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Abstract: Untargeted metabolomic studies generate information-rich, high-dimensional, and complex
datasets that remain challenging to handle and fully exploit. Despite the remarkable progress
in the development of tools and algorithms, the “exhaustive” extraction of information from
these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining
strategies for a maximal information extraction from metabolomic data is needed. Using a liquid
chromatography-mass spectrometry (LC-MS)-based untargeted metabolomic dataset, this study
explored the influence of collection parameters in the data pre-processing step, scaling and data
transformation on the statistical models generated, and feature selection, thereafter. Data obtained
in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants
responding dynamically to infection by a fungal pathogen) were used. Raw data were pre-processed
with MarkerLynxTM software (Waters Corporation, Manchester, UK). Here, two parameters were
varied: the intensity threshold (50-100 counts) and the mass tolerance (0.005-0.01 Da). After the
pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden) for more data
cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc.) and data
transformation (log and power) methods were explored. The results showed that the pre-processing
parameters (or algorithms) influence the output dataset with regard to the number of defined features.
Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling
affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model
can explain and predict. The pre-processing and pre-treatment steps subsequently influence the
number of statistically significant extracted /selected features (variables). Thus, as informed by the
results, to maximize the value of untargeted metabolomic data, understanding of the data structures
and exploration of different algorithms and methods (at different steps of the data analysis pipeline)
might be the best trade-off, currently, and possibly an epistemological imperative.

Keywords: chemometrics; data mining; metabolomics; pre-processing; pre-treatment;
scaling; transformation

1. Introduction

Metabolomics, a rapidly developing post-genomic approach, has proven to be a powerful and
indispensable tool to interrogate cellular biochemistry, investigating metabolism and its reciprocal
crosstalk with cellular signaling and regulation [1,2]. The metabolic profiles may be seen as
functional signatures of the physiological state of the biosystem under investigation, i.e., snapshots
of partially-mapped molecular landscapes, comprising effects of genetic regulation, as well as
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environmental factors [3-5]. However, the realization of a holistic coverage of the whole metabolome,
in a given biological system, is still currently not feasible (at least with a single method) at the
metabolite extraction [6-8] and analytical [2,9,10] levels. Furthermore, this current “unfeasibility” can
be expanded to the handling of the data from untargeted metabolomics studies: how do we maximize
the value of untargeted metabolomic data [11] with the current chemometric methods and algorithms?

Metabolomics studies, particularly liquid chromatography mass spectrometry (LC-MS)-based
untargeted approaches, generate information-rich, high-dimensional, and complex datasets that
remain challenging to handle and fully exploit [2]. Thus, dedicated modeling algorithms, able to cope
with the inherent complexity of these metabolomic datasets are mandatory for extracting relevant
information. Various chemometric and bioinformatics tools and resources have been developed, and
are utilized for this purpose, thereby integrating computer science, mathematics, and statistics [12,13].
However, despite the remarkable progress in the development of tools and algorithms, as presented in
the recent review [14], the exhaustive extraction of information from these metabolomic datasets is still
a non-trivial undertaking [11].

It is to be noted and emphasized that the information extracted from the metabolomics
raw data and the resulting outputs depend heavily on the data analysis methodology employed.
Additionally, in the hierarchy of data, information, and knowledge, the logical and epistemological
implication is that information is the key to knowledge formulation [12,15-17]. In order to
maximize the value of metabolomic data and generate biologically-meaningful hypotheses, particularly
with regard to the regulatory mechanisms and molecular processes involved in global biological
responses (such as those of a biosystem), the metabolomics raw data are to be appropriately
handled and fully exploited. This will ensure the extraction of sufficient information to determine,
as holistically as possible, biological components that show differential behaviors between experimental
conditions [1,11,12,18,19].

Thus, data analysis methodology is critical for generating meaningful scientific results from these
information-rich metabolomic data. The typical pipeline used in such analysis has been well detailed
and described in the literature, although with some notational and semantic nuances [2,13,17,20-22],
and can be summarized in the following steps: (i) processing (extracting features from raw instrumental
data to a suitable form; normalization, scaling, centering, etc., to put all samples and variables on
a comparable scale); (ii) statistical analysis/modeling (this covers understanding and visualization
of data and feature selection methods, and validation/estimation of the predictive capability of
the applied statistical models); (iii) annotation of the selected features; and (iv) interpretation and
metabolic pathway and network analysis, leading to the generation of research hypotheses and
knowledge compilation.

The data processing and statistical modeling are crucial and vital, as the information extracted
from the raw data will depend on these steps. A better understanding of data processing and
statistical algorithms and methods are important to achieve statistically-relevant and optimal biological
information. These post-acquisition steps can be challenging and time-consuming and comprise data
cleaning and generation of statistical models that are explorative and predictive. Certainly, different
parameters and algorithms used in these data analyses steps would lead to different outputs and
influence the extent of data mining outcomes [23-25]. This observation, thus, raises a series of questions
of knowing how to handle untargeted metabolomic data adequately, or if there is one single “formula”
or methodological protocol to follow for maximal exploration of untargeted metabolomic datasets.

