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Abstract: To evaluate the taste of ordinary muscle from white-fleshed fish, we used GC-MS
metabolomic analysis to characterise the compounds therein, and correlated the obtained data
with taste measurements from an electronic tongue. Prediction models using orthogonal partial
least squares were produced for different taste attributes, and the primary metabolic components
correlated with the taste attributes were identified. Clear differences were observed in the component
profiles for different fish species. Using an electronic tongue, differences in tastes were noted among
the fish species in terms of sourness, acidic bitterness, umami and saltiness. The obtained correlations
allowed the construction of good taste prediction models, especially for sourness, acidic bitterness
and saltiness. Compounds such as phosphoric acid, lactic acid and creatinine were found to be highly
correlated with some taste attributes. Phosphoric acid in particular showed the highest variable
important for prediction (VIP) scores in many of the taste prediction models, and it is therefore a
candidate marker to evaluate the tastes of white-fleshed fish.

Keywords: GC-MS metabolomics; electronic tongue; taste prediction model; while-fleshed fish;
phosphoric acid

1. Introduction

Fish meat is rich in high-quality protein and lipids. The lipids in fish contain a particularly large
quantity of n-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
which are thought to have anti-inflammatory and other health benefits [1]. Therefore, fish meat is an
important food and its consumption is highly recommended. However, the consumption of fish in
Japan is currently falling [2]. One possible reason is the aversion to the flavour of low-quality fish
meat. Consequently, correctly evaluating the palatability of fish meat is an important research topic for
fisheries and food sciences.

The palatability of a food is commonly perceived with the five senses: gustatory, olfactory, tactile,
visual, and auditory. Taste is particularly important among these senses. Therefore, chemical analysis
of substances associated with tastes and sensory evaluation are both necessary. To evaluate taste-related
substances in fish, many studies measured low-molecular-weight nitrogen compounds: free amino
acids, organic bases, guanidino compounds, nucleotides and associated substances, etc. [3–6]. However,
analysing and evaluating the many compounds place high demand on equipment and require
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appropriate analytical methods, so that the process tends to be very laborious and costly. Meanwhile,
metabolic profiling has attracted recent attention as a new technique for evaluating food quality [7,8].
Moreover, correlation analysis using the analytical data as explanatory variables (x) and sensory
evaluation as response variables (y) could specify important components in foods that are perceived as
taste by the human sensory system [9]. However, as far as we know, there are no reports of applying
this technique to the taste evaluation of fish meat.

The taste of fish meat is very important for assessing its quality such as freshness. Sensory
evaluation is generally carried out by human testers. However, in these cases the experimental
environments such as panellist selection, individual differences and their fitness must be adequately
regulated in order to obtain accurate results. There is also the difficulty in obtaining reproducible results.
Research in recent years has led to the development of biosensors that chemically measure the tastes.
The electronic tongue as an example taste sensor system can chemically measure tastes in a quantitative
manner, based on the electrical potential responses of artificial lipid membranes and taking into
account human taste threshold values [10]. Such machine-based evaluation is advantageous compared
with the sensory evaluation, which is expensive in terms of training and labour costs of human
evaluators. On the other hand, the taste active components of fish meat are mainly water-soluble,
low-molecular-weight compounds such as free amino acids, nucleotides, and organic acids. Omission
tests on fish and shellfish also clearly indicated that these components are important in constituting
the corresponding flavours [3]. Hence, fish meat (and shellfish) extract containing the taste active
components could be suitable samples for taste evaluation with an electronic tongue.

Because each taste attribute is given a numerical value by the electronic tongue, these values
could be considered as response variables for metabolic profiling. Accordingly, here we report a new
technique for evaluating the taste of fish meat, based on metabolic profiling of ordinary muscle from
different fish species. The correlation analysis was carried out using orthogonal partial least squares
(OPLS), in which comprehensive data for water-soluble, low-molecular-weight compounds measured
using GC-MS are used as explanatory variables (x), and numerical values for different tastes obtained
with the electronic tongue as the response variables (y). The relationships between x and y were
statistically analysed by producing prediction models for each taste attribute. Moreover, components
that make major contribution to a taste attribute were identified in terms of variable important for
projection (VIP) scores for each taste attribute produced by the prediction models. Objective evaluation
of taste is a major challenge for the food industry. Because this method makes it possible to describe the
taste of fish meat chemically, it is an effective method for objectively evaluating the taste of fish meat.

