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Abstract: In this study, metastatic melanoma, breast, and prostate cancer cell lines were analyzed using
a 1H-NMR-based approach in order to investigate common features and differences of aggressive
cancers metabolomes. For that purpose, 1H-NMR spectra of both cellular extracts and culture
media were combined with multivariate data analysis, bringing to light no less than 20 discriminant
metabolites able to separate the metastatic metabolomes. The supervised approach succeeded in
classifying the metastatic cell lines depending on their glucose metabolism, more glycolysis-oriented
in the BRAF proto-oncogene mutated cell lines compared to the others. Other adaptive metabolic
features also contributed to the classification, such as the increased total choline content (tCho),
UDP-GlcNAc detection, and various changes in the glucose-related metabolites tree, giving additional
information about the metastatic metabolome status and direction. Finally, common metabolic
features detected via 1H-NMR in the studied cancer cell lines are discussed, identifying the glycolytic
pathway, Kennedy’s pathway, and the glutaminolysis as potential and common targets in metastasis,
opening up new avenues to cure cancer.
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1. Introduction

Cancer is a genetic or epigenetic disease resulting in altered metabolic activities compared to normal
cells, including biological hallmarks such as the Warburg effect [1,2], the oxidative phosphorylation
(OXPHOS) [3], and the glutaminolysis [4,5]. Such changes contribute to sustaining cancer malignancy.
Due to several mutations in key oncogenes and tumor suppressor genes, cancer cells become highly
demanding from a metabolic point of view, using larger amounts of carbohydrates, amino acids, and
fats as energy resources to sustain rapid growth [6,7]. This results in a higher turnover of metabolites
production, corresponding to intermediates or end-products of biological pathways, detectable by
spectroscopic-based metabonomics approaches such as Nuclear Magnetic Resonance (NMR) or mass
spectrometry (MS). During the past few years, a lot of efforts have been made to better characterize and
understand the metabolic shifts in cancer cells, and this with the perspectives of identifying potential
predictive diagnostic and prognostic biomarkers as well as new therapeutic targets [8,9]. Intriguingly,
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even at early stages of their development, tumors are able to modify the metabolic profile of peripheral
biofluids (urine, blood) and tissues of the host, resulting either in fluctuations of already present
metabolites or in the appearance of new ones. The signature of those cancer-related metabolites allows
inferring into biochemical pathways hypothetically privileged by cancer cells and, from there, to build
a specific cancer metabolome network.

Metastasis describes a phenomenon where cancer cells disseminate from a primary site to a
secondary site, a critical state responsible for about 90% of deaths in cancer patients [10]. Depending on
the primary cancer origin, oxygenation, pH, glucose, and other nutrients availability, metastatic cells are
more likely to seed and spread in certain tissues than others [11]. For example, breast cancers preferably
develop metastasis in bone, brain, liver, and lung; prostate cancers in adrenal gland, bone, liver, and
lung; and melanoma in bone, brain, liver, lung, skin, and muscle [12–14]. From a metabolic point of
view, metastatic cells are able to adapt their own metabolism depending on the secondary colonized site.
For instance, metastatic breast cancers can increase their oxidative phosphorylation (OXPHOS) activity
in lung and bone metastasis, whereas they are more glycolytic-orientated after invading the liver
tissue [15]. Another adaptive case of breast cancer highlighted a new type of metastatic metabolism
when metastases developed into brain tissue, more directed towards the consumption of glutamine
and acetate in areas depleted in glucose [16,17].

The metabolic flexibility of metastasis complicates the handling and treatment cares, with cells
adapting to their surrounding environment to support tumor growth. Therefore, identifying the
preferred metabolic pathways in different types of metastatic cancer cells could open up new avenues
in metastatic treatment based on metabolic interventions. Nowadays, metabonomics approaches have
been successful in detaching from the one-size-fits-all treatment to adaptive treatment in the cancer
field [18]. The metastatic metabolome clearly embraces this new vision of medicine, where metastatic
subclasses identification will lead to greater clarity in metastasis handling.