Considerable literature exists on the data analysis and mathematical description of algorithms and
chemometric methods used during data analysis in metabolomics, with suggestions and requirements
for a sound approach [14,25-29]. However, questions such as (i) to what extent can an untargeted
metabolomic dataset be mined; (ii) are the data analysis methodologies, applied to an untargeted
metabolomic dataset, not biased by the scope of the initial biologic question; (iii) are the current
chemometric tools and algorithms fit to holistically extract information from the mega-variate datasets
generated by untargeted metabolomics studies [30]; (iv) to what extent do the different steps in
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a data handling methodology pipeline influence the data analysis output; and (v) what could be a
methodological approach and practice that would aid to maximize the value of untargeted metabolomic
dataset all remain to be explored.

Different from, but also complementing the existing literature on metabolomic data analysis,
this study looks at the influence of data pre-processing (e.g., collection parameters, such as intensity
threshold and mass tolerance) and pre-treatment methods (e.g., scaling and data transformation) on
the statistical models generated and feature selection, using an LC-MS-based untargeted metabolomic
dataset. This was in order to actually demonstrate to what extent steps in the data analysis pipeline
impact on the output, which would certainly affect the downstream biological interpretation. Thus,
the study clearly points out, with illustrative examples, that the methods employed in the data analysis
should not be regarded as “one-size-fits-all”. As such, this study intends to make a contribution to
the on-going discussions in the metabolomics community with regard to ways of maximizing the
value of untargeted metabolomics data and influence/effects of data analysis steps on the downstream
analyses and interpretation [11,12,22,31,32]. Ultimately this work emphasizes the importance of
understanding the structures of raw data, and exploration of various algorithms and parameters are
vital and mandatory in data mining to maximize the value of generated data.

2. Results and Discussion

Before embarking on the details of the results, it is firstly worth noting and re-emphasizing
that metabolomic data analysis does not occur in isolation, but is rather intimately linked to the
other metabolomics workflow steps that are upstream thereof [2,33]. Hence, a careful experimental
design is mandatory, and statistical rigor, quality assurance, and proper scientific procedures
must be followed and applied at every stage of the workflow so as to generate data that actually
contain “objectively true” information about the biological question under investigation [13,28,34,35].
Furthermore, these metabolomics workflow steps are not always to be followed linearly. Adaptation
and a “forth-back” methodological approach is necessary to revise, correct (avoid distortions), validate,
or to further mine the data so as to obtain a comprehensive biological answer with fewer spurious or
false positive outcomes to the research question [13,32].

2.1. Data Processing Parameters: Mass Tolerance and Intensity Threshold

Untargeted LC-MS metabolomic analyses generally generate a wealth of data. The data structure
is a two-way matrix (retention time and mass spectra directions), with thousands of data entries,
depending on the complexity of the extracts, per sample. To make it more complicated, the data
inherently contain vast amounts of noise, artifacts, unintended fragments and adducts, potentially
making components of the datasets either not usable or redundant [24,36,37]. The challenge is how
to extract and create a “clean” dataset from such raw data in a way that captures as much usable
information as possible for downstream pattern recognition, classification, and feature selection.
Most pre-processing software pipelines share the general functions of peak detection-, alignment,
and annotation. Currently, several open-source, as well as commercial software programs, have been
developed to aid in metabolomics data processing (up to metabolite annotation for some). Each of these
tools has its own capabilities, providing some context-dependent insights, but also limitations [14].
The detailed description of all of these tools and algorithms is beyond the scope of this paper and the
reader is referred to the cited literature.

Thus, the first step in metabolomic data analysis is to select relevant signals from the raw data,
decrease redundancy and generate a data matrix for downstream analysis. In this study, for creating
the data matrix (unbiased mass peak extraction, ion intensities identification and alignment of the
acquired LC-MS data), an automated approach was applied, using the MarkerLynx™ Application
Manager for MassLynx™ software (Waters Corporation, Manchester, UK) for data processing.
As described in the experimental section, the MarkerLynx™ application uses the patented ApexTrack
peak detection algorithm to perform accurate peak detection and alignment. Following the peak
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detection, the associated ions are analyzed (the maximum intensity, the Rt and exact #1/z mass) and
captured for all samples. The data matrix is then generated [37,38]. The data pre-processing steps and
relevant parameters’ settings are detailed in the experimental section.

Varying the mass tolerance parameter (which specifies the mass accuracy of the acquired data) and
intensity threshold parameter (which specifies the threshold of a spectral peak) resulted in different data
matrices from the same LC-MS raw data, and the different numbers of variables (in the multivariate
X-space) and noise levels are tabulated in Table 1. Theoretically, an infinite number of combinations
for sets of processing parameters with MarkerLynx™ are possible. In practice, the computational
time to process one combination of a set of parameters could be in hours, depending on the size of
the datasets. Furthermore, understanding of the underlying algorithms and steps involved in the
data processing is essential so as to decide which parameter to vary. As indicated in the experimental
section, parameters, such as mass tolerance and the intensity threshold (which define the real peak
versus background noise), can be changed, within certain limits: for instance mass tolerance can be
set to the mass accuracy of the acquired data (which was 4.9 mDa in this study) and twice this value;
hence, in this study mass tolerance was varied in these limits (0.005 and 0.01 Da). The mass tolerance
(mass accuracy) parameter is the basis by which the ApexTrack algorithm determines the regions of
interest in the m/z domain, whereas the intensity threshold parameter is used in the peak removal
step, defining the resultant noise level and redundancy in the data matrix. These two parameters are
essential, hence this study explored the impact of these on the creation of the data matrix.

Table 1. Parameters associated with the different datasets generated from MarkerLynxTM processing
(Section 3.2).

