecules from living systems, making its 

contribution to this calculation negligible. In addition, the very high resolution of the FT-IRC-MS 

histograms allows for complete deconvolution and identification of isotopologue peaks representing 

molecules exclusively comprised of the expected isotopes found in biological systems (primarily 

isotopes of CHONPS elements) and 
13

C. Equation (2) is a simplified form of Equation (1) that takes 

these facts into account. Removing 
14

C simplifies the equation to a single isotopic fractional term and a 

binomial coefficient. In this case the binomial coefficient represents the number of possible 

isotopomers of identical mass for a molecule with CMax carbons given only 2 isotopes of carbon: 
12

C 

and 
13

C. i is the number of 
13

C in that isotopologue peak. 

             
    

 
        

 
         

      
 (2) 

Equation (2) outlines the relationship between each peak,          and the theoretically untainted 
12

C monoisotopic peak,   +0, which will have a fractional intensity of 1 when dividing by the sum of 

the isotopologue intensities. However, the calculation of contributions due to natural abundance becomes 

more complex when the introduction of 
13

C from a labeling source is taken into consideration [1,2]. 

The effect of 
13

C natural abundance is now related to the amount 
13

C already present due to labeling. 

The solution to this dilemma is to use a series of binomial terms to correct for 
13

C natural abundance 

for each 
12

C/
13

C isotopologue resolved in the mass spectrometer histogram based on every other 
12

C/
13

C isotopologue present. Equation (3) describes the combinatorial part of these terms as a function 

of n and k, where k represents the total number of 
13

C carbons present, n represents the number of 
13

C 

carbons present due to the labeling source, and k-n represents the number of 
13

C carbons present due to 
13

C natural abundance [3]. 
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 (3) 

Here the binomial coefficient is used to enumerate the number of ways that k − n 
13

C can be 

incorporated due to natural abundance into a molecule with CMax carbons when n carbons of 
13

C are 

already present due to incorporation from the labeling source (   is the “product” correction for 

carbon). Equation (4) represents the fraction of the IM+n peak intensity that is converted to other 

isotopologues due to the effects of natural abundance and is expressed as a function of n (the 

isotopomer number,    is the “sum” correction for carbon) [3]. 

              

    

     

 (4) 

Equation (5) shows the full correction of the ith isotopologue (    ) by subtracting the natural 

abundance contributions based on lower mass untainted isotopologue intensities. Here the entire 

calculation has been divided by the fractional intensity, 1 – SC(i), in order to compensate for natural 

abundance effects that lower the intensity of the given isotopologue. To calculate the ith corrected 

intensity in the series, the first i − 1 intensities must be corrected for natural abundance, this requirement 

means that correction of a set of isotopologue intensities must be carried out in a sequential fashion 

starting with i = 0 [3]. 

     
                    

   
   

       
 (5) 

The very high mass resolution of the FT-ICR-MS histograms allows 
15

N incorporation to be 

distinguished from 
13

C incorporation, making the extension of this method to 
15

N labeling trivial, only 

requiring the replacement of CMax
 
with NMax

−
 (the maximum number of nitrogen atoms in the 

molecule) and NA13C with NA15N. Unfortunately this is not the case when performing corrections on 

sets of intensities where both 
13

C and 
15

N are incorporated from labeling sources and natural abundance. 

1.2. Two (or More) Isotope Labels 

Using two isotope labeling sources simultaneously creates a two dimensional isotopologue dataset. 

In general for n labeling sources, the dimensionality of the dataset will be n-dimensions. For the case 

of mixed 
13

C and 
15

N labeling sources, there will be up to CMax * N
−

Max intensities to correct, each 

having a unique index reflecting the exact number of 
13

C and 
15

N atoms in the isotopologue. This 

requires modifications to Equation (5). In particular, the “penultimate” boundary condition of the 

series must correctly generalize to a multidimensional case. These modifications are represented by 

Equation (6), which correctly handles the two dimensional penultimate boundary conditions, both in 

the numerator and denominator. Also, Equation (6) is a correction to a boundary condition error in the 

previously proposed analytical solution [3]. 

       
                               

       
       
       

                  
 (6) 
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Specifically, to correct the intensity of an isotopologue with i 
13

C atoms and j 
15

N atoms, all 

intensities indexed within the space from (0,0) to (i,j), excluding element (i,j) itself, must be considered in 

the series. We refer to this set as the penultimate set of element (i,j). Furthermore, these equations can 

be extended in a similar way to accommodate any number of labels, although practical considerations 

of computational efficiency and analytical sensitivity will limit most applications to three isotopes or 

less. Equation (7) shows the extension of Equation (5) to three labels: 
13

C, 
15

N, and 
2
H. 