2. Results and Discussion

2.1. GC-MS Analysis

Typical total ion chromatograms (TIC) obtained by GC-MS analysis of metabolite components
extracted from ordinary muscle from each fish species are shown in Figure 1. The shape of the TIC
differed slightly among the fish species. The components were detected by comprehensive annotation
of the peaks using a commercially available database. The annotated or identified components are
presented in Table S1. A total of 136 components were detected. For Thamnaconus modestus, Sebastiscus
marmoratus, Inimicus japonicus, and Pagrus major, the numbers of detected components were 87, 90,
114, and 99, respectively. These components were classified by their chemical property as follows:
65 sugars including sugar alcohol, sugar acid and amino sugar; 28 amino acids; 18 organic acids;
6 phosphorylated compounds; 4 vitamins and 15 other compounds.
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Figure 1. Total ion chromatograms obtained by GC-MS analysis of different fish species. (A) T. 
modestus, (B) I. japonicus (male), (C) I. japonicus (female), (D) P. major, and (E) S. marmoratus. 

Principal component analysis (PCA-X) was carried out in order to identify differences in the 
component profiles among the fish species (Figure 2). The first principal component explained 
34.4% of the total variance, and the second one explained 14.3%. The cumulative contribution of 
these two components was 47.7%. The score plots in Figure 2A show that there are differences in 
the component profiles among fish species. Firstly, in Figure 2A the first principal components for 
T. modestus and P. major are positioned in the positive direction, while those for I. japonicus and S. 
marmoratus are positioned in the negative direction. This indicates that there are differences in the 
component profiles between these two pairs of species. In the case of the second principal 
component, although the differences are not very great, T. modestus tends to be positioned in the 
positive direction, and P. major in the negative direction. In the second principal component, part of 
I. japonicus was positioned in the same negative direction as S. marmoratus. There were differences 

Figure 1. Total ion chromatograms obtained by GC-MS analysis of different fish species. (A) T. modestus,
(B) I. japonicus (male), (C) I. japonicus (female), (D) P. major, and (E) S. marmoratus.

Principal component analysis (PCA-X) was carried out in order to identify differences in the
component profiles among the fish species (Figure 2). The first principal component explained 34.4%
of the total variance, and the second one explained 14.3%. The cumulative contribution of these two
components was 47.7%. The score plots in Figure 2A show that there are differences in the component
profiles among fish species. Firstly, in Figure 2A the first principal components for T. modestus and
P. major are positioned in the positive direction, while those for I. japonicus and S. marmoratus are
positioned in the negative direction. This indicates that there are differences in the component profiles
between these two pairs of species. In the case of the second principal component, although the
differences are not very great, T. modestus tends to be positioned in the positive direction, and P. major
in the negative direction. In the second principal component, part of I. japonicus was positioned in the
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same negative direction as S. marmoratus. There were differences between individuals from I. japonicus,
and in this study no clear difference was found between the species of I. japonicus and S. marmoratus.
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Figure 2. Principal component analysis-X of the component profiles. (A) Score plot. Numbers indicated
the fish specimens in Table S3. (B) Loading plot.

Results for I. japonicus and S. marmoratus indicated similar component profiles. These two fish
species are classified in the same order (Scorpaeniformes), so it is unsurprising that they have
comparable component profiles. On the other hand, P. major is of order Perciformes and T. modestus
is of order Tetraodontiformes, and it appears that this considerable phylogenetic difference was
reflected in their different component profiles. Therefore, the method here could be an effective
technique for discriminant analysis of fish order. While follow-up studies with more fish species are
needed in the future, the results above show that it is possible to confirm differences in component
profiles among fish species with the experimental conditions in the present study. The loading plot in
Figure 2B shows characteristic components in the profiles that reveal differences among the fish species.
The figure suggests that hypotaurine and glycine (positioned at the top left of the plot) are characteristic
components in I. japonicus. Hypotaurine is a precursor in the biosynthesis of taurine [11], while fish
and shellfish are rich in taurine. Dark muscles have been reported to include large amounts of taurine,
and its content in ordinary muscle also differs depending upon the fish species [12]. However, in this
study taurine was not detected experimentally. A possible source of hypotaurine is that cysteine
sulfinic acid metabolised from methionine and cysteine can be decarboxylated to hypotaurine by
cysteine sulfinic acid decarboxylase (CSD) [11]. The CSD activity varies widely depending on the fish
species [13], for example being high in the bluegill and low in the yellowtail. Therefore, the amount
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of hypotaurine may be an effective marker indicating the different fish species. On the other hand,
glycine reacts with arginine in the synthesis of creatine, which is an important energy storage substance
in muscles. When adenosine triphosphate (ATP) in muscle is depleted due to strenuous exercise,
creatine and ATP are produced from phosphocreatine and ADP to prevent ATP deficiency. Part of
the creatine produced by this reaction is converted to creatinine by non-reversible non-enzymatic
dehydrogenation. On the loading plot, creatinine, phosphoric acid, and lactic acid are positioned in
the lower right, and these components are strongly associated with P. major. Moreover, lactic acid is a
product of glycolysis and accumulates in the muscle as the result of strenuous exercise. I. japonicus is a
benthic fish that spends much time hiding in the sea bed and does not normally swim around much,
while P. major is a more active swimmer in comparison. Since creatinine and lactic acid are components
associated with exercise, they are expected to be more associated with P. major. On the upper right side
of the loading plot, several monosaccharides are shown. These components are strongly associated
with T. modestus. Characteristic components in fish species obtained by loading plots can suggest
associations with their biological differences such as habitats.

