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I. Supplementary Text 

I.1 Determination of Reference Flux Distributions 

To apply MiMBl for determining mutant strain phenotypes, a reference or wildtype flux 
distribution is crucial. We derived individual reference flux distributions for both the E. coli core and 
genome-scale model from appropriate intra- and extracellular metabolic flux data by subsequently 
solving two linear optimization programs. Firstly, we minimized the sum of the absolute difference 
between simulated and experimentally determined fluxes. Secondly, while fixing the objective 
function of the former linear program to its optimal value, the sum of all other absolute flux values 
in the model, excluding those of exchange reactions, was minimized. This method follows the 
descriptions of Long et al. [1]. We used central carbon metabolism flux data of an aerobic chemostat 
cultivation at a dilution rate of 0.7 ℎିଵ taken from Ishii et al. [2]. 

I.2 A Simplified Calculation of the Growth-Couling Strength 

The original representation of the growth-coupling strength (GCS) is based on a quantitative 
comparison of the yield space areas between the mutant and wildtype strain [3]. Yield spaces are 
generated by consecutively solving growth rate minimization as well as maximization problems for 
the whole range of accessible product yield states. As illustrated in Figure S1, the area below the 
lower yield bound (IA) and the total area under the upper yield hull curve of a strain design are used 

 
Figure S1: Scheme of a wild-type yield space showing no growth-coupling (black hull curve) and a 
growth-coupled strain design (red hull curve). The blue area TA illustrates the yield space of the 
wild-type up to the maximal growth rate of the mutant strain. The inaccessible yield space IA below 
the lower yield bound of the mutant is marked by the red hatched area. Figure adapted from Alter et 
al. 2018 [3]. 
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to deduce the GCS. The ratio between the minimally guaranteed product yield 𝑌௠௜௡
ఓ೘ೌೣ  at maximal 

growth and the theoretical maximal yield 𝑌௠௔௫  are additionally incorporated in the calculation of 
the GCS to also consider the maximal production capabilities of mutant strains. Hence, GCS is 
defined by Equation 1:  

𝐺𝐶𝑆 =
𝐼𝐴

𝑇𝐴
∙

𝑌௠௜௡
ఓ೘ೌೣ

𝑌௠௔௫

 (1)

Since the exact determination of the yield space areas is computationally expensive, calculation 
of the GCS had to be simplified for a utilization as an engineering objective for the GA. Therefore, we 
derived an approximation using only two distinct points on the envelope edge, which are computed 
by two separate linear programs. These yield the target production rate 𝑣௧

ఓ೘ೌೣ at maximal growth 
rate 𝜇௠௔௫ and the minimally guaranteed production rate 𝑣௧

ఓೝ೐೏ at 𝜇௥௘ௗ = 0.9 ∙ 𝜇௠௔௫ . We used the 
linear extrapolation of both points as an indicator for the growth-coupling characteristics. Therefore, 
the production rate axis intercept of the extrapolation was determined by Equation 2: 
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, (2)

A 𝑣௧,௜ ≤ 0  indicates weak growth-coupling and the area below the approximated lower 
production rate bound 𝐴௪௘௔௞  was calculated by  

𝐴௪௘௔௞ = 0.5 ∙ 𝑣௧
ఓ೘ೌೣ ∙ ቆ𝜇௠௔௫ +

𝜇௠௔௫ ∙ 𝑣௧,௜

𝑣௧
ఓ೘ೌೣ − 𝑣௧,௜

ቇ. (3)

If 𝑣௧,௜ is positive, the strain design exhibits strong growth-coupling and 𝐴௦௧௥௢௡௚ is 

𝐴௦௧௥௢௡௚ = ൫𝜇௠௔௫ ∙ 𝑣௧
ఓ೘ೌೣ൯ − ቀ0.5 ∙ 𝜇௠௔௫ ∙ ൫𝑣௧

ఓ೘ೌೣ − 𝑣௧,௜൯ቁ. (4)

To derive the GCS approximation, the area of the wildtype production rate beyond 𝜇௠௔௫ is 
added to 𝐴௪௘௔௞  or 𝐴௦௧௥௢௡௚ and the sum is normalized by the total area of the wildtype production 
envelope 𝐴௪௧, hence 

𝐺𝐶𝑆 =
𝐴௪௘௔௞/௦௧௥௢௡௚ + ቀ0.5 ∙ 𝑣௧

ఓ೘ೌೣ ∙ (𝜇௠௔௫
௪௧ − 𝜇௠௔௫)ቁ

𝐴௪௧

, (5)

where 𝜇௠௔௫
௪௧  is the theoretical maximal growth rate of the wildtype strain. 

