

ISSN 2218-1989 www.mdpi.com/journal/metabolites/

Supplementary Materials

1. The spiral network

Figure S1. Network stoichiometry of the spiral network.

2. The PenG Network

Figure S2. Network stoichiometry of the PenG network.

3. Estimated Flux Functions with Respective Concentration and c-Molar Isotopomer Simulations

It has to be noted that, for simplification, the weights for every series of observables have been set to 5% of the average of the respective series. Those weights are different to the ones of the previously published flux functions. Moreover, the previously published fit did not optimize a multi-objective objective function but constrained all right hand sides at the concentration breakpoints to the values of the best concentration fit and only optimized the enrichments. Therefore, the fits represent different points on the pareto frontier between the two sets of observables.

Figure S3. Estimated flux functions with asymptotic confidence intervals in comparison to the previously published best fit.

	0 s	18 s	36 s	90 s	185 s	230.5 s	360 s
r1_1_fwd	0.691	11.581	600.000	493.116	257.404	18.137	0.691
r1_2_fwd	30.581	698.237	795.750	542.587	1.869	10.618	30.581
r1_2_bwd	22.753	682.819	652.364	143.461	40.008	421.277	22.753
r1_3_fwd	3.250	1.875	96.850	331.080	246.959	13.957	3.250
r1_4_fwd	0.166	1.875	77.915	307.633	274.415	21.002	0.166
r1_5_fwd	5.889	92.760	158.672	657.274	671.126	171.393	5.889
r2_1_fwd	0.177	0.661	268.952	2.105	354.458	461.993	0.177
r2_2_fwd	0.000	0.156	267.510	1.472	355.794	462.311	0.000
r2_4_fwd	251.235	451.182	124.624	446.247	251.394	331.438	251.235
r2_4_bwd	255.277	454.356	17.191	422.894	2.148	18.469	255.277
r2_5_fwd	3.111	352.153	629.308	471.102	175.334	164.837	3.111
r2_5_bwd	5.171	348.843	504.904	499.518	52.833	2.090	5.171
r2_6_fwd	8.390	23.220	295.129	743.652	736.643	168.366	8.390
r2_6_bwd	10.455	29.826	210.018	762.307	603.623	4.500	10.455
r2_7_fwd	305.267	114.414	47.250	208.708	436.804	424.321	305.267
r2_7_bwd	307.332	121.021	113.033	156.940	301.889	259.870	307.332
tre_1_fwd	10.100	143.243	796.548	750.272	701.161	8.956	10.100
tre_1_bwd	7.239	116.443	702.885	693.160	683.240	19.389	7.239
tre_2_fwd	4.053	28.071	112.468	77.594	30.886	0.109	4.053
tre_3_fwd	0.280	6.466	0.230	18.887	30.488	9.515	0.280
tre_4_fwd	5.185	24.505	0.691	0.292	30.943	16.851	5.185
glyc_1_fwd	2.975	5.332	64.066	55.156	0.398	17.235	2.975
glyc_deg_fwd	1.487	2.666	32.033	27.578	0.199	8.618	1.487
tre_deg_fwd	5.185	24.505	0.691	0.021	0.095	7.783	5.185
mtl_syn_fwd	66.168	0.169	43.371	95.695	0.000	0.911	66.168
mtl_deg_fwd	66.168	0.125	0.052	1.127	0.649	95.153	66.168
tre_exp_fwd	0.000	0.000	0.000	0.271	30.847	9.069	0.000
tre_ext_deg_fwd	0.000	0.000	0.000	0.271	30.847	9.069	0.000

 Table S1. Best flux estimates found for the PenG model, all values in umol/gDW/h.

Figure S4. Comparison of previously published (**blue**) and best parameters found using the implicit filtering algorithm. Triangles on the top indicate the introduced shape constraint; monotonous increase (**upwards pointing triangle**) and monotonous decrease (**downwards pointing triangle**), no convexity constraints have been introduced.

Figure S5. Comparison of previously published (**blue**) and best parameters found using the implicit filtering algorithm. Triangles on the top indicate the introduced shape constraint; monotonous increase (**upwards pointing triangle**) and monotonous decrease (**downwards pointing triangle**), no convexity constraints have been introduced.

Figure S6. Comparison of previously published (**blue**) and best parameters found using the implicit filtering algorithm. Triangles on the top indicate the introduced shape constraint; monotonous increase (**upwards pointing triangle**) and monotonous decrease (**downwards pointing triangle**), no convexity constraints have been introduced.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).