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Abstract: Metabolites represent the most downstream information of the cellular organisation. Hence,
metabolomics experiments are extremely valuable to unravel the endogenous pathways involved in
a toxicological mode of action. However, every external stimulus can introduce alterations in the
cell homeostasis, thereby obscuring the involved endogenous pathways, biasing the interpretation
of the results. Here we report on sodium saccharin, which is considered to be not hepatotoxic and
therefore can serve as a reference compound to detect metabolic alterations that are not related
to liver toxicity. Exposure of HepaRG cells to high levels of sodium saccharin (>10 mM) induced
cell death, probably due to an increase in the osmotic pressure. Yet, a low number (n = 15) of
significantly altered metabolites were also observed in the lipidome, including a slight decrease in
phospholipids and an increase in triacylglycerols, upon daily exposure to 5 mM sodium saccharin for
72 h. The observation that a non-hepatotoxic compound can affect the metabolome underpins the
importance of correct experimental design and data interpretation when investigating toxicological
modes of action via metabolomics.

Keywords: in vitro; HepaRG; sodium saccharin; reference toxicants

1. Introduction

Since the introduction of metabolomics as a new “-omics” domain in 1999, the field of research
has proved to be a valuable source of information for the actual phenotype or state of organisms [1].
Metabolomics is defined as the study of the biochemical profile of small molecules in an organism [1].
Because the metabolome is the most downstream level in the biomolecular organisation of a system,
metabolomics fingerprints are very dynamic and alterations may be induced even by small external
triggers [2,3]. Many of these stimuli, such as gender, age (young vs. old), dietary status (e.g., fasting vs.
fed) and activity (rested vs. active) potentially form biases that obscure the metabolic signature related
to exposure. These biases are important, but can be anticipated through strict subject selection criteria
and proper randomisation [4].
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An effect often not considered is the exposure itself. Although this placebo effect is well-known
in medicine, precautions are often not taken during metabolomics studies. The “exposure bias” is
relevant when combining metabolomics with in vitro experiments, since it is one of the main potential
sources of bias. Although the biological variation and bias is reduced in cell culture experiments,
confounding factors still pose a risk during metabolomics investigations. Indeed, the mere presence of
a xenobiotic may theoretically cause a metabolic shift, even though this compound is not considered
harmful. This confounding factor of “exposure” can generate results falsely interpreted to be related
to toxicity [5].

Sodium saccharin is an artificial sweetener that has been used for over a century. Except for a
case study describing an idiosyncratic reaction after exposure to different pharmaceutical products
containing the sweetener, no evidence of human hepatotoxicity has been reported so far [6,7]. The safe
characteristics of sodium saccharin make it a good candidate to investigate potential metabolic
alterations triggered in vitro upon exposure to a non-hepatotoxic molecule.

2. Materials and Methods

2.1. Materials and Methods

Materials, exposure and acquisition methods have been performed as described previously [8].
A brief description highlighting the principles is mentioned in-text and full details concerning the
experimental protocols are provided in the Supplementary Materials SM-1 to SM-5.

2.2. Determination of Testing Concentrations

Seven days after initial cell seeding, the wells were divided into two negative control groups and
eight groups that were exposed to sodium saccharin at different concentrations ranging from 0.40 to
40 mM for a period of 72 h in a repeated dose exposure, in which the medium was refreshed every
24 h. Viability was assessed using the neutral red uptake (NRU) assay [9,10]. Full details are available
in the Supplementary Materials SM-2.

2.3. Metabolomics Experiments

2.3.1. Seeding of the HepaRG® Cells and Exposure to Sodium Saccharin

Cryopreserved differentiated HepaRG® cells were thawed and seeded in collagen-coated two-well
Lab-Tek chamber slides at a density of 1.03 × 106 cells/well. Two additional blank chamber slides were
treated identically to serve as blanks during further analysis. After seven days of cultivation, the cell
cultures were visually checked for hepatocyte/biliary cell ratio and block randomised in three groups:
a negative control group in comparison to a dose of sodium saccharin at a concentration of 5.5 mM
(high dose) and a 1/10 dilution of the high dose, i.e., 0.5 mM (low dose). Higher concentrations of
sodium saccharin were not applied because of hyperosmotic toxic effects (additional osmotic pressure
>20 mOsm/L). Each group contained six replicates, which is often considered an adequate sample size
for in vitro metabolomics experiments [5,11]. The cell cultures were exposed for 72 h with a medium
refreshment every 24 h. The exposure experiment has been performed twice to reduce false positive
results [8].