Proton NMR (1H-NMR) spectroscopy is a non-destructive technic, highly reproducible, giving an
overview of the metabolome based on the simultaneous detection of a wide range of low molecular
weight (LWM) metabolites. Altogether, these metabolites draw a signature that is different for each
metastatic cell line. After the digitization of spectral data, individual signatures can be compared
through multivariate analyses. The high demanding metabolic cell lines used in this study were
selected to cover a wide range of metastatic cancer features: The MCF-7 breast cancer cell line harbors
estrogen receptors whereas MDA-MB-231 was triple-negative; the bone-metastatic PC-3 cell line was
TP53 mutated, whereas the LNCaP metastatic cell line was androgen-dependent; finally, the considered
BRAFV600E-mutated metastatic melanoma were either sensitive (451-Lu, M229) or resistant (D10) to
the standard of care BRAF/MEK combined inhibitors. This motley population of cell lines, which are
gender-dependent or not, differ from one another in terms of oncomutation(s), tissue’s origin and
metastatic dissemination site. Thus, all of them were considered in the present study in order to first
obtain the most comprehensive view of the metabolome of those breast, prostatic, and melanoma
metastatic cell lines and, secondly, to establish a new classification of metastases according to their
metabolome. Thus, through this study, we hope to identify common biological pathways shared by the
metastatic cell lines, but also some discriminating specific features, which all together could be used as
potential targets for future therapeutic strategies. Hence, the importance of the biological pathways
identified will be validated by the use of specific inhibitors in a cell viability test.

2. Results

2.1. 1H-NMR Signature from the Cellular Extracts

2.1.1. Identification of Discriminant Metabolites Using Multivariate Data Analysis

The binned spectra (0.04 ppm stepwise) generated from the cellular extracts of melanoma
(D10, 451-Lu, M229), prostate cancer (LNCaP, PC-3), and breast cancer (MCF-7, MDA-MB-231) were
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integrated, and the numerical values exported to an Excel table. Then, a signal normalization step
was performed, dividing each 0.04 ppm length descriptor by the total area under the curve (AUC)
signal of their corresponding cell line. The normalized data were next integrated into the SIMCA-P+

multivariate data analysis software in order to highlight possible metabolic differences between the
different cancer cell lines. No outlier possibly arising either from experimental bias or from technical
issues was detected by the principal component analysis PCA-X (Figure S1) initially applied to the
dataset. A partial least square analysis (PLS-DA) was then performed on the data and returned
excellent coefficients of great goodness of fit and predictability with high R2 and Q2 values (R2X = 0.981;
R2Y = 0.967; Q2cum = 0.947). The separation observed among the experimental groups was perfectly
highlighted on the scores plot (Figure 1A), where the first principal component t[1] separated the
451-Lu, MDA-MB-231, and M229 groups from the others, whereas the second principal component
t[2] clearly discriminated D10BMR DT, D10BMR, and LNCaP from the other groups. The matching
loadings plot (Figure 1B) displays the most influencing descriptors, considering a variable importance
in the projection (VIP) value above 1. These descriptors could be related to a subset of 10 discriminant
metabolites, namely alanine, creatine (Cr), phosphocreatine (PCr), lactate, glycine, glucose, glutamine,
myo-inositol, phosphocholine (PCho), and glycerophosphocholine (GPC).

2.1.2. Additional Spectra Investigations

Due to overlapping or low signal intensity, some biologically relevant information can be hidden
and escape the multivariate analysis. In such cases, further information can be collected directly
from the spectra using the MestRenova Peak Picking tool. Thus, two extra metabolites were detected
and added to the metastatic signature thanks to additional investigations, being aspartate and
UDP-N-Acetyl-Glucosamine. Furthermore, the resonances arising from both PCho and GPC were
successfully separated from each other. The signature displayed in Figure 1C combines these additional
metabolites with the previous ones identified by the PLS, and their relative intensities can be seen
within the metastatic metabolomes.

2.1.3. Heatmap of the Identified Discriminant Metabolites

In order to detect common features among various cancer types, but also to find out which
biological pathways were more specifically stimulated in one metastatic cancer as compared to another
one, a heatmap based on 1H-NMR metabolites intensities was generated (Figure 2).

Focusing on lactate and aspartate columns, an inverted relationship between these two metabolites
intensities was noticed. Indeed, the cell lines harboring the highest levels of lactate also presented
the lowest amounts of aspartate, and vice-versa. Interestingly, this phenomenon concerns cell
lines harboring a mutation in the Raf protein, responsible for BRAF dimerization and MAPK
pathway overstimulation.

The same trend was noted for the intracellular glucose, which was handled differently depending
on the metastatic profile, with the lowest amount detected in BRAF-mutated cells, indicating the
highest rate in glucose turnover in those cells.

Concerning myo-inositol, a product derived from glucose, its over synthesis was detected in three
of the BRAF-mutated cell lines, and also in the PC-3 prostatic cell lines.