I.3 A Databank Model Including Novel Network Edges 

The establishment of a databank model comprising novel functionalities or reactions was 
inspired by the OptStrain [4] and SimOptStrain [5] framework. In this work, however, we focused on 
novel network edges only, meaning that all metabolites of non-native reactions in the database 
model had to be present in the wildtype metabolic model. Using the following protocol, we searched 
or used the MetaNetX [6], BiGG [7] and KEGG [8] databases for reactions that fulfill these 
constraints. The protocol also includes curation steps to determine reaction directionalities based on 
thermodynamic data taken from the eQuilibrator database [9], thereby guaranteeing correct reaction 
mass and charge balances. 

1. Load the complete MetaNetX database for biochemical reactions and metabolites and 
match their identifiers with the BiGG database namespace. 

2. Discard reactions with dubious mass balances according to MetaNetX and those 
already present in the wildtype metabolic model. 

3. Discard reactions that act on metabolites not present in the wildtype metabolic model. 
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4. Determine directionality of reactions according to the standard Gibbs Free Energy of 
Reaction ο௥𝐺ᇱ° at pH 7 and an ionic strength of 0.1 𝑀. If ο௥𝐺ᇱ° cannot be provided for 
a reaction, it is assumed to be reversible and for all other reactions: 

a. Extract ο௥𝐺ᇱ° and its standard deviation from the eQuilibrator database. 

b. Calculate a physiologically relevant Gibbs Free Energy of Reaction ο௥𝐺ᇱ௠ 
using standard concentrations of 1 𝑚𝑀  for each participating metabolite. 
Water and protons do not contribute to ο௥𝐺ᇱ௠. Standard concentrations for 
oxygen, carbon dioxide and hydrogen are listed in Table S1. For a general 
reaction of the form 𝜈௜𝑠௜ + 𝜈௝𝑠௝ ↔ 𝜈௞𝑝௞ + 𝜈௟𝑝௟  with educts 𝑠௜  and 𝑠௝ , the 
products 𝑝௞  and 𝑝௟  as well their respective stoichiometric coefficients ν, 
ο௥𝐺ᇱ௠ is calculated to: 

ο௥𝐺ᇱ௠ = ο௥𝐺ᇱ° + 𝑅𝑇 ln ቌ
𝑐௣ೖ

ఔೖ ∙ 𝑐௣೗

ఔ೗

𝑐௦೔

ఔ೔ ∙ 𝑐௦ೕ

ఔೕ
ቍ, (6) 

where 𝑐 is the molar concentration of a metabolite specified by the indices and 
𝑅 = 8.314 𝐽 𝐾ିଵ 𝑚𝑜𝑙ିଵ the universal gas constant. Furthermore, we assume a 
standard temperature 𝑇 = 298.15 𝐾 . For ο௥𝐺௠௔௫

ᇱ௠ , minimal and maximal 
expected standard concentrations are used for the educt and product 
metabolites, respectively. This is reversed for the calculation of ο௥𝐺௠௜௡

ᇱ௠ . 

c. Determine the maximal deviation from ο௥𝐺ᇱ௠ . Therefore, if ο௥𝐺ᇱ௠ < 0 , 
calculate a maximally expected Gibbs Free Energy of Reaction ο௥𝐺௠௔௫

ᇱ௠  
following the descriptions in b) and Equation 1. In this case, use a maximally 
expected concentration of 20 𝑚𝑀 for all products and a minimally expected 
concentration of 10ିଽ 𝑚𝑀 for all educts. Maximal and minimal concentrations 
of oxygen, carbon dioxide and hydrogen are listed in Table S1. Likewise, if 
ο௥𝐺ᇱ௠ > 0 , ο௥𝐺௠௜௡

ᇱ௠  is instead calculated using maximally and minimally 
expected concentrations for the educts and products. 

d. Compare ο௥𝐺௠௔௫/௠௜௡
ᇱ௠  and ο௥𝐺ᇱ௠ . If both ο௥𝐺௠௔௫/௠௜௡

ᇱ௠  and ο௥𝐺ᇱ௠  have the 
same sign, the reaction is labelled irreversible in the direction according to the 
sign. A reaction is also treated as irreversible if ο௥𝐺௠௔௫/௠௜௡

ᇱ௠  and ο௥𝐺ᇱ௠ exhibit 

differing signs and the relation 
หο௥𝐺௠௔௫/௠௜௡

ᇱ௠ ห
|ο௥𝐺ᇱ௠|

൘  does not exceed a value 

of 0.4. In all other cases, particularly if หο௥𝐺௠௔௫/௠௜௡
ᇱ௠ ห > |ο௥𝐺ᇱ௠|, a reaction is 

reversible. 

5. Check mass and charge balances of reactions according to the atomic compositions of 
educts as well as products and correct for missing protons or water molecules. 

 
The selected and curated reactions are integrated in a database model and flux bounds are 

chosen according to the identified reaction directionalities. 
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II. Supplementary Figures and Tables 

Table S1: Minimally and maximally expected as well as standard intracellular concentrations of 
gaseous metabolites. 