2.3.2. Sample Preparation

The cell cultures were harvested according to previously described protocols, full details are
available in SM-3 [12,13]. Briefly, cells were prepared for extraction with a wash in phosphate buffered
saline (37 ◦C) followed by freezing on liquid nitrogen. Cells were scraped from the surface three times
with 200 µL of a cooled (−80 ◦C) 80% (v/v) methanol (MeOH)/milliQ water solution. Liquid/liquid
extraction was performed using ultrapure water, methanol, and chloroform. Quality control (QC) pools
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were generated through the collection of aliquots of all samples for the polar and non-polar phases [14].
Both fractions were evaporated to dryness and reconstituted in LC-MS-compatible solvents.

2.3.3. LC-MS Analysis

LC-MS analysis was performed using separation mechanisms described in SM-4 [8,15].
The non-polar fraction was analysed using reversed phase chromatography on a Kinetex XB-C18
(150 × 2.1 mm; 1.7µm particle size, Phenomenex, Utrecht, the Netherlands). Mobile phase compositions
were mixtures of methanol, isopropanol (IPA) and water with ammonium acetate (pH 6.7) and of
acetonitrile (ACN), IPA and water with an acetate buffer (pH 4.2) for negative and positive ionisation
modes, respectively.

The polar fractions were analysed using HILIC systems using an iHILIC column (100 × 2.1 mm;
1.8 µm particle size, HILICON, Umea, Sweden) with ACN, MeOH and water with an ammonium
formate buffer (pH 3.15) for the positive ionisation mode, and a polymeric iHILIC Fusion Column
(100 × 2.1 mm, 5 µm particle size, HILICON) in combination with ACN, MeOH and water with an
ammonium carbonate ((NH4)2CO3) buffer (pH 9.0) for the negative ionisation mode. LC-separation was
performed on an Agilent Infinity 1290 UPLC (Agilent Technologies, Santa Clara, CA, USA), connected
to an Agilent 6530 QTOF with Agilent Jet Stream nebuliser (Agilent Technologies). The LC-MS system
was equilibrated using 15 QC-injections at the start of the data acquisition. The injection order of the
samples was block-randomised to prevent bias related to instrumental drift. One QC injection was
performed after every four sample injections to monitor instrumental drifts.

2.3.4. Data Analysis

Data Quality Control

Internal standards were used to evaluate the precision of the retention time and m/z-accuracy
within and between experimental batches. The raw data were searched for the internal standards
using the Find by Formula algorithm (Agilent Technologies) with the following parameters: formula
matching ± 10 ppm, expected variation 2 mDa ± 8 ppm. Samples were only considered when internal
standards were detected and the number of molecular features was comparable to those of the other
samples. The absence of internal standards and/or molecular features in an acquired LC-MS run may
indicate analytical issues during the run and, therefore, the removal of the failed runs was considered
to improve the quality of the final dataset. The results of internal standard quality control were used to
set the parameters for further data processing.

Data Pretreatment

Acquired data were imported on the MassHunter Qualitative software (Agilent Technologies,
v 2.06.00) and converted to centroid m/z data. The generic datafiles were processed using the XCMS
package in the R workspace [16,17]. Features representing the ions of the extracted metabolites were
searched using the centWave algorithm. Features were aligned with the Obiwarp algorithm and
grouped by density [18]. Missing peaks were re-extracted using the fillPeaks algorithm [17].

The dataset was cleaned by removing isotopes and features present in blank samples. Other applied
filters were based on a high number of missing values and within-group variability. All preprocessing
functions were executed using the MetaboMeeseeks package [19]. A principal component analysis
(PCA) was performed and outliers were removed for further analysis (n = 4) (Figure S6). After
outlier removal, the filter process was re-iterated and samples were normalised using BatchCorr
normalisation [20]. Missing values imputation was considered but not applied, since it had no positive
impact on the within-group variance. The final dataset was once more evaluated using a PCA to assess
important trends and their potential impact on the subsequent multivariate analysis. All parameters of
feature extraction and data clean-up are mentioned in SM-5.