Data Set Mass Tolerance (Da)  Intensity Threshold (counts)  X-Variable  Noise Level (%)

Method 1 0.005 10 6989 24
Method 2 0.005 100 720 9
Method 3 0.01 10 7309 23
Method 4 0.01 100 765 8

The tabulated results (Table 1), from the same LC-MS raw dataset, demonstrate that changing the
mass tolerance and intensity threshold parameters affects the number of defined features (X-variables).
One observation to point out is that increasing the intensity threshold (counts) led to a significant
decrease in the number of X-variables and noise levels. For a novice in metabolomic data analysis or
any metabolomic scientist with less expertise in statistics/chemometrics, this could raise questions
with regard to the “correct” method (or set of parameters) to trust and use: e.g., the one producing a
matrix with less noise. A point to consider is to what extent any decrease in the number of “defined”
ion peaks (variables) would bring about information loss? As a first approach, a chemometrician
or statistician would advise for a cleaner data matrix: the less noise in the created matrix the better.
Methods (set of parameters or algorithms) that could reduce the noise in the data and decrease the
redundancy are often advised and preferred [16,39-42].

However, the biological insights (the dynamic ranges of metabolite abundance in a biological system,
conservation relationships in networks of interrelated compounds, etc.) and the currently inherent
analytical limitations (suboptimal quality of extraction, detection and ionization capabilities, etc.) [12,43],
call for caution in handling noise elimination and redundant signals in metabolomic datasets. The effort
to produce a noise-free and non-redundant data matrix (post-processing) could result in a loss of
information, some of which could be informative to comprehensively assess metabolic pathways for a
better understanding and description of the regulatory mechanisms underlying the global biological
responses [12,18,37,44,45]. Furthermore, as recently demonstrated, some of the ion peaks that could be
regarded as a source of redundancy (e.g., adduct formation) might be very crucial and actually needed
in metabolite annotation and differentiation [46].

The created matrices (Table 1) were then imported into SIMCA (Soft Independent Modeling of
Class Analogy) version 14 software (Umetrics, Umea, Sweden) for statistical modeling: principal
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component analysis (PCA) and orthogonal projection to latent structures discriminant analysis
(OPLS-DA) (generally used approaches in metabolomics data analysis for data overview /descriptive
exploration, and explicative/predictive analysis, respectively). Total variation in metabolomic data
is multifactorial, comprising of the sum of biological variation (induced and non-induced) and
technical variation [2,27,47]. Therefore such data, with its inherent properties and structures (including
large number of variables, nonlinearity, heteroscedasticity, missing values), imperatively requires
special attention during statistical handling to avoid a risk of model overfitting [48], manipulation,
and confusion of statistical findings and distortion of the results, which can lead to incorrect data
interpretation and false discovery [32,49].

Before performing PCA and OPLS-DA, the data was mean-centered (to put all variables on equal
footing) and Pareto-scaled (to adjust for measurement errors as to have homoscedasticity in the data).
There are different methods for dealing with missing values, and each method/approach impacts on
downstream statistical analyses [31,50,51]. In the present study, the SIMCA software uses an adjusted
nonlinear iterative partial least squares (NIPALS) algorithm (with a correction factor of 3.0) [52] in
handling the missing values. The threshold of missing values is, by default, 50%, and in the four
matrices (from the same raw data, Table 1) no observations or variables had missing values exceeding
the permitted tolerance. Thus, to assess the effect of processing parameters (mass tolerance and
intensity threshold, Table 1) on the statistical output, the quality and characteristics of computed
PCA and OPLS-DA models were comparatively evaluated. The statistically-extracted discriminating
variables from the four scenarios (Table 1) were also compared.

For principal component (PC) analyses, the results showed that varying the processing parameters
(mass tolerance and intensity threshold) affected the maximum (suitable) number of computed PCs,
optimized using seven-fold cross-validation, to explain the variation in data X: changing from a
five-PCs to a six-PCs models (Table 2). Notably, only the “R1” significant components, i.e., those
producing an increase in Q?, were retained. Although, visually, the sample clustering in the PCA
scores space (constructed from the first two PCs) show no significant difference across the four datasets
(Figure 1A,B and Figure S1A,B), the model quality was clearly affected. This can be assessed by
inspecting the PCA parameters and diagnostic tools, which are computed and displayed graphically
or numerically. In computing a PC model, strong and moderate outliers (observations that are
extreme or do not fit the model) are often formed. Strong outliers have a high leverage on the model,
shifting it significantly and reducing the predictability, whereas the moderate outliers correspond
to the temporary perturbations (in the process/study), indicating a shift in the process/study
behavior [53,54].

Table 2. Generated PCA and OPLS-DA models of the four dataset matrices described as Methods 1-4

(Section 3.2).
Model Quality and Description

PCA OPLS-DA
Data Set -

R2X Q? R2X R2Y Q? CV-ANOVA Permutation (n = 50)

#PC (cum) (cum) (cum) (cum) (cum) p-Value RrR2 Q?