2.2. Electronic Tongue

In the present study, fish meat was treated with cold water, and the extracted components were
submitted to taste sensor analysis. As a result, the present study could easily measure the taste
intensities of fish meat. The intensities of each taste obtained by the sensors are shown in Table 1.

Table 1. Intensities of different tastes obtained by electronic tongue for each fish species.

Taste
Attributes

Fish Species

Thamnaconus
modestus Pagrus major Inimicus japonicus

(Male)
Inimicus japonicus

(Female)
Sebastiscus
marmoratus

Sourness −28.7 ± 1.03 a −29.5 ± 1.09 a −34.4 ± 0.92 b −35.5 ± 1.24 b −35.3 ± 1.39 b

Acidic
bitterness 5.99 ± 0.77 a 5.39 ± 0.70 a 8.61 ± 1.11 b 8.53 ± 0.20 b 8.83 ± 1.13 b

Irritant −0.76 ± 0.03 −0.83 ± 0.19 −0.11 ± 0.17 −0.30 ± 0.58 −0.70 ± 0.21
Umami 11.0 ± 0.33 a 11.6 ± 0.46 ab 11.8 ± 0.10 ab 12.3 ± 0.28 b 12.4 ± 0.47 b

Saltiness −17.4 ± 0.48 a −18.3 ± 0.11 a −18.1 ± 0.52 a −18.6 ± 1.66 ab −20.7 ± 0.42 b

Bitterness −0.25 ± 0.08 −0.48 ± 0.08 −0.29 ± 0.34 −0.40 ± 0.18 −0.40 ± 0.19
Astringency −0.27 ± 0.03 −0.27 ± 0.03 −0.25 ± 0.03 −0.25 ± 0.01 −0.28 ± 0.00

Richness 1.13 ± 0.24 1.09 ± 0.25 0.96 ± 0.22 0.93 ± 0.18 0.85 ± 0.24

Values are taste intensity ± S.D. a, b Mean values within a line with different superscript letters on each fish species
differ significantly (p < 0.05).

Among the various fish species, taste differences were noted in sourness, acidic bitterness, umami
and saltiness. Firstly, there are significant differences in sourness, being stronger in P. major and
T. modestus than in S. marmoratus and I. japonicus (p < 0.05). Acidic bitterness, on the other hand,
was significantly weaker in P. major and T. modestus than in the other two (p < 0.05). This result suggests
an inverse relationship between these two tastes. The umami was also found to be significantly more
intense in S. marmoratus and I. japonicus (female) compared to T. modestus (p < 0.05). The saltiness of
S. marmoratus was significantly lower than the other samples except I. japonicus (female) (p < 0.05).
Umami and saltiness tend to show an inverse relationship. PCA-Y was implemented to visually show
the species difference in the taste attributes of fish (Supplementary Figure S1.) PC1 and PC2 could
explain 73.0% and 15.3 of the variance, respectively. In the score plot of PCA-Y, the fish species were
located at almost the same place as the metabolites from PCA-X. These results suggest a correlation
between the metabolites and the taste.