Creatine and phosphocreatine, two metabolites used to store the phosphate group from the ATP
energic molecule, were commonly found in the studied cancer cells lines, however, in lesser intensities
than in the PC-3 and breast cancer cell lines.

In every cell line, glutamine was detected in the intracellular space, meaning that glutamine from
the media entered inside the cells, and was converted by the GLS enzyme into glutamate, a metabolite
also detected in the cellular extracts. As evidence, a 1H-NMR experiment was carried out on metastatic
cells exposed to free-glutamine media, resulting in unobservable intracellular levels of glutamine
(Figure S2). The heatmap highlighted metabolites amounts quite different for glutamine and glutamate
between the groups. Indeed, in some cases, only low or high amounts of both glutamine and glutamate
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were detected, while in the case of MCF-7 high amounts of glutamine and low amounts of glutamate
were seen.
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Figure 1. Scores plot (A) and loadings plot (B) of the partial least square (PLS-DA) analysis of
the melanoma (D10BMR, 451-Lu, M229), prostate cancer (LNCaP, PC-3), and breast cancer (MCF-7,
MDA-MB-231) 1H-NMR spectra of cellular extracts (R2X = 0.981; R2Y = 0.967; Q2cum = 0.947). (C) NMR
spectra of the intracellular compartments reflecting the metastatic metabolome variation between the cell
lines. Discriminating metabolites selected by the multivariate data analysis and the semi-quantification
analysis are identified from the spectra. Spectra were normalized using the area under the curve
normalization in order to show the relative intensities of discriminant metabolites, tagged with the
following letters: a: Lactate; b: Alanine; c: UDP-GlcNAc; d: Glutamate; e: Glutamine; f: Aspartate; g:
HEPES; h: Creatine (Cr); i: Phosphocreatine (PCr); j: Phosphocholine (PCho); k: Glycerophosphocholine
(GPC); l: Myo-inositol; m: Glycine; n: Glucose.



Metabolites 2019, 9, 281 5 of 15

Metabolites 2019, 9, 281 5 of 15 

 

was detected in the D10BMR and LNCaP groups, highlighting metabolic similarities in those two 
metastatic metabolomes. Concerning alanine, the D10BMR exposed to the BRAF/MEK showed an 
increased production level, which was accentuated when the therapy was removed. Finally, glycine, 
which derives from serine metabolism, was detected at a higher level in D10BMR, D10BMR DT, and 
LNCaP. 

 
Figure 2. Heatmap of the 13 intracellular discriminant metabolites identified between the metastatic 
metabolomes. Data normalization from [0 to 1] for each metabolite enabling the metabolic signature 
investigation within and between the groups. For the sake of simplicity, cell lines were classified 
depending on their lactate and aspartate 1H-NMR intensities, showed via the heatmap color scale. 

2.1.4. Enrichment Analysis of the Intracellular Discriminant Metabolites 

All the 13 discriminant metabolites were then imputed into the MetaboAnalyst 4.0 online 
software for a Metabolite Set Enrichment Analysis (MSEA). MSEA is a strong tool used for data 
interpretation of metabolites set with relative concentration variations, indicating which biological 
pathway was more stimulated from one cell line to another. Thus, the analysis below highlighted the 
potential biological pathways related to the 13 identified metabolites (Figure 3A). The detected 
pathways were classified depending on the number of hit(s), corresponding to the number of the 13 
imputed metabolites found into the identified pathways. Depending on the number of hits, the 
associated p-value can be under or above the 0.05 α–value. Vital clues from a cancer perspective can 
be retrieved from these MSEA analyses.  

For instance, metabolic pathways such as “glutamate metabolism”, “malate-aspartate shuttle”, 
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because of the culture media composition, uniform between the cell lines (excepting LNCaP), and 
containing glucose as the main carbon source. The results highlighted two main profiles between the 
studied cancer cell lines. In three BRAF-mutated cell lines (451-Lu, M229, MDA-MB-231), lactate 
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Considering the remaining cell lines, the glucose was less directed towards lactate synthesis, with 

Figure 2. Heatmap of the 13 intracellular discriminant metabolites identified between the metastatic
metabolomes. Data normalization from [0 to 1] for each metabolite enabling the metabolic signature
investigation within and between the groups. For the sake of simplicity, cell lines were classified
depending on their lactate and aspartate 1H-NMR intensities, showed via the heatmap color scale.

