
Metabolites 2013, 3 S1

Supplemental Materials

1. Derivation of Isotopologue Correction

1.1. Single Isotope Label

Equation (1) is a generalized representation of the relative distribution of carbon (C) isotopologues

from natural abundance only. In this equation IM+0 represents the theoretically untainted
12

C monoisotopic

peak. The term IM+i;NA represents the expected intensity of the ith isotopologue peak containing i
13

C atoms.

(1)

The terms represent the fractional natural abundance of the x isotope of carbon. The number

of carbons in the molecule is represented by CMax. This equation uses the multinomial theorem with 3

variables to express the number of isotopomers of identical mass for a molecule with CMax carbons

given the 3 isotopes of carbon:
12

C,
13

C, and
14

C. Because
14

C is extremely rare, FT-MS peaks

containing this isotope are not observed for charged molecules from living systems, making its

contribution to this calculation negligible. In addition, the very high resolution of the FT-IRC-MS

histograms allows for complete deconvolution and identification of isotopologue peaks representing

molecules exclusively comprised of the expected isotopes found in biological systems (primarily

isotopes of CHONPS elements) and
13

C. Equation (2) is a simplified form of Equation (1) that takes

these facts into account. Removing
14

C simplifies the equation to a single isotopic fractional term and a

binomial coefficient. In this case the binomial coefficient represents the number of possible

isotopomers of identical mass for a molecule with CMax carbons given only 2 isotopes of carbon:
12

C

and
13

C. i is the number of
13

C in that isotopologue peak.

 (2)

Equation (2) outlines the relationship between each peak, and the theoretically untainted
12

C monoisotopic peak, +0, which will have a fractional intensity of 1 when dividing by the sum of

the isotopologue intensities. However, the calculation of contributions due to natural abundance becomes

more complex when the introduction of
13

C from a labeling source is taken into consideration [1,2].

The effect of
13

C natural abundance is now related to the amount
13

C already present due to labeling.

The solution to this dilemma is to use a series of binomial terms to correct for
13

C natural abundance

for each
12

C/
13

C isotopologue resolved in the mass spectrometer histogram based on every other
12

C/
13

C isotopologue present. Equation (3) describes the combinatorial part of these terms as a function

of n and k, where k represents the total number of
13

C carbons present, n represents the number of
13

C

carbons present due to the labeling source, and k-n represents the number of
13

C carbons present due to
13

C natural abundance [3].

Metabolites 2013, 3 S2

 (3)

Here the binomial coefficient is used to enumerate the number of ways that k − n
13

C can be

incorporated due to natural abundance into a molecule with CMax carbons when n carbons of
13

C are

already present due to incorporation from the labeling source (is the “product” correction for

carbon). Equation (4) represents the fraction of the IM+n peak intensity that is converted to other

isotopologues due to the effects of natural abundance and is expressed as a function of n (the

isotopomer number, is the “sum” correction for carbon) [3].

 (4)

Equation (5) shows the full correction of the ith isotopologue () by subtracting the natural

abundance contributions based on lower mass untainted isotopologue intensities. Here the entire

calculation has been divided by the fractional intensity, 1 – SC(i), in order to compensate for natural

abundance effects that lower the intensity of the given isotopologue. To calculate the ith corrected

intensity in the series, the first i − 1 intensities must be corrected for natural abundance, this requirement

means that correction of a set of isotopologue intensities must be carried out in a sequential fashion

starting with i = 0 [3].

 (5)

The very high mass resolution of the FT-ICR-MS histograms allows
15

N incorporation to be

distinguished from
13

C incorporation, making the extension of this method to
15

N labeling trivial, only

requiring the replacement of CMax

with NMax

−
 (the maximum number of nitrogen atoms in the

molecule) and NA13C with NA15N. Unfortunately this is not the case when performing corrections on

sets of intensities where both
13

C and
15

N are incorporated from labeling sources and natural abundance.

1.2. Two (or More) Isotope Labels

Using two isotope labeling sources simultaneously creates a two dimensional isotopologue dataset.

In general for n labeling sources, the dimensionality of the dataset will be n-dimensions. For the case

of mixed
13

C and
15

N labeling sources, there will be up to CMax * N
−

Max intensities to correct, each

having a unique index reflecting the exact number of
13

C and
15

N atoms in the isotopologue. This

requires modifications to Equation (5). In particular, the “penultimate” boundary condition of the

series must correctly generalize to a multidimensional case. These modifications are represented by

Equation (6), which correctly handles the two dimensional penultimate boundary conditions, both in

the numerator and denominator. Also, Equation (6) is a correction to a boundary condition error in the

previously proposed analytical solution [3].

 (6)

Metabolites 2013, 3 S3

Specifically, to correct the intensity of an isotopologue with i
13

C atoms and j
15

N atoms, all

intensities indexed within the space from (0,0) to (i,j), excluding element (i,j) itself, must be considered in

the series. We refer to this set as the penultimate set of element (i,j). Furthermore, these equations can

be extended in a similar way to accommodate any number of labels, although practical considerations

of computational efficiency and analytical sensitivity will limit most applications to three isotopes or

less. Equation (7) shows the extension of Equation (5) to three labels:
13

C,
15

N, and
2
H.