Metabolites 2019, 9, 265 4 of 10

Statistical Analysis

Univariate statistical analysis was performed through the non-parametric Mann–Whitney U
test with a Benjamini–Hochberg correction for multiple testing using the multtest package in R [21].
In addition, a partial least squares discriminant analysis (PLS-DA) and a random forest classification
were performed as multivariate analyses [19,22]. Performances were checked using leave-one-out
cross-validation. Metabolic alterations were defined based on significance in the univariate tests
(q-value <0.05) and on importance in the multivariate models (based on the covariance of the latent
values of the first component of the PLS-DA and the bimodal distribution of the variable importance
measure (VIM) of the random forest classifier model). The raw signals of the selected signals were
manually checked to confirm the result.

Metabolite Annotation

The details of metabolite annotation are mentioned in SM-6. Briefly, annotation was performed
in Mass Hunter using the molecular feature extractor algorithm: the signals corresponding to the
altered metabolite were selected, the complete result set was extracted and the Molecular Formula
Generator (MFG) generated a list of possible chemical formulas. The identification was based on the
m/z-value, the isotope pattern, the measured retention time and the fragmentation spectra acquired
during the equilibration runs. Results were reported according to the standards of the CAWG and
MSI [23,24]. Level 2 and level 3 identifications were considered of sufficient quality to infer a biological
interpretation to the outcome of the experiments. All metabolites, including molecular features with
lower levels of confidence in annotation (levels 4–5), are reported in Table S4.

3. Results

3.1. Experimental Observations

The dose–response curves of the viability assay in Figure 1 showed a clear decrease in viability
from 10 mM sodium saccharin onwards. Indeed, concentrations of 10 mM increased the osmotic
pressure over 20 mOsm/L to supra-physiological ranges [25]. Hyperosmolarity is a form of toxicity not
related to physiological hepatotoxicity, and such high exposures are therefore not considered as a good
reference for investigating the chemical hazard of the product. A high-dose exposure of 5 mM induced
an osmotic pressure of ±10 mOsm/L, yet no cytotoxic effects were observed.
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Figure 1. Averaged viability curve for the neutral red uptake (NRU)-assay upon daily exposure to
sodium saccharin for a period of 72 h. Cytotoxicity is observed from 10 mM onwards, which is equal to
an osmotic pressure of ±20 mOsm/L.



Metabolites 2019, 9, 265 5 of 10

3.2. Data Quality

The injections that were not considered during statistical analysis are reported in Table S2. For the
non-polar fraction, injections QC-1 and QC-2 were excluded from the analysis because of failed
injections, reflected by the absence of internal standards in the chromatogram and the absence of the
typical chromatogram.

As shown in Table S3, standard deviations were higher during the first experimental batch due to
autosampler thermostatic issues. The high mRSDs for QCs in comparison to all other experiments using
lipidomics approaches can be explained by the shift in retention times between the two experimental
batches. To correctly match corresponding peaks, the parameters for alignment and grouping were
less strict, which introduced extra noise in the data.

3.3. Selection of Potential Endogenous Markers of Exposure

As shown in the PCA plots in Figure 2 and Figures S7–S10, no clear distinction between all
exposure groups was observed. The overlap between the different exposure groups indicated that the
source of variation in the dataset was probably not related to the exposure. This was also reflected
by the poor performance of both multivariate and univariate tests: all AUCs for the random forest
classifiers reported in Table 1 were below 0.7, except for the high-dose exposure conditions. According
to the R2 and Q2 values in Table 2, the PLS-models overfit, with Q2 values < 0.2. The R2 of the non-polar
fraction in positive mode was good (>0.8), but the cross-validation showed this was an overfit value,
and the Q2 was reduced to 0.40.
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Figure 2. PCA plots of the non-polar fraction in positive mode during the 72-h exposure showing PC1
vs. PC2. There is strong overlapping of the different exposure groups in all principal components,
indicating the variance is not related to exposure. Only a slight trend is visible between the negative
control group and the group exposed to the higher dose.

Univariate tests did not reveal major differences between the exposure groups and the negative
control group. Only 15 features were observed to be significantly different between the negative control
group and the high-dose exposure group, and only for the non-polar fraction in positive mode.

The identified features given in Table S4 represent a decreased presence of six
phosphatidylethanolamines, two phosphatidylinositols and one sphingomyelin. Further differences
included the increase of two low-saturated triacylglycerols. Their respective boxplots are represented
in Figure S10.
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Table 1. AUCs of the random forest classifiers comparing the negative control group against the
different exposures.