Method 1 5 0.786 0746 0740  0.997  0.995 0.000 (0.0,0.573) (0.0, —0.330)
Method 2 5 0926 0902 0.857 0988  0.987 0.000 (0.0,0.0552) (0.0, —0.212)
Method 3 6 0.793 0744 0.689  0.989  0.986 0.000 (0.0,0.304) (0.0, —0.358)
Method 4 6 0934 0917 0.894 0997  0.997 0.000 (0.0,0.271) (0.0, —0.340)

Strong outliers are identified from scores and Hotelling’s T? range plots. The latter is a multivariate
generalization of Student’s f-test, providing a check for observation adhering to multivariate
normality [53]. When used in conjunction with a scores plot, the Hotelling’s T? defines the normality
area corresponding to 95% confidence in this study. Inspecting the scores and Hotelling’s T?
range plots for the calculated four PC models (Figure 1A,B and Figure S2), no strong outliers were



Metabolites 2016, 6, 40 6 of 18

observed. The moderate outliers, on the other hand, are identified by inspecting the model residuals
(X-variation that was not captured by the PC model). The detection tool for the moderate outliers is
the distance to the model in X-space (DModX), with a maximum tolerable distance (Dcrit) [53].
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Figure 1. PCA score scatterplots and distance to the model (DModX) plot. (A) Score scatterplot of the
PCA model of data X (processed with Method 1: Table 1): a five-component model, explaining 78.6%
variation in the Pareto-scaled data and the amount of predicted variation by the model, according to
cross-validation, is 74.6%; (B) Score scatterplot of the PCA model of data X (processed with Method 4:
Table 1): a 6-component model, explaining 93.4% variation in the Pareto-scaled data X and the amount
of predicted variation by the model, according to cross-validation, is 91.7%; (C) The DModX plot of the
PCA model in (A) showing the moderate outliers (in red); and (D) The DModX plot of the PCA model
in (B) showing the moderate outliers (in red).

In this study, for all four datasets (Table 1), the DModX was normalized in units of standard
deviation, with the significance level of 0.05. Inspecting the DModX plots (Figure 1C,D and
Figure S1C,D) showed the existence of some moderate outliers. What is important to notice is that these
moderate outliers were different in the four PC models (Figure 1C,D and Figure S1C,D), suggesting
that varying of the two processing parameters (mass tolerance and intensity threshold) clearly altered
the structure in the X-space (particularly in higher-order components), and this impacts the statistical
description thereafter. The moderate outliers were further investigated by computing the contribution
plots (Figure S3) and no sample/observation had variable(s) with critical deviation from the rest of
the dataset.

Furthermore, the model fit (R>X) and predictive power (Q?) diagnostic parameters were evaluated
for the computed four PC models. The model fit informs how well the data of the training set
can be mathematically reproduced indicating, quantitatively, the goodness of fit for the computed
model. The R?X, thus, quantitatively describes the explained variation in the modeled X-space [25,55].
The predictive ability of the model, on the other hand, was estimated using cross-validation, providing
a quantitative measure of the predicted variation in X-space. A change in data processing parameters
(mass tolerance and intensity threshold) clearly affected PCA, altering the model quality. The positive
change in both mass tolerance and intensity threshold parameters resulted in an increase in RZX
and Q?, with a substantial difference observed in the predicted variation, Q2 (Table 2). These results
demonstrate that the upstream metabolomic data processing and treatment affect the outcome of the
statistical analyses, which then would impact, both quantitatively and qualitatively, the mining of
“what the data says” [49].



Metabolites 2016, 6, 40 7 of 18

For supervised multivariate analyses (OPLS-DA in this case), the calculated models were validated
and assessed. Firstly, to note that for all the OPLS-DA models of the four datasets, there was clear
discrimination between the sample groups in the scores space (Figure 2A and Figure S4). The analysis of
variance testing of cross-validated predictive residuals (CV-ANOVA) was used to assess the reliability
of the obtained models [56]. The computed OPLS-DA models for the four datasets, to separate
multivariate relationships into predictive and orthogonal variation, were statistically good models
with p-values significantly lower than 0.05 (Table 2). Furthermore, the response permutation test
(with n = 50) was used to validate the predictive capability of the computed OPLS-DA models. In this
statistical test the R? and Q? values of the true model are compared with that of the permutated model.
The test is carried out by randomly assigning to the two different groups, after which the OPLS-DA
models are fitted to each permutated class variable. The R? and Q? values are then computed for the
permutated models and compared to the values of the true models [57,58].
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Figure 2. OPLS-DA model for data X (processed with Method 4, Table 1). The labels C and T refer
to control (green) and treated (blue), respectively. (A) A score plot showing group separation in an
OPLS-DA score space; (B) the response permutation test plot (n = 50) for the OPLS-DA model in
(A): the R? and Q? values of the permutated model are represented on the left-hand side of the plot,
corresponding to y-axis intercepts (Table 2): R2 =(0.0, 0.271) and Q2 = (0.0, —0.340); (C) an OPLS-DA
loading S-plot for the “Method 4” model. The x-axis is the modelled covariation and the y-axis is the
loading vector of the predictive component (modeled correlation). Variables situated far out in the
S-plot are statistically relevant and represent possible discriminating variables; and (D) the dot plot of
the selected (marked) variable in S-plot (C), showing that such a variable is a very strong discriminating
variable, as it has no overlap between groups.

The results indicate that the calculated models have much higher R? and Q? values (Figure 2B
and Table 2) and, thus, the computed true OPLS-DA models are statistically far better than the
50 permutated models for each dataset. Assessing the total variation in X-space (predictive and
orthogonal) explained by the models, the results show that the R*X values were different: a change
in mass tolerance and intensity threshold affect the amount of variation explained by the computed
models (Table 2). For variable selection, the OPLS-DA loading S-plots were evaluated (Figure 2C).
This loading plot has an S-shape provided the data are centered /Pareto-scaled, and aids in identifying
variables which differ between groups (discriminating variables), i.e., variables situated at the upper
right or lower left sections in the S-plot. The p;j-axis describes the influence of each X-variable on
the group separation (modeled covariation), and the p(corr);-axis represents the reliability of each
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X-variable for accomplishing the group separation (modeled correlation). Variables that combine high
model influence (high covariation/magnitude) with high reliability (i.e., smaller risk for spurious
correlation) are statistically relevant as possible discriminating variables [25,59]: |p[1]| > 0.05 and
| p(corr)| > 0.5 in this study.