         
                                          

           
           
           

                           
 

(7) 

2. Interleaving Zero Values 

In addition to comparing the absolute numerical values of the different methods of calculating the 

P-correction values, we also wanted to determine if there are any instances where interleaving returns 

values that the others do not, or vice-versa. The primary driver of the values is the “k − n” term in 

Equation (3). We therefore examine the values with respect to the value of “k − n”. The P correction 

terms are also plotted as −1 × log10 of the value. Figure S1a highlights the result that for “k − n” 

values between 0 and 84, both org and choose methods always return comparable values; however, 

choose returns zero for all k − n > 84, while org returns some non-zero values out to k − n < 115. Choose 

is being floored to zero due to the value of the exponential k − n on the natural abundance (0.00015
85

); 

however org returns values, with some of them being zero (Figure S1b). To investigate if a mix of 

values and zeros should be returned over this range of k − n, the values returned by org were compared 

with the logReal, and checked if there were any instances of org returning a value different from zero 

when logReal returns zero (or vice-versa). No instances were found of this happening. To view where 

values are floored to zero in Python, the values from the log algorithm were plotted, with those values 

where logReal (the transformation of the log value to real space) returns zero noted, as shown in 

Figure 4c. The limit of the org method is the same as using logs in the equation and subsequently 

transforming the real space, at 10
−323.6

 (red line in Figure S1c). Past this limit Python floors the values 

to zero. 
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Figure S1. “k − n” plotted against −1 × log10 of the P values from Equation (3).  

Zero values are not transformed, and are plotted as zero. (a) P-correction values calculated 

using the “org” method. Green points are those for which both “org” and “comb” return 

values that are not zero (both work, k − n values of 0 to 84), orange points are those for 

which “org” returned numerical values but “org” returned zero (choose fails, k − n values 

of 85 to 115), and purple points are those where both “org” and “comb” returned zero (both fail, 

k − n > 115). (b) P-correction values calculated using “org”. Orange denotes points that may be 

returning zeros in error (potential problem, 85 < k − n < 115). (c) P-correction values 

generated using the log version of the calculation. Green points are those for which 

transformation of the value is not zero (return value), purple points return zero (return 

zero). The red line denotes the limit at which transforming log-values to real space returns 

zero. It should be noted that the return zero points start at the previously indicated limit of 

k − n equal to 85. 

 

3. Python Code to Test P-Correction Methods 

Below is the actual Python code that was used to generate the P-correction values using the 

different methods. 

from __future__ import print_function 

from math import factorial, log10 

from scipy.misc import comb 

def NABC_org(a, b, c, na): 

denomax = min(a - b, b) 

numermin = max(a - b, b) 

divisor = 1 

result = 1 

while(a > numermin or divisor <= denomax or b > 0 or c > 0): 

if(a > numermin): 

result *= a 

a -= 1 

if(divisor <= denomax): 
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result /= divisor 

divisor += 1 

if(b > 0): 

result *= na 

b -= 1 

if(c > 0): 

result *= (1 - na) 

c -= 1 

return result 

def NABC_log(a, b, c, na): 

denomax = min(a - b, b) 

numermin = max(a - b, b) 

divisor = 1 

result  = 0 

while(a > numermin or divisor <= denomax or b > 0 or c > 0): 

if(a > numermin): 

result += log10(a) 

a -= 1 

if(divisor <= denomax): 

result -= log10(divisor) 

divisor += 1 

if(b > 0): 

result += log10(na) 

b -= 1 

if(c > 0): 

result += log10(1 - na) 

c -= 1 

return result 

def NABC_comb(a, b, c, na): 

result = comb(a, b, exact="TRUE") * (na ** b) * ((1 - na) ** c) 

return result 

def NABC_comb2(a, b, c, na): 

result = comb(a, b) * (na ** b) * ((1 - na) ** c) 

return result 

def choose_set(n, k): 

nk = n-k 

nFact = factorial(n) 

kFact = factorial(k) 

nkFact = factorial(nk) 

return(nFact / (kFact * nkFact)) 
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def NABC_choose(a, b, c, na): 

result = choose_set(a, b) * (na ** b) * ((1 - na) ** c) 

return result 

# <codecell> 

fOut = open('./nk_errors.txt', 'w+') 

na = 0.00015 

imax = 500 

whichVals = ["org", "comb", "comb2", "choose", "logReal"] 

whichComb = [] 

for iVal in range(0, len(whichVals)): 

for jVal in range(iVal+1, len(whichVals)): 

whichComb.append(str(whichVals[iVal]) + "_" + str(whichVals[jVal])) 

headerStr = ["imax", "n", "k"] 

headerStr.extend(whichVals) 

headerStr.extend(["log"]) 

headerStr.extend(whichComb) 

headerOut = ','.join(map(str, headerStr)) 

fOut.write(headerOut) 

fOut.write("\n") 

for n in xrange(imax): 

for k in xrange(imax, n, -1): 

resultVals = [NABC_org(imax-n, k-n, imax-k, na), 

NABC_comb(imax-n, k-n, imax-k, na), 

NABC_comb2(imax-n, k-n, imax-k, na), 

NABC_choose(imax-n, k-n, imax-k, na)] 

logVal = NABC_log(imax-n, k-n, imax-k, na) 

logReal = 10**logVal 

resultVals.append(logReal) 

diffVals = [] 

for iDiff in xrange(0, len(resultVals)): 

for jDiff in xrange(iDiff+1, len(resultVals)): 

diffVals.append(resultVals[iDiff] - resultVals[jDiff]) 

outVals = [imax, n, k] 

outVals.extend(resultVals) 

outVals.extend([logVal]) 

outVals.extend(diffVals) 

outStr = ','.join(map(repr, outVals)) 
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fOut.write(outStr) 

fOut.write("\n") 

#print(outStr) 

fOut.close() 
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