From this, it was presumed that there is a relationship between low-molecular-weight compounds
obtained by GC-MS analysis and taste intensities obtained with the taste sensor system.
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2.3. OPLS Analysis

OPLS was employed in the present study, because it gives models that are easier to interpret and
also it is better at screening for marker candidates. The model evaluations obtained by OPLS analysis
are shown in Table 2.

Table 2. Evaluation of models obtained by orthogonal partial least squares (OPLS) analysis of each
taste attribute. RMSEE: root mean square errors of estimation; RMSECV : root mean square errors
of cross-validation.

Taste Scaling A a N b R2X R2Y Q2Y y R2 RMSEE RMSEcv

Sourness
UV 1 + 0 + 0 15 0.344 0.907 0.874 0.996x − 0.384 0.91 * 1.02 1.14

None 1 + 1 + 0 15 0.982 0.989 0.984 0.434x − 18.62 0.27 - -
Par 1 + 0 + 0 15 0.587 0.880 0.859 1.000x − 0.034 0.88 * 1.16 1.17

Acidic
bitterness

UV 1 + 0 + 0 15 0.343 0.771 0.697 0.983x + 0.246 0.78 * 0.83 0.91
None 1 + 1 + 0 15 0.982 0.678 0.595 0.729x + 2.095 0.44 - -
Par 1 + 0 + 0 15 0.586 0.742 0.698 0.998x + 0.034 0.74 * 0.89 0.89

Irritant
UV 1 + 1 + 0 15 0.471 0.872 0.661 0.972x + 0.006 0.88 * 0.15 0.25

None 1 + 1 + 0 15 0.981 0.847 0.761 0.882x − 0.062 0.54 - -
Par 1 + 0 + 0 15 0.574 0.468 0.362 - - - -

Umami
UV 1 + 1 + 0 15 0.439 0.894 0.663 0.963x + 0.442 0.90 * 0.21 0.41

None 1 + 1 + 0 15 0.982 0.989 0.985 −0.179x + 13.92 0.08 - -
Par 1 + 0 + 0 15 0.582 0.55 0.435 - -

Saltiness
UV 1 + 2 + 0 15 0.557 0.963 0.81 0.965x − 0.654 0.96 * 0.29 0.67

None 1 + 1 + 0 15 0.982 0.988 0.983 −0.152x − 21.42 0.03 - -
Par 1 + 1 + 0 15 0.697 0.854 0.599 0.998x + 0.013 0.86 * 0.55 0.83

Bitterness
UV - - - - - - - - -

None 1 + 1 + 0 15 0.981 0.828 0.745 1.094x + 0.034 0.14 0.19 0.20
Par - - - - - - - - -

Astringency
UV 1 + 0 + 0 15 0.23 0.537 −0.086 - - - -

None 1 + 1 + 0 15 0.982 0.991 0.988 0.379x − 0.164 0.12 0.03 0.03
Par 1 + 0 + 0 15 0.52 0.192 0.0325 - - - -

Richness
UV 1 + 1 + 0 15 0.451 0.864 0.673 0.928x + 0.072 0.87 * 0.09 0.16

None 1 + 1 + 0 15 0.982 0.979 0.969 1.338x − 0.339 0.55 - -
Par 1 + 0 + 0 15 0.576 0.382 0.215

a A = number of models. b N = number of samples used in producing models. * Indicates statistically significant
differences. UV, unit variance-scaling; Par, pareto-scaling; None, no-scaling.

R2Y and Q2Y values close to 1 mean a better fitting and more accurate model. In general, an R2

value of 0.65 or more and Q2 of 0.5 or more indicate satisfactory ability in quantitative prediction [14,15].
Consequently, in this study models meeting these thresholds were evaluated as statistically significant
models. For the tastes of sourness, acidic bitterness, and saltiness, statistically significant models
could be produced with all three methods of scaling. For the tastes of irritant, umami, and richness,
it was not possible to produce a statistically significant model with pareto-scaling (Par). For bitterness
and irritant, a model could only be produced with no-scaling (None). In the None method there
is no centring or scaling, while centring and scaling are carried out for unit variance-scaling (UV)
and Par, respectively. In UV, each of the variables after centring is divided by its standard deviation,
so the result does not reflect quantitative contributions of the variables. On the other hand, with Par,
quantitative contributions were considered in the calculations after centring. Targeting only analytical
conditions that give statistically significant models (R2Y ≥ 0.65 and Q2Y ≥ 0.5), regression equations
for the prediction models were produced with the actual measured value R2Y as vertical axis and the
predicted value Q2Y as abscissa axis (Table 2). When the test of a regression equation for the absence
of correlation gives a significance level of 1%, and n = 15 as in the present study, a regression equation
with Pearson product-moment correlation coefficient (R2) ≥ 0.64 indicates significant correlation
between each taste factor and the metabolites. Therefore, taste prediction models with R2 ≥ 0.64
were considered to be statistically significant. Looking at Table 2, with None it was not possible to
find prediction models for any of the tastes. Therefore, it is clearly not a suitable scaling method
for producing taste prediction models. On the other hand, prediction models could be produced for
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some tastes using UV or Par, so centring and scaling with UV or Par should be carried out to produce
prediction models. The root mean square errors of estimation (RMSEE) and root mean square errors
of cross-validation (RMSECV) are indices to assess performance of the produced prediction models.
Their values in the present study mean the models showed comparatively good precisions (Table 2).