Furthermore, to avoid variable selection bias [60,61], the significance of the variables from
the loading S-plot was assessed using, firstly, the variable importance in projection (VIP) plot
(SIMCA 14 software). The latter summarizes the importance of the variables both to explain X and
to correlate to Y. The higher the VIP value (exceeding 1.0) the more significant is the variable in the
complex analysis in comparing the difference between two or more groups [62,63]. Each selected
variable from the S-plot (with high model influence and reliability, and VIP score >> 1.0) was further
evaluated using a dot plot (Figure 2D). The latter is similar to a histogram and kernel density estimation
(but algorithmically different), computing each observation as a unit: the observations are sorted into
“bins” representing variable sub-ranges [64]. A very strong discriminating variable has no overlap
between groups (Figure 2D). The mathematical description of the mentioned algorithms and methods
(e.g., VIP, dot plot, etc.) is beyond the scope of this paper; the reader is, thus, referred to the cited literature.

The statistically-validated discriminating variables from each model (representing each dataset
generated from varying the two mentioned processing parameters) were then compared. The results
demonstrate that the change in pre-processing parameters (mass tolerance and intensity threshold,
in this case) affected the downstream statistical analyses, particularly the statistically-selected variables:
comparing these variables showed some overlap, but also each method had unique variables
(Figure 3). This observation compliments and corroborates the above PCA results that data processing
and treatment (prior to statistical analyses) alter not only the infographics, but also the extracted
information, which might impact the interpretation thereafter.

Method 2 Method 3

Method 1 Method 4

Figure 3. Venn diagram displaying (comparatively) the statistically-selected discriminating variables
from the four OPLS-DA models (of the four different pre-processing methods, Tables 1 and 2). The four
pre-processing methods, applied on the same raw data, generated four different data matrices; and the
statistical analyses of the four matrices led to different discriminating variables (with some overlap),
as graphically depicted in the diagram.

2.2. Data Scaling and Transformation Influence

To also evaluate the effect of data (pre)-treatment algorithms on downstream chemometric
models, different scaling and transformation methods were applied on the data matrix created
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using Method 1 (Section 3.1, Table 1). The scaling methods explored are center (Ctr), autoscaling
(also termed unit variance (UV)), and Pareto, and the transformation methods used were logarithmic
and power transformation (the formulae are described in the experimental section). To avoid confusion,
the definitions for scaling and transformation methods used are those in the SIMCA manual (User’s
Guide to SIMCA 13, 2012), which are also related to descriptions found in the cited literature [27,65].

Following scaling and transformation, PCA and OPLS-DA models were constructed/fitted
and evaluated to assess the influence of these data pre-treatment methods on the models’ quality,
classification accuracy, feature selection/extraction, and the subsequent interpretability of the data.
The data pre-treatment is an essential step in the metabolomic data analysis pipeline as it enables the
preparation of the data for downstream analyses, minimizing variable redundancy and making all
variables more comparable in size [22,31,65].

For PC analyses, the results showed that scaling and transformation methods affected the dimension
of the PC-space optimized using seven-fold cross-validation, the sample clustering in the PCA scores
space (e.g., constructed from the first two PCs), and the moderate outliers detected in the DModX
plots (Figure 4 and Figure S5). Furthermore, the metric used to assess the model fit (or explained
variation) and predictive ability of the computed PCA models were R? and Q? [2,25,55]. The inspection
of these diagnostic metrics shows that scaling and/or transformation remarkably affected the amount of
explained variation (the goodness of fit) by the model and its predictive ability (Table 3).

404 4017 B
% 204 ‘ < 204
g2 (@] Q & e (o)
%] . - ‘
o 0 . T o ’
~ ol
3) 3)
A,-20 a,-204

0 o)
40 -40
-60 T T T T T T > -60 T T v - -
2200 -150  -100 -50 0 50 100 150 -130 -100 -50 0 30 100
PC1 (63.6%) PC1 (27.5%)
B Control [l Treated M Control M Treated

Pareto; R2X (cum) = 0.786; Q2 (cum) = 0.746 UV; R2X (cum) =0.443; Q2 (cum) = 0.350
Figure 4. PCA score scatterplots. PCA models of the same data X, but with different scaling methods.
(A) A five-component model, explaining 78.6% variation in the Pareto-scaled data, X, and the amount
of predicted variation by the model, according to cross-validation, is 74.6%; and (B) A five-component
model, explaining 44.3% variation in the unit variance (UV)-scaled data, X, and the amount of predicted
variation by the model, according to cross-validation, is 35.0%.

Table 3. Statistics of computed PCA and OPLS-DA models illustrating the effect of scaling and
transformation on the dataset matrix for Method 1.