Concerning phosphocholine and glycerophosphocholine, both metabolites were also detected in
the intracellular space of the metastatic cancer cell lines. This common feature was quite intriguing
and behaved separately depending on the cell lines, and with some cases, an overproduction of
phosphocholine. Sometimes, both overproduced equally, or in the M229 case an overproduction of
GPC only. Finally, some glycolytic characteristics of metastatic cells were also detected through the
NMR analysis. First of all, UDP-GlcNAc, a metabolite synthesized from glucose, glutamine, and
UTP, was detected in the D10BMR and LNCaP groups, highlighting metabolic similarities in those
two metastatic metabolomes. Concerning alanine, the D10BMR exposed to the BRAF/MEK showed
an increased production level, which was accentuated when the therapy was removed. Finally,
glycine, which derives from serine metabolism, was detected at a higher level in D10BMR, D10BMR DT,
and LNCaP.

2.1.4. Enrichment Analysis of the Intracellular Discriminant Metabolites

All the 13 discriminant metabolites were then imputed into the MetaboAnalyst 4.0 online software
for a Metabolite Set Enrichment Analysis (MSEA). MSEA is a strong tool used for data interpretation of
metabolites set with relative concentration variations, indicating which biological pathway was more
stimulated from one cell line to another. Thus, the analysis below highlighted the potential biological
pathways related to the 13 identified metabolites (Figure 3A). The detected pathways were classified
depending on the number of hit(s), corresponding to the number of the 13 imputed metabolites
found into the identified pathways. Depending on the number of hits, the associated p-value can be
under or above the 0.05 α–value. Vital clues from a cancer perspective can be retrieved from these
MSEA analyses.

For instance, metabolic pathways such as “glutamate metabolism”, “malate-aspartate shuttle”,
and the “Warburg effect” were informative on the origin of energy resources, either from glycolysis or
OXPHOS. Other information provided from “arginine and proline metabolism”, “glycine and serine
metabolism”, and “amino sugar metabolism” were indicative of the various usages of glucose in cancer
cells and that the glucose tree structure can be quite different depending on the cancer type.



Metabolites 2019, 9, 281 6 of 15

Metabolites 2019, 9, 281 6 of 15 

 

lactate rates reduced from 65% to 45% and with an increase in glucose-related amino acids and UDP-
N-Acetyl-Glucosamine. The PC-3 glucose-related metabolism was quite different from the others, 
with the lesser amount of lactate between all the cell lines and intensive production in myo-inositol.  

The Warburg effect and the malate-aspartate shuttle were two pathways identified by the MSEA 
analysis, respectively, with the following metabolites lactate and aspartate. Lactate, the end-product 
of glycolysis, indicated that ATP production was favored via the glycolytic pathway, whereas 
aspartate, a metabolite part of the malate-aspartate shuttle used for translocating electrons across the 
mitochondria membrane indicated ATP production through OXPHOS. Therefore, it would be 
advantageous to know how cancer cells used glucose for ATP synthesis. In this respect, the lactate-
to-aspartate AUCs ratio was indicative. The calculated ratio shown in Figure 3C revealed two trends. 
The first one is composed of the D10BMR DT, PC3, and MCF-7 cell lines that harbored a higher level of 
aspartate and a lower level of lactate, resulting in a small Glycolytic/OXPHOS ratio. The ratios of the 
D10BMR, MDA-MB-231, 451-Lu, and M229 took the opposite direction and were increased 
significantly, with levels >100. The 451-Lu was clearly the most glycolytic cell line based on the ratio 
analysis, with a value above 700. This finding is in adequacy with the PLS model described in Figure 
1, where the 451-Lu model was also incriminated in lactate overproduction. 

 
Figure 3. (A) Connection of the 13 significantly changed metabolites to relevant biochemical pathways 
using MSEA (B) Ratio of the 5 glucose-related metabolites detected through the 1H-NMR analysis, as 
an indicator of the glucose tree structure within the cells. (C) 1H-NMR lactate-to-aspartate ratio, as an 
estimator of the Glycolytic/OXPHOS ratio and, therefore, the energetic state of the metastatic cells. 