The VIP scores were calculated for each of the x variables in the prediction models obtained
by OPLS. Many components in each model showed VIP scores ≥ 1.0 (shown in Table S2 as
high-VIP components). Sugars show high VIP values in all taste models. Many sugars (for example
monosaccharides) are sweet-tasting substances. However, sugar acids like aldonic and uronic acid are
sour. In fact, glucuronic acid had a highly positive relationship with sourness (UV). Moreover, acidic
bitterness and irritant prediction models show a negative relationship with saccharides. This indicates
that differences in saccharide content influence each taste. Therefore, these results suggest that
differences in the composition of sugars influence each taste of fish meat.

Analysis with UV successfully detected many compounds with high VIP scores for each of the
taste models. On the other hand, analysis with Par found only 1/3 of the compounds detected with
UV, but in many cases the VIP values of these compounds were higher than those with UV. With
UV, the component ranked first in VIP score was different for each of the tastes. However, with Par,
phosphoric acid showed the highest VIP score in all the taste models, and creatinine and lactic acid also
showed high VIP scores. The fact that these components were also identified as high-VIP components
with UV indicated that they are likely to be effective markers for the taste of fish meat. Phosphoric acid
is produced by the breakdown of ATP, which is closely associated with the freshness of fish meat [16].
On the other hand, creatinine and lactic acid are reported to be important in the constitution of the
tastes of fish and shellfish in omission tests [3]. For this reason, these components are considered to be
candidate markers for evaluating differences in the taste of fish species in this study.

Now, we discuss the high-VIP components for each taste and their association with the tastes.
(1) For the taste model of sourness, phosphoric acid and lactic acid, which are acid-tasting compounds,
showed positive correlation coefficients. It was therefore suggested that models of sourness were
produced by difference in the quantities of acid-tasting substances. (2) In the case of acidic bitterness
model, negative correlation coefficients were shown for the acid-tasting compounds (phosphoric acid
and lactic acid), creatinine, and many sugars. These observations suggest that acidic and sweet-tasting
substances suppress acidic bitterness. (3) In the models of irritant with UV, serine was identified
as having the highest VIP score. Although the relationship between serine and irritant is unclear,
serine could well constitute a marker for this irritant taste. However, many substances with an
astringent taste (e.g., polyvalent metal ions) cannot be analysed by the technique used here. Therefore,
specifying components associated with astringency in fish meat requires further investigation. (4) In
the models of umami with UV, O-phosphoethanolamine (PEA) showed the highest VIP score. PEA is
an important intermediary in phospholipid metabolism, and is widely present in the tissues and bodily
fluids of animals. Because it is a non-proteinous free amino acid, it is detected by analysing extractive
components of foodstuffs like seafood, and its content varies depending on the foodstuff [17,18]. In fish,
the PEA content in the brain of Perccotts glehni has been reported to vary with the season [19]. However,
there are no reports concerning its relationship with the taste of any food. A positive relationship
between PEA and umami in this study suggested that PEA contributes either directly or indirectly to
the umami of fish meat. (5) Because saltiness is perceived in the presence of sodium ions, it is difficult
to directly evaluate the associated substances by the techniques in this study. However, nicotinamide
and other substances that showed a high VIP score in saltiness models with UV might be indirectly
associated with saltiness. (6) Aspartic acid, which showed a VIP score of 1.02 in relation to richness,
is an amino acid with an umami taste, so it could be associated with richness. The correlation between
metabolites and taste attributes was supplemented by a heatmap based on hierarchical clustering
analysis (Supplementary Figure S2). The results of the heatmap were similar to those of the OPLS
analysis. That is, the metabolites located close to each taste attributes exhibited high VIP values in the
taste attribute prediction model (OPLS analysis).
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Taste results from the interaction among different chemical substances. Therefore, it can be easily
imagined that various components showing high VIP scores for different tastes collectively bring out
the flavours peculiar to fish meat. From this reason, the component profile analysis reported here,
which comprehensively covers various components with different chemical characteristics, could be
an effective new tool for evaluating the taste of fish meat.