Model Quality and Description

Data Treatment

PCA OPLS-DA
. . R2X Q? R2X R2Y Q? CV-ANOVA Permutation (1 = 50)

Scaling  Trans-Formation (cum) (cum) (cum)  (cum) (cum) p-Value R? Q?
None None 0995 0981 0981 0.852 0.849 534x1072  (0.0,0.128) (0.0, —0.213)
Center None 0959 0923 0923 0991  0.988 0.000 (0.0,0.161) (0.0, —0.329)
uv None 0.443 0350 0337 0992 0986 0.000 (0.0,0.650) (0.0, —0.294)
Pareto None 0786 0746 0740 0997  0.995 0.000 (0.0,0.573) (0.0, —0.330)
uv Log 0641 0517 0548 0998  0.99 0.000 (0.0,0.665) (0.0, —0.222)
Pareto Log 0667 0517 0548 0998  0.99 0.000 (0.0,0.633) (0.0, —0.184)
uv Power 0435 0336 0307 0994 0988 0.000 (0.0,0.649) (0.0, —0.311)
Pareto Power 0948 0900 0922 0993  0.990 0.000 (0.0,0.267) (0.0, —0.480)

UV = Unit variance scaling.
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As in Section 2.1, for supervised multivariate analyses (OPLS-DA in this case), the calculated
models were validated, and the robustness and reliability of the models assessed. In addition to the
R? and Q? metrics, the CV-ANOVA was used to assess the reliability of the obtained models [56]
and the response permutation test (with n = 50) was used to validate the predictive capability of the
computed OPLS-DA models [57,58]. Furthermore, in both Sections 2.1 and 2.2, predictive testing
was also employed to assess the best pre-processing and pre-treatment workflow (Figures S6 and S7).
The results tabulated in Table 3 demonstrate that the scaling and transformation methods affected
significantly not only the explained variation R? (both predictive and orthogonal) but also the
classification accuracy, reliability, predictive capability of the model and, subsequently, extracted
variables (Figure 5). The supervised learning models computed following for instance UV-scaling
and/or log-transformation (particularly in this case), would not be chemometrically/statistically
trusted as the classification of these models could be by chance, as indicated by the permutation
validation tests (lower R? values compared to the permutated models, Table 3).

Center

Figure 5. Venn diagram displaying (comparatively) the statistically-selected discriminating variables
from the four OPLS-DA models that are statistically valid (Table 3). As indicated in the diagram,
there are unique and shared discriminating variables from the four models i.e., different data
pre-treatment (scaling and transformation) methods led to different discriminating variables.

These results (Table 3) demonstrate that the choice of pre-treatment method(s) is crucial and may
depend not only on the biological information to be acquired but also on the data analysis method to
follow. For instance, a chemometric approach/method that focuses on (dis)similarities would differ
from the PCA attempting to explain as much variation as possible in as few components as possible.
Thus, varying data properties using data pre-treatment methods may, for instance, enhance the results
of a clustering method, while obscuring the results of a PCA model [22,27].

These results (varying pre-processing parameters and pre-treatment methods) clearly demonstrate
that handling the multivariate data from untargeted metabolomic analyses is indeed challenging.
Both Figures 3 and 5 depict that the data analysis outcome of an untargeted metabolomic data is
remarkably influenced by the upstream data handling, such as pre-processing and pre-treatment
methods, and the algorithms applied. The symbiosis of chemometrics and metabolomics [66] is
illustrated here, with a clear demonstration that an understanding of data structures and data analysis
methodologies is mandatory for stepping forward from data to information as comprehensively
as possible.

Furthermore, Figures 3 and 5 then raise questions with regard to what could be the best
methodological approach for data pre-processing and pre-treatment, given an untargeted metabolomics
dataset (as it is in this case) that exhaustively explores the data. Could these results (including the
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tabulated models’ description in Tables 2 and 3) actually be pointing to the problem of “multiplicity
of good models” /“multitude of descriptions” (Rashomon Effect) [67]? Or is it, indeed, an indication
that, currently, no single chemometric method can actually extract all of the information from an
untargeted metabolomic dataset. Different chemometric methodologies and algorithms are constantly
being developed to cope with systems biology-perspective demands [30], but maybe the chemometric
principle of “largest variance is most important” might not hold true in all cases, as the total variation
in the metabolomic data is multifactorial. On the other hand, to extract relevant information may
require searching the “needle in the haystack” methods [12,30,47].

There is certainly a “symphony” of data analysis strategies and approaches throughout the
pipeline, from post-acquisition steps to the variable selection. Algorithms or methods used at each step
of the pipeline affect the downstream analyses and outcome [31,33,49]. In this study, using the same
LC-MS raw data, but changing the pre-processing parameters (Section 3.1) and data pre-treatment
methods (Section 3.2) affected the downstream statistical outcome, thus illustrating (to a certain extent)
not only that the metabolomic data are indeed information-rich, but also the limitation in existing
chemometric methods and the need of uttermost care in data handling. Furthermore, the results
demonstrate that, currently, the possible “Archimedean” methodical point for an optimal extraction of
information from untargeted metabolomic datasets could be the exploration of existing chemometric
and statistical methods at each step of data analysis pipeline.

However, these observations and generalizations are built on an assumption that the study design
and data quality assurance are always correctly executed and considered [35,42,68], and the underlying
philosophy of chemometrics is efficiently applied throughout the metabolomics study from the start
to biological interpretation [12,25,30]. To maximize the value of metabolomic data, exploration of
different algorithms and methods might be the best trade-off currently. As this study demonstrates,
different steps involved in data mining are interdependent (Figure 6), and methods employed in
each step would influence the downstream steps. However, although an exploration of different
algorithms and methods is encouraged, this should be guided and discerned based on a thorough
manual examination of the raw data and a strong analytical and chemometric knowledge.