(7)

2. Interleaving Zero Values

In addition to comparing the absolute numerical values of the different methods of calculating the

P-correction values, we also wanted to determine if there are any instances where interleaving returns

values that the others do not, or vice-versa. The primary driver of the values is the “k − n” term in

Equation (3). We therefore examine the values with respect to the value of “k − n”. The P correction

terms are also plotted as −1 × log10 of the value. Figure S1a highlights the result that for “k − n”

values between 0 and 84, both org and choose methods always return comparable values; however,

choose returns zero for all k − n > 84, while org returns some non-zero values out to k − n < 115. Choose

is being floored to zero due to the value of the exponential k − n on the natural abundance (0.00015
85

);

however org returns values, with some of them being zero (Figure S1b). To investigate if a mix of

values and zeros should be returned over this range of k − n, the values returned by org were compared

with the logReal, and checked if there were any instances of org returning a value different from zero

when logReal returns zero (or vice-versa). No instances were found of this happening. To view where

values are floored to zero in Python, the values from the log algorithm were plotted, with those values

where logReal (the transformation of the log value to real space) returns zero noted, as shown in

Figure 4c. The limit of the org method is the same as using logs in the equation and subsequently

transforming the real space, at 10
−323.6

 (red line in Figure S1c). Past this limit Python floors the values

to zero.

Metabolites 2013, 3 S4

Figure S1. “k − n” plotted against −1 × log10 of the P values from Equation (3).

Zero values are not transformed, and are plotted as zero. (a) P-correction values calculated

using the “org” method. Green points are those for which both “org” and “comb” return

values that are not zero (both work, k − n values of 0 to 84), orange points are those for

which “org” returned numerical values but “org” returned zero (choose fails, k − n values

of 85 to 115), and purple points are those where both “org” and “comb” returned zero (both fail,

k − n > 115). (b) P-correction values calculated using “org”. Orange denotes points that may be

returning zeros in error (potential problem, 85 < k − n < 115). (c) P-correction values

generated using the log version of the calculation. Green points are those for which

transformation of the value is not zero (return value), purple points return zero (return

zero). The red line denotes the limit at which transforming log-values to real space returns

zero. It should be noted that the return zero points start at the previously indicated limit of

k − n equal to 85.

3. Python Code to Test P-Correction Methods

Below is the actual Python code that was used to generate the P-correction values using the

different methods.

from __future__ import print_function

from math import factorial, log10

from scipy.misc import comb

def NABC_org(a, b, c, na):

denomax = min(a - b, b)

numermin = max(a - b, b)

divisor = 1

result = 1

while(a > numermin or divisor <= denomax or b > 0 or c > 0):

if(a > numermin):

result *= a

a -= 1

if(divisor <= denomax):

Metabolites 2013, 3 S5

result /= divisor

divisor += 1

if(b > 0):

result *= na

b -= 1

if(c > 0):

result *= (1 - na)

c -= 1

return result

def NABC_log(a, b, c, na):

denomax = min(a - b, b)

numermin = max(a - b, b)

divisor = 1

result = 0

while(a > numermin or divisor <= denomax or b > 0 or c > 0):

if(a > numermin):

result += log10(a)

a -= 1

if(divisor <= denomax):

result -= log10(divisor)

divisor += 1

if(b > 0):

result += log10(na)

b -= 1

if(c > 0):

result += log10(1 - na)

c -= 1

return result

def NABC_comb(a, b, c, na):

result = comb(a, b, exact="TRUE") * (na ** b) * ((1 - na) ** c)

return result

def NABC_comb2(a, b, c, na):

result = comb(a, b) * (na ** b) * ((1 - na) ** c)

return result

def choose_set(n, k):

nk = n-k

nFact = factorial(n)

kFact = factorial(k)

nkFact = factorial(nk)

return(nFact / (kFact * nkFact))

Metabolites 2013, 3 S6

def NABC_choose(a, b, c, na):

result = choose_set(a, b) * (na ** b) * ((1 - na) ** c)

return result

<codecell>

fOut = open('./nk_errors.txt', 'w+')

na = 0.00015

imax = 500

whichVals = ["org", "comb", "comb2", "choose", "logReal"]

whichComb = []

for iVal in range(0, len(whichVals)):

for jVal in range(iVal+1, len(whichVals)):

whichComb.append(str(whichVals[iVal]) + "_" + str(whichVals[jVal]))

headerStr = ["imax", "n", "k"]

headerStr.extend(whichVals)

headerStr.extend(["log"])

headerStr.extend(whichComb)

headerOut = ','.join(map(str, headerStr))

fOut.write(headerOut)

fOut.write("\n")

for n in xrange(imax):

for k in xrange(imax, n, -1):

resultVals = [NABC_org(imax-n, k-n, imax-k, na),

NABC_comb(imax-n, k-n, imax-k, na),

NABC_comb2(imax-n, k-n, imax-k, na),

NABC_choose(imax-n, k-n, imax-k, na)]

logVal = NABC_log(imax-n, k-n, imax-k, na)

logReal = 10**logVal

resultVals.append(logReal)

diffVals = []

for iDiff in xrange(0, len(resultVals)):

for jDiff in xrange(iDiff+1, len(resultVals)):

diffVals.append(resultVals[iDiff] - resultVals[jDiff])

outVals = [imax, n, k]

outVals.extend(resultVals)

outVals.extend([logVal])

outVals.extend(diffVals)

outStr = ','.join(map(repr, outVals))

Metabolites 2013, 3 S7

fOut.write(outStr)

fOut.write("\n")

#print(outStr)

fOut.close()

References

1. Van Winden, W.; Wittmann, C.; Heinzle, E.; Heijnen, J. Correcting mass isotopomer distributions

for naturally occurring isotopes. Biotechnol. Bioeng. 2002, 80, 477–479.

2. Zhang, X.; Hines, W.; Adamec, J.; Asara, J.; Naylor, S.; Regnier, F. An automated method for the

analysis of stable isotope labeling data in proteomics. J. Am. Soc. Mass Spectrom. 2005, 16,

1181–1191.

3. Moseley, H.N. Correcting for the effects of natural abundance in stable isotope resolved

metabolomics experiments involving ultra-high resolution mass spectrometry. BMC Bioinformatics

2010, 11, doi:10.1186/1471-2105-11-139.