Exposure Non-Polar Positive Non-Polar Negative Polar Positive Polar Negative

Low Dose 0.51 0.55 0.59 0.17
High Dose 0.95 0.40 0.69 0.21

Table 2. R2 and Q2 values for the PLS-DA discrimination between the exposure groups and the negative
control group.

Exposure
Non-Polar Positive Non-Polar Negative Polar Positive Polar Negative

R2 Q2 R2 Q2 R2 Q2 R2 Q2

Low Dose 0.01 0.01 0.1 0.06 0.22 0.14 0.21 0.05
High Dose 0.84 0.4 0.42 0.10 0.08 0.03 0.33 0.04

4. Discussion

The metabolome is a dynamic level of the cellular organisation. External stimuli theoretically
invoke a response of the cell, resulting in a change of the metabolome. Sodium saccharin is considered
to be a non-hepatotoxic chemical, which makes it an ideal compound to select markers of exposure not
necessarily related to hepatotoxicity [8,9].

The acquisition of the metabolome of cells exposed to a hepatotoxicant in comparison to vehicle
only would reveal alterations that would all be addressed to a toxic mode of action. The main
consequence of this assumption is the questionable predictive value of the observed metabolic
alterations, especially in small-scale experiments (one dose, one time point exposure of a single
chemical exposure). This consideration stresses the importance of an exposure to a non-toxic negative
control during the experiment.

Few features of the lipidome were changed significantly (n = 15) and included the presence of
triacylglycerols and a lower presence of phospholipids. The absence of significant changes in the
polar fraction suggested that the cell culture did not implement major adaptations in metabolism as a
response to the external stimuli.

Effects related to hyperosmolarity have also been described in human cell cultures, which
showed the increased presence of monosaccharides and amino acids to retain the osmotic balance [26].
However, it is possible that these effects were not observed in this current experiment due to the
deliberate choice to avoid these hyperosmolar (non-physiological) concentrations. The choice of
a supra-physiological dose would imply a bias to select metabolic alterations related to modes of
action not relevant in physiological conditions. This bias is especially relevant in in vitro techniques,
as exposure concentrations can be increased to unrealistic, non-physiological levels. A potential
prevention is the use of toxicokinetic data to confirm the plausibility of the exposure conditions.

García-Cañaveras et al. [27] and Ramirez et al. [28] classified different toxicants according to
the mode of action, observing specific fingerprints for different end-points of toxicity. Ramirez et al.
described the downregulation of carnitine, creatine, phosphocreatine, and pantothenic acid during
exposure to peroxisome proliferating agents, the decrease of oleic acid, galactose and acetyl aspartate
in combination with an increase of tryptophan and alanine during exposure to enzyme-inducing
xenobiotics [28]. Garcia et al. compared the fingerprint of xenobiotics inducing oxidative stress, steatosis
and phospholipidosis, in which they observed alterations in glutamate levels, oxido-reductive status,
lysophospholipid/phospholipid ratio and lipid accumulation [27]. The inclusion of non-hepatotoxic
compounds in their experimental design, such as citrate and ketotifen, states the importance of
reference compounds for non-hepatotoxicity as metabolic changes were observed, albeit with a
different fingerprint.

A qualitative comparison of the metabolic alterations for steatosis and cholestasis obtained in
previous experiments are presented in Table 3 [8,29]. The clear alterations of the metabolome during
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hepatotoxic modes of action can be discriminated from the exposure to a non-hepatotoxic toxicant.
Next to significant differences in the polar metabolome, the lipidome of a cell culture exposed to
hepatotoxic compounds showed clear and strong alterations, with multiple lipid species of several
classes involved in the downstream effect, whereas the effects during exposure to sodium saccharin
were not substantial.

Table 3. Heat map for the endogenous markers of toxicity for hepatotoxicants inducing steatosis
(sodium valproate) [8] and cholestasis (bosentan) [29] showing their up- (red) or down-regulation
(green) in comparison to a negative control group (sodium saccharin). Common alterations indicate
the importance of the use of non-hepatotoxic reference compounds as a negative control to prevent an
exposure bias, especially in the lipidomics group.