Data Pre-processing Data Pre-treatment Machine Learning / MVDA"
Untargeted [ Peak detection Missingvalues Dimension
LC-MS Data Collection Peak picking (different methods reduction; Data
(different methods, and algorithms) exploration (e.g.
— algorithms) [ - - PCA with/without
LC conditions: N QCs)
(Column, T Model validation

solvents, -
acquisition Peak matching Peak table = Peak table Metabolite IDs,
Raw Matrixof m (§ :] C

order; quality { Feature Matrix of o Pathway
control); data \ samples)xn Normalization m/z, Rt, N VA representation;

MS LC-Ms ‘ m aliénment (m/z, R‘l A~ intensities Classification, Mechanistic
conditions intensities 9PBr — explicative (e.g. PLS, interpretation

4L \ 2 OPLS-DA)
: —— Model validation

Scaling (centered, —
pareto, UV, etc.) V. N
Transformation ) 4
(log, power, etc.)

Peak integration

Sample
Raw data normalization
m/z, Rt, intensities (different methods

andalgorithms)

Feature selection;
Validation

Figure 6. Flowchart displaying an overview of a typical LC-MS data mining pipeline. Different
post-acquisition steps involved in data analysis: data pre-processing and pre-treatment (focus of this
study) and machine learning/multivariate data analysis (MVDA). Each step consists of a typical
workflow to follow and there are different methods and algorithms that can be employed.

3. Materials and Methods

3.1. Dataset and Raw Data Processing

Raw data from an untargeted ultra-high performance liquid chromatography-mass spectrometry
(UHPLC-MS) metabolomics study, in this case of sorghum plants responding dynamically to infection
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by a fungal pathogen, Colletotrichum sublineolum, was employed. Briefly, two groups of samples were
used in this study: fungal-infected (treated) and control (non-infected) samples, labelled T and C,
respectively. The control group consisted of nine samples, whereas the treated group consisted of
15 samples. Each sample was a methanol extract from 10 plants. Analytical data of methanol-based
plant extracts were acquired in both positive and negative centroid ion mode; but for this paper, only
the positive data were further processed. The m/z range was 100-1000 Da and the data were acquired
by applying a Waters Acquity UHPLC system coupled in tandem to a Waters photodiode array
detector and an electrospray SYNAPT G1 HDMS Q-TOF mass spectrometer (Waters, Milford, MA,
USA), applying a method as previously described [69]. A lock spray source was used allowing online
mass correction to obtain high mass accuracy of analytes. Leucine encephalin, [M + H]* = 556.2766
and [M — H]™ = 554.2615, was used as the lock mass, being continuously sampled every 15 s, thus
producing an average intensity of 350 counts scan~! in centroid mode. By using a lock mass spray
as a reference and continuously switching between sample and reference, the MassLynx™ software
can automatically correct the centroid mass values in the sample for small deviations from the exact
mass measurement.

Quality control (QC) pooled samples were used to condition the LC-MS analytical system so as to
assess the reliability and reproducibility of the analysis, and for non-linear signal correction [42,70-72].
Sample acquisition was randomized and the QC sample (six injections) was analyzed every
10 injections to monitor and correct changes in the instrument response, with each sample being
injected three times. Furthermore, six QC runs were performed at the beginning and end of the batch
to ensure system equilibration. Such sample randomization provides stochastic stratification in sample
acquisition so as to minimize measurement bias. In the PCA space, the QC samples were clustered
closely to each other (results not shown, as it is not the focus of this study), thus confirming the stability
of the LC-MS system used, the reliability, and reproducibility of the analysis.

3.2. Dataset Matrix Creation and Data Pre-Treatment

Visualization and data processing were performed using MassLynx XS™ 4.1 software
(Waters Corporation, Manchester, UK). Only the centroid electrospray ionization (ESI) positive raw
data were used in this study. The MarkerLynx™ application manager of the MassLynx software was
used for data pre-processing (matrix creation). Four dataset matrices (hereafter referred to as Methods)
were created by changing mass tolerance and intensity threshold settings: Method 1 (mass tolerance
of 0.005 Da and intensity threshold of 10 counts), Method 2 (mass tolerance of 0.005 Da and intensity
threshold of 100 counts), Method 3 (mass tolerance of 0.01 Da and intensity threshold of 10 counts),
and Method 4 (mass tolerance of 0.01 Da and intensity threshold of 100 counts). For all of the Methods,
the parameters of the MarkerLynx™ application were set to analyze the 1-15 min retention time (Rt)
range of the mass chromatogram, mass range 100-1000 Da, and alignment of peaks across samples
within the range of +0.05 Da and £0.20 min mass and Rt windows, respectively.