3. Materials and Methods

3.1. Experimental Samples

Market-size individuals from the species of T. modestus (250 ± 28.6 g), I. japonicus (male
(141 ± 5.9 g) and female (305 ± 103 g)), S. marmoratus (541 ± 32.1) and P. major (848 ± 114) were used in
this study. T. modestus, I. japonicus and S. marmoratus were cultured by feeding with the commercial food
Otohime EP (Marubeni Nisshin Feed Co. Ltd., Tokyo, Japan) in the onshore aquaculture cage at the
Hiroshima Prefectural Technology Research Institute, Fisheries and Ocean Technologies Center (HiTRI)
until use. The P. major was cultured by feeding with the commercial food Sakuraou EP (Higashimaru
Co. Ltd., Kagoshima, Japan) in the offshore aquaculture tank at HiTRI until use. Three individuals
from each species (a total of six for I. japonicus) were collected and killed by breaking the bulbar by
knife. Immediately after death, each fish was filleted, and the blood-retaining portions were removed
as much as possible. The fillets were then stored at −80 ◦C until analysis. Information about fish
species used in this study is summarised in Table S3.

3.2. GC-MS Analysis

3.2.1. Pretreatment

The sample preparation was described in a previous publication [20]. In brief, firstly the fillets
were freeze-dried and powdered in a mill. Into each 50 mg of powdered sample, mixed solutions of
methanol/ultrapure water/chloroform (2.5/1/1 v/v/v, 1 mL) and ribitol (internal reference standard,
0.2 mg/mL, 60 µL) were added. After stirring for 5 min, the mixture was centrifuged (16,000× g,
0 ◦C, 5 min). Ultrapure water (400 µL) was added to 800 µL of the supernatant, followed by stirring
for 1 min and then centrifugation (16,000× g, 0 ◦C, 5 min). A 400-µL portion of the supernatant
was concentrated for 1 hour using a centrifugal evaporator (CVE-2000, Eyela, Japan), and then
freeze-dried overnight. Methoxyamine hydrochloride solubilised with pyridine (20 mg/mL, 50 µL)
was added to the freeze-dried sample, and oxime formation was carried out by reacting at 30 ◦C for
90 min. N-methyl-N-(trimethylsilyl) trifluoroacetamide with a volume of 100 µL (MSTFA, GL Sciences,
Japan) was further added, and trimethylsilylation was carried out by reaction at 37 ◦C for 30 min.
The derivatised samples were submitted to GC-MS analysis.

3.2.2. Analytical Conditions

The GC-MS device was a GCMS-QP2010 Ultra system (Shimadzu, Japan), and the GC column
model was Agilent J&W DB-5 (length 30 m, internal diametre 0.25 mm, film thickness 1.00 µm, Agilent
Technologies, Santa Clara, CA, USA). The GC oven temperature started at 100 ◦C, held for 4 min,
then increased to 320 ◦C at the rate of 10 ◦C/min, and held for 11 min at 320 ◦C. The injection port
temperature was 280 ◦C. The derivatised sample (1 µL) was injected in split injection mode with a
split ratio of 10:1. Helium was employed as the carrier gas, and its linear velocity was kept constant
(39.0 cm/s). The purge flow rate was 5 mL/min. Quadrupoles were used for MS mass separation,
and electron impact was used for ionisation. The ion source temperature was 200 ◦C, the interface
temperature was 280 ◦C, and the ionisation voltage was 70 eV. The measurement was carried out in
the scan mode in the range of 45–600 m/z.
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3.2.3. Data Processing

The retention time correction of peaks (Retention Index) was carried out based on the retention
time of a standard alkane series mixture (C-6 to C-33) using the Automatic Adjustment of Retention
Time (AART) function of the Shimadzu GCMSsolution software. The annotation of peaks was
performed using commercially available GC/MS Metabolite Component Database Ver.2 (Shimadzu
Co. Kyoto, Japan), which contained a mass spectral library. These annotated peaks were detected
under the possessing condition of a similarity index of more than 80 and a target ion with confirmation
ion ratio of ≥50% in absolute tolerance. Moreover, typically 52 compounds within the annotated peaks
were identified by comparison with mass spectra and retention time obtained from standard substance
mixture for GC/GC-MS metabolomics (GL Sciences, Tokyo, Japan).