2.2. Extracellular Compartments Analysis 

A supervised multivariate data analysis (PLS-DA) was also carried out on the 1H-NMR spectra 
of the culture media, returning high R2 and Q2 values (R2X = 1; R2Y = 0,99; Q2cum = 0,97). Groups 
separation was highlighted on the scores plot (Figure 4A), where the first principal component t[1] 
separates the 451-Lu, MDA-MB-231, M229 and D10BMR groups from the others. This separation is 
described on the corresponding loadings plot (Figure S3) and was mainly depending on glucose 
consumption and lactate secretion, and both increased in the 451-Lu, MDA-MB-231, M229, and D10 
groups. The second principal component t[2] involved the ability of the cancer cells to secrete alanine, 

Figure 3. (A) Connection of the 13 significantly changed metabolites to relevant biochemical pathways
using MSEA (B) Ratio of the 5 glucose-related metabolites detected through the 1H-NMR analysis, as
an indicator of the glucose tree structure within the cells. (C) 1H-NMR lactate-to-aspartate ratio, as an
estimator of the Glycolytic/OXPHOS ratio and, therefore, the energetic state of the metastatic cells.

2.1.5. Data Transposition to Metabolic Ratios

A ratio (Figure 3B) was applied to five glucose-derived metabolites in order to visualize their
contribution to the glucose tree structure of the three metastatic cancers metabolism. This ratio
was based on the AUC (measured after integration of the corresponding spectral resonances) of
five intermediates or end-products derived from glucose and detected in the 1H-NMR analysis,
namely lactate, myo-inositol, glycine, alanine, and UDP-N-Acetylglucosamine. This analysis was
possible because of the culture media composition, uniform between the cell lines (excepting LNCaP),
and containing glucose as the main carbon source. The results highlighted two main profiles
between the studied cancer cell lines. In three BRAF-mutated cell lines (451-Lu, M229, MDA-MB-231),
lactate represented more than 65% of the glucose-related metabolites AUC and was associated with
high myo-inositol content and lower amounts in glycine, alanine, and UDP-N-Acetylglucosamine.
Considering the remaining cell lines, the glucose was less directed towards lactate synthesis, with
lactate rates reduced from 65% to 45% and with an increase in glucose-related amino acids and
UDP-N-Acetyl-Glucosamine. The PC-3 glucose-related metabolism was quite different from the others,
with the lesser amount of lactate between all the cell lines and intensive production in myo-inositol.

The Warburg effect and the malate-aspartate shuttle were two pathways identified by the MSEA
analysis, respectively, with the following metabolites lactate and aspartate. Lactate, the end-product of
glycolysis, indicated that ATP production was favored via the glycolytic pathway, whereas aspartate,
a metabolite part of the malate-aspartate shuttle used for translocating electrons across the mitochondria
membrane indicated ATP production through OXPHOS. Therefore, it would be advantageous to
know how cancer cells used glucose for ATP synthesis. In this respect, the lactate-to-aspartate AUCs
ratio was indicative. The calculated ratio shown in Figure 3C revealed two trends. The first one is
composed of the D10BMR DT, PC3, and MCF-7 cell lines that harbored a higher level of aspartate and
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a lower level of lactate, resulting in a small Glycolytic/OXPHOS ratio. The ratios of the D10BMR,
MDA-MB-231, 451-Lu, and M229 took the opposite direction and were increased significantly, with
levels >100. The 451-Lu was clearly the most glycolytic cell line based on the ratio analysis, with a
value above 700. This finding is in adequacy with the PLS model described in Figure 1, where the
451-Lu model was also incriminated in lactate overproduction.

2.2. Extracellular Compartments Analysis

A supervised multivariate data analysis (PLS-DA) was also carried out on the 1H-NMR spectra
of the culture media, returning high R2 and Q2 values (R2X = 1; R2Y = 0,99; Q2cum = 0,97). Groups
separation was highlighted on the scores plot (Figure 4A), where the first principal component t[1]
separates the 451-Lu, MDA-MB-231, M229 and D10BMR groups from the others. This separation is
described on the corresponding loadings plot (Figure S3) and was mainly depending on glucose
consumption and lactate secretion, and both increased in the 451-Lu, MDA-MB-231, M229, and D10
groups. The second principal component t[2] involved the ability of the cancer cells to secrete alanine,
increased in the D10BMR group. Further analyses were performed on all DMEM-exposed groups but
LNCaP, and added to the heatmap in Figure 4B. Thus, the variations in amino acid contents in the
media of the studied metastatic cell lines revealed which ones relied more on amino acid consumption.
The BRAF-mutated cell lines seemed more dependent on the essential amino acids leucine, isoleucine,
and especially valine, while the D10BMR and PC-3 cell lines were eager on glutamine consumption to
supply their intermediary metabolism.
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Figure 4. Scores plot (A) and loadings plot (B) of the PLS-DA analysis of the melanoma (D10BMR,
451-Lu, M229), prostate cancer (LNCaP, PC-3), and breast cancer (MCF-7, MDA-MB-231) extracellular
compartment 1H-NMR spectra (R2X = 1; R2Y = 0.99; Q2cum = 0.97).