The MarkerLynx™ application uses the patented ApexTrack (termed also ApexPeakTrack) algorithm
to perform accurate peak detection and alignment. MarkerLynx™ initially determines the regions of
interest in the m/z domain based on mass accuracy (mass tolerance). The ApexTrack algorithm controls
peak detection by peak width (peak width at 5% height) and baseline threshold (peak-to-peak baseline
ratio) parameters. In this study, these parameters were calculated automatically by MarkerLynx™.
The ApexTrack also calculates the baseline noise level using the slope of inflection points. Thus, for peak
detection, the ApexTrack algorithm consists of taking the second derivative of a chromatogram and
locates the inflection points, the local minima, and peak apex for each peak, to decide the peak area
and height. A “corrected” Rt is then assigned and the data are correctly aligned, with the alignment
of peaks across samples within the range of user-defined mass and Rt windows. Following the peak
detection, the associated ions are analyzed (the maximum intensity, its Rt and exact m/z mass) and
captured for all samples.
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An additional data cleaning step, a peak removal step denoted by user-defined peak intensity
threshold (and noise elimination level) parameter, is conjugated to the alignment algorithm: briefly, if a
peak is above threshold in one sample and if it is lower than the threshold in another sample it lowers
the threshold for that sample until it reaches the noise elimination level. The noise is understood
as residual peaks in the background (from electronics, nebulizer gas, solvents, cleanliness of source,
column, etc.) and/or below the noise elimination threshold. MarkerLynx™ also performs data
normalization. In this study normalization was done by using total ion intensities of each defined peak.
Prior to calculating intensities, the software performs a patented modified Savitzky-Golay smoothing
and integration.

Although parameters, such as mass tolerance and intensity threshold (which define the real
peak versus noise), can be regarded as relatively instrument-dependent (or a property of acquired
data), they can be changed (within certain limits): mass tolerance can be set to the mass accuracy
of the acquired data (which was 4.9 mDa in this study) and twice this value; hence, in this study
mass tolerance was varied within these limits (0.005 and 0.01 Da). Considering the complexity
and high-dimensionality of the samples (particularly in plant metabolomics), and considering the
mathematical limitations of chemometric algorithms, it is essential to explore the processing methods
(combinations of sets of parameters: selected as objectively and optimally as possible) so as to maximize
the mining of the raw data.

The MarkerLynx"™-generated data matrices were exported into SIMCA software, version 14
(Umetrics, Umea, Sweden) for statistical analyses. An unsupervised method, principal component
analysis (PCA), and a supervised modeling, orthogonal projection to latent structures-discriminant
analysis (OPLS-DA), were employed. The data pre-treatment methods used included scaling and
transformation. These two types of data pre-treatment were explored as described in Section 2.2.
The scaling methods looked at were center (Ctr), autoscaling, (also known as unit variance, UV)
and Pareto, and the transformation methods used were logarithmic and power transformation.
The formulae (or mathematical description of these methods) can be found in the cited literature [27]
and in the SIMCA version 13 manual (User’s Guide to SIMCA 13, 2012). In this study, the logarithmic
transformation was 10Log (C1 x X + C2) where C1 =1 and C2 = 0; and the power transformation was
(C1 x X +C2) 3 where C1 =1, C2 =0, and C3 = 2. As described in the results, the computed models
were validated.

4. Conclusions and Perspectives

Using the same raw dataset, and exploring and applying different methods and algorithms
in handling the data, the study clearly demonstrates how crucial the data pre-processing and
pre-treatment steps are in a metabolomics data analysis pipeline. These steps significantly affect
the chemometric models computed downstream, including the variation explained by the models,
the classification accuracy and the quality of the models. However, the inferred observations from
this study are limited, as being drawn from a single dataset (from plant samples). Applying the same
exercise to different datasets from other sample types (e.g., cell extracts, biofluids, etc.) might provide
more insights and subsequently a formulation of generalized guidelines. Thus, it suffices here to point
out that an understanding of the data structures and the approach adopted for handling a specific
untargeted metabolomic dataset will definitely influence the data analysis outcome, as demonstrated in
this study. Stepping forward from untargeted metabolomic data, to information, and finally knowledge,
is not a trivial endeavor or a simple “syllogistic” approach.

As encouraged by the Metabolomics Society [21,28,73,74], a proper and detailed reporting of
the data analysis methodology used in a metabolomic study is essential and “ethically” obligatory,
for clarity of the etiology of the inferences of the study and ascertaining the reproducibility of the
latter. Furthermore, the growing call for submission of metabolomic studies (and raw data) into
the repositories, such as MetaboLights [75-77], is to be encouraged, as further mining of datasets
(with different data analysis scopes) can yield more information and more biological insights [11,22].
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Untargeted metabolomic studies, in general, generate large amounts of data that are exceedingly rich in
information and, consequently, realistically challenging to mine, interpret, and pursue mechanistically
in a comprehensive biological context. Furthermore, even though the current study used only
one method for peak detection (and varying its parameters), it should be noted that there are a
wide variety of workflows (vendor-specific, commercial software, and freeware) available for peak
picking/detection. Since various algorithms are used by these different peak detection methods,
the choice thereof can have a significant influence on the processed end results of a study [14,33,78-80].
Hence, careful and thoughtful use of pre-processing and processing tools is mandatory to be able to
make a critical judgment on the outcomes following those two essential steps in the metabolomics
workflows. Furthermore, exploration of data analysis methods (as demonstrated in this study)
and data sharing (via data repositories) are encouraged so as to maximize the value of these
metabolomic datasets.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2218-1989/6/4/40/s1,
Figure S1: PCA scores and DModX plots (of Methods 2 and 3 in Table 2), Figure S2: Hotelling’s T2 range plots of the
four PCA models (Methods 1 to 4 in Table 2), Figure S3: DModX and a typical contribution plots (of PCA models
for the Method 1 data set), Figure S4: OPLS-DA scores plots, Figure S5: DModX plots for the detection of moderate
outliers, Figure S6: Predicted scores plots and DModXPS, Figure S7: The Coomans’ plots—distance to model
predicted (DModXPS+) of two models.
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