Metabolite 
Minimally expected 
concentration [m𝑀] 

Maximally expected 
concentration [𝑚𝑀] 

Standard 
concentration [𝑚𝑀] 

Oxygen 10-11 0.055 0.0275 
Carbon dioxide 10-11 1.4 0.7 

Hydrogen 10-11 0.034 0.017 

 

 

 

 
Figure S2: Maximal fitness (a) and hamming distance (b) across the populations of every thread in 
each generation using mutation rates between 0 and 0.7. Deletion of maximally five reactions were 
allowed while using succinate BPCY as the engineering objective. Hamming distance progressions 
for mutation rates 0.5 and 0.7 overlap each other. Here, a selection rate of 0.25 was employed. 
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Figure S3: Maximal fitness (a) and hamming distance (b) across the populations of every thread in 
each generation using mutation rates between 0 and 0.7. Deletion of maximally five reactions were 
allowed while using succinate BPCY as the engineering objective. Here, a selection rate of 0.75 was 
employed. 

 

 
Figure S4: Maximal fitness (a) and hamming distance (b) across the populations of every thread in 
each generation using mutation rates between 0 and 0.7. Deletion of maximally five reactions were 
allowed while using succinate BPCY as the engineering objective. Hamming distance progressions 
for mutation rates 0.5 and 0.7 overlap each other. Here, a population size of 10 was employed. 
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Figure S5: Maximal fitness (a) and hamming distance (b) across the populations of every thread in 
each generation using mutation rates between 0 and 0.7. Deletion of maximally five reactions were 
allowed while using succinate BPCY as the engineering objective. Hamming distance progressions 
for mutation rates 0.5 and 0.7 overlap each other. Here, a population size of 50 was employed. 

 



Metabolites 2018, 8  7 of 14 

 

 

 

 
Figure S6: Maximal fitness (BPCY) (a, c, e) and Hamming distance (b, d, f) progressions for GA runs 
applying five, seven and ten maximal allowable reaction deletions as well as an adaptive mutation 
probability approach with different ranges between the minimal and maximal mutation rate, all 
centering around a mutation rate of 0.05. The color code denotes the factor between the minimally 
and maximally allowable mutation probability. The E. coli core model and ethanol BPCY as the 
engineering objective were employed. 
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Figure S7: Total number of fitness function evaluations after 900 generations of GA runs applying 
population sizes between 10 and 50. Bars are clustered according to the employed selection rate 
(colored number). Error bars show the standard deviation among five replicates for each population 
size – selection rate pair. Asterisks denote parameter pairs with which the globally maximal fitness of 
0.48 𝑚𝑜𝑙 𝑚𝑜𝑙ିଵ ℎିଵ was not reached in every replicate GA run after 900 generations. Succinate BPCY 
was used as the engineering objective. Intervention set size was seven. 

 
Figure S8: Hamming distance progressions for GA runs using selection rates between 0.15 and 0.75 
at a population size of 20. The E. coli core model and succinate BPCY as the engineering objective 
were employed. 
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Figure S9: Maximal fitness progressions for GA runs using various numbers of Gene-Flow-Events 
(GFEs) at a constant total number of 900 generations. The E. coli core model and succinate BPCY as 
the engineering objective were employed. 



Metabolites 2018, 8  10 of 14 

 

 
Figure S10: Maximal fitness (BPCY) (a, b, c, d) and Hamming distance (e, f, g, h) progressions for GA 
runs applying three, five, seven and nine maximal allowable reaction deletions for optimizing 
overproduction of succinate, ethanol, lactate and glutamate. The E. coli core model and target 
product BPCY as the engineering objective were employed. 
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Figure S11: Maximal fitness (BPCY) (a, b, c, d) and Hamming distance (e, f, g, h) progressions for GA 
runs applying three, five, seven and nine maximal allowable gene deletions for optimizing 
overproduction of succinate, ethanol, lactate and glutamate. The E. coli core model and target 
product BPCY as the engineering objective were employed. 
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Figure S13:  Hamming distance progressions for GA runs applying three, five, seven and nine 
maximal allowable reaction deletions for optimizing overproduction of succinate (a), ethanol (b), 
lactate (c) and glutamate (d). The E. coli core model and multiple objective function approach as the 
engineering objective, including target product BPCY, growth-coupling strength and target 
production rate at maximal growth, were employed. 

 
Figure S12:  Maximal fitness (a) and hamming distance (b) progressions for GA runs using trade-off 
factors of 0, 0.01, 0.015, 0.025 and 0.04 aiming to minimize the final intervention set size. E. coli core 
model and ethanol BPCY as the engineering objective, were employed. The maximally allowable 
intervention set size was set to nine for each simulation. 
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Figure S14:  Maximal fitness and objective fitness (a) as well as hamming distance (b) progressions 
for GA runs using the E. coli GEM iJO1366 and different numbers of maximally allowable gene 
deletions and novel reaction insertions. A multiple objective function approach combining the 
optimization of succinate BPCY, GCS and succinate production rate at maximal growth was 
employed. Simultaneously, the intervention set size was minimized using a trade-off y of 0.1. 
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