3.3. Electronic Tongue

3.3.1. Sample Preparation

Dorsal ordinary muscle (5 g) from fish fillet was homogenised with ACE HOMOGENIZER AM-7
(NIHONSEIKI KAISHA LTD, Tokyo, Japan) at 5000 rpm for 5 min over ice in four fold weight of tap
water. After centrifugation (15,000× g, 15 min, 4 ◦C), the supernatant was collected and made up to
70 mL. Of this sample, 35 mL was used for measuring the initial taste and 35 mL for the after taste.

3.3.2. Method of Measurement

The taste was measured by using a TS-5000Z taste sensor system (Insent, Japan) using the method
given in an earlier report [21]. Each sample solution was tested using five types of sensors: AAE,
CT0, CA0, C00, and AE1. Differences in human perception of taste intensity were estimated based
on Weber’s law from the average of three repeated measurements, and the resultant value was taken
to be the intensity of each taste attribute. This system detects two types of taste: the initial taste
and after taste. In this study, relative potentials obtained from the AAE (umami), CT0 (saltiness),
C00 (acidic bitterness), CA0 (sourness) and AE1 (irritant) sensor probes were used to measure selective
initial tastes. CPA (change of membrane potential caused by adsorption) values obtained from C00
(bitterness), AE1 (astringency), and AAE (richness) sensor probes were used to measure selective after
tastes [21].

3.3.3. Statistical Analysis

The SPSS STATISTICS 24 software (IBM, Armonk, NY, USA) was used for statistical analysis.
One-way analysis of variance was used to compare the mean values between fish species for each taste
attribute. Attributes that showed significant differences were subsequently tested by Tukey’s multiple
comparison test. The significant level was set at 5% (p < 0.05).

3.4. OPLS Analysis

SIMCA 14 (MKS Instruments, Andover, MA, USA) was used for multivariate analysis. The data
sets consisted of: sample name in column 1, fish species in column 2, y variables (intensity values for
each taste attribute) in column 3, and each corrected peak intensity of the annotated components in
columns after the y variables. First, PCA-X or Y, as an unsupervised learning analysis without the y or
x variables, was carried out with Par in order to analyse differences in metabolite component or taste
attributes profiles of fish species. Next, models for predicting each taste attribute were produced by
OPLS analysis using the annotated components as x variables, and correlations between each taste
attribute (y variable) and the metabolic components were analysed. The VIP scores were calculated for
the taste attributes for which reasonably precise prediction models were produced, and components
with a VIP score ≥ 1 were regarded as metabolite components with a strong relationship with the
corresponding taste attributes. Furthermore, OPLS analysis was carried out employing three types
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of scaling (None, UV, or Par) in order to investigate how the scaling affects the model performance.
The heatmap based on hierarchical clustering used MetaboAnalyst 4.0 (http://www.metaboanalyst.
ca/) as supplemental OPLS analysis. Using Par scaling, the heatmap was created targeting the top 30
with VIP values obtained with PLS-DA.

4. Conclusions

In this study, taste prediction models were constructed based on metabolomic analysis to clarify
components important for different tastes in fish meat. Firstly, differences in the component profile
from PCA were noted among the four fish species. There were also clear differences between the fish
species in sourness, acidic bitterness, umami and saltiness. Moreover, OPLS analysis produced good
taste prediction models, especially for sourness, acidic bitterness and saltiness. Various compounds
including phosphoric acid, lactic acid and creatinine were specified as important metabolites in the
prediction models. Phosphoric acid in particular showed the highest VIP score in many taste prediction
models, and therefore it is a candidate marker for evaluating differences in the taste of fish species.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/1/1/s1,
Table S1: List of metabolites detected on GC-MS analysis, Table S2: Components which show high VIP scores in
prediction models, Table S3: Information about the experimental fish samples. Figure S1: Principal component
analysis-Y of the taste attribute profiles. Figure S2: Heatmap based on hierarchical clustering analysis visualisation
of the differential metabolites and taste attributes in fish species.
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