Bosentan Sodium Valproate Sodium Saccharin
Time Frame 24 h 72 h 24 h 72 h 72 h
Concentration (µg/mL) 23 230 9.5 95 230 2300 66.5 665 1000
Acetylcholine
Acetylspermidine
Aminergic Oligopeptides
Carnitine
citric-acid N-sugar
Choline
Cholesterol Sulfate
Creatine
diacetylspermidine
GTP
Isoputreanine
Methylbutyryl Carnitine
Methylhydroxylysine
Nucleotides
Ornithine
Pantothenic Acid
Phosphocholine
Phosphorylated Metabolites
Phosphorylethanolamine
Putrescine
SAM
Spermidine
Taurine
Trimethylammonium Butanoic Acid
UDP Glucuronic Acid
Bile Acids
Ceramide
Ceramide, Derivative
Diacylglycerol
Glycosfingolipid
LPE 18:1
PC
PE (non PUFA)
PE (PUFA)
PE (P)
PS
Sfingomyelin
Triacylglycerol (O)
Triacylglycerol (>50, PUFA)
Triacylglycerol (>50, non PUFA)
Triacylglycerol (<50)

(A)
Abbreviations: GTP, guanosyl triphosphate; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine;
PE, phosphatidylethanolamine; PI, phosphaditylinositol; PS, phosphatidylserine; SAM, S-adenosyl methionine;
TG, triacylglycerol.

Colour
Number of Lipid Species >3 1–3 0 1–3 4–10 >10

Signal Abundance Lower Lower N/A Higher Higher Higher

(B)

A mechanistic interpretation based on the observed metabolic alterations provides an additional
value to the localisation of the specific molecular initiating event and the potential adverse outcome, as
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this observation is an additional argument for a toxic cascade. Although metabolic alterations were
observed upon exposure to sodium saccharin, no specific affected pathway could be identified. Based
on all observations, the use of a non-hepatotoxic compound instead of a vehicle-only negative control
group may help reducing false positive results without jeopardising the sensitivity of toxic insults.

5. Conclusions

The exposure of HepaRG cells to high levels of sodium saccharin induced cell death, possibly
due to osmotic pressure. The exposure concentration should not solely be determined from viability
curves, but should also be checked for physiological relevance to prevent unrealistic exposure scenarios.
Although sodium saccharin is not considered to be a hepatotoxicant, minor changes were observed in
the lipidome, including a slight decrease in phospholipids and an increase in saturated triacylglycerols.
The metabolome was altered upon exposure to non-hepatotoxic compounds, indicating the importance
of reference compounds when investigating toxicological insults. The metabolic changes were less
pronounced than those of reference hepatotoxicants and can therefore be used as a background response
to prevent false positive results related to the exposure bias.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/265/s1,
Figure S1: Viability curves for the NRU-assay 72 h of exposure., Figure S2: Extracted ion chromatogram for all
samples in experiment 1 for m/z 162.1139 at a retention time of 8.7. Figure S3: Boxplots for m/z 162 at rt 8.7 min.
Figure S4: Annotation of the molecular formula using the Agilent Molecular Formula Generator reveals a match
for the proton, sodium and potassium adduct of a molecule with formula C7H15NO3, Figure S5: MS/MS spectrum
of the molecular feature (up), which matches with the MS/MS spectrum of L-carnitine in the METLIN database
(down), Figure S6: PCA reflecting the outlier position of QC-1 and IC10-6 for the dataset of the non-polar fraction
in negative ionisation mode, Figure S7: PCA plots of the non-polar fraction in negative mode during the 72 h
exposure showing PC1 vs. PC2 (upper) and PC3 vs. PC4 (lower), Figure S8: PCA plots of the non-polar fraction
in positive mode during the 72 h exposure showing PC1 vs. PC2 (upper) and PC3 vs. PC4 (lower), Figure S9:
PCA plots of the polar fraction in negative mode during the 72 h exposure PC1 vs. PC2 (upper) and PC3 vs. PC4
(lower), Figure S10: PCA plots of the polar fraction in positive mode during the 72 h exposure showing PC1 vs.
PC2 (upper) and PC3 vs. PC4 (lower), Table S1: Concentration range (in µg/mL) for the NRU-assay of sodium
saccharin on HepaRG cells for a period of 72 h, Table S2: Samples which did not meet QC criteria., Table S3:
Median relative standard deviations (mRSDs) for all subgroups in the experiments, Table S4: AUCs of the random
forest classifiers comparing the negative control group against the different exposures, Table S5: R2 and Q2 values
for the PLS-DA discrimination between the exposure groups and the negative control group, Table S6: Metabolites
identified as potential metabolites of interest for all exposure models.
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