2.3. Metabolic Inhibition of the Glycolytic, Glutamine, and Choline Pathways

In order to verify whether the biochemical pathways identified by the metabonomics approach
were indeed critical for cancer cell survival and growth, specific chemical inhibitors were tested on
each cell line and cell viability measured, except for LNCaP, which were not appropriate cells for such
test due to their poor adherence properties. Thus, three inhibitors named CB-839, Hemicholinium-3
(HC-3), and Oxamate were used to, respectively, impact the glutaminolysis, the choline metabolism,
and the lactate production. The established mechanisms of the considered inhibitors are displayed in
Figure 5A, combining with the previously identified pathways from the 1H-NMR analysis. Viability
results are merged in Figure 5B, with the inhibitors used separately or in combination for synergistic
effect. Both Oxamate and CB-839 were able to reduce cell viability as single agents. Therefore, the
combination of CB-839 and Oxamate was next investigated, with respectively a small and high dose
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combination of both compounds to evaluate a potential synergistic effect. The high dose combination
included the dose of Oxamate and CB-839 used as a single agent, whereas the small dose combination
was 2.5-fold less concentrated in Oxamate and 20-fold less concentrated in CB-839. The small dose
combination was able to significantly reduce the cell viability in the considered metastatic cell lines,
except in the 451-Lu case. Increasing the dose of both compounds resulted in all cases in a sustained
and statistical decrease of cell viability.
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groups compared to the control (DMSO) group were tagged as follow: * p < 0.05, ** p <0.01, *** p < 0.001.

3. Discussion

3.1. 1H-NMR Identification of Metastatic Metabolome Subclasses

Based on the lactate and aspartate intracellular levels, two metastatic subclasses were identified
in terms of ATP synthesis, either more glycolytic- or more OXPHOS-oriented. As expected,
the BRAF-mutated cell lines presented the most glycolytic-orientated NMR signatures, with a higher
amount in lactate, the end-product of glycolysis, in both intra- and extracellular compartments [19],
and a lower amount in intracellular aspartate that normally reflects the malate-aspartate shuttle
activation for ATP production via the oxidative phosphorylation [20,21]. Indeed, BRAF has been
incriminated in the MAPK pathway overstimulation, resulting in the downstream stabilization of the
hypoxic inducible transcription factor-1alpha (HIF-1α) in BRAFV600E melanoma [22], a transcription
factor also overexpressed in the BRAF-mutated MDA-MB-231 breast cancer cell lines [23]. It is well
known that HIF-1α increases the glycolytic activity of cancer cells, resulting in the overexpression of
glycolytic key enzymes like hexokinases (HK) or lactate dehydrogenase (LDH-A), and glucose and
lactate transporters such as the GLUT-1, GLUT-3, and MCT-4 [24,25]. Therefore, it may be assumed that
metastatic cells harboring glycolytic-preponderant mutations naturally direct their ATP production
towards glycolysis. This metabolic feature is in adequacy with the calculated lactate/aspartate ratio,
with BRAF-mutated metastasis being more glycolytic-orientated [26]. Interestingly enough, the
BRAF inhibition with the BRAFi/MEKi therapy redirects the ratio in the D10BMR cell lines from
glycolytic-orientated to OXPHOS-orientated, meaning that BRAF inhibition may switch the ATP
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production metabolism. Furthermore, the consumption of extracellular glucose and its intracellular
handling also reflected the two metabolic profiles, increased in BRAF-mutated cell lines thanks to
glycolytic preferred activation.

Phosphocreatine (PCr) is synthesized from creatine (Cr) by creatine kinase (CK) [27], a shuttle
system identified in cancer cells to store phosphate groups from ATP and enabling its restitution in
energy-consuming processes such as in some steps of glycolysis [28]. Besides, the CK enzyme has
been incriminated in cell cycle regulation and also cell mobility, with metastatic cells harboring a
high amount of CK [28]. The 1H-NMR approach revealed two metabolites related to this energetic
shuttle, namely creatine and phosphocreatine. Three metastatic cell lines (PC-3, MCF-7, MDA-MB-231)
displayed reduced intensities for those metabolites in their NMR-based metabolomes. This observation
suggests the limited use of this metabolic shuttle in those cell lines. Therefore, this feature could be used
to classify metastatic cells since some of them preferably rely on the creatine shuttle. In addition, such
a metabolic singularity could be targeted by specific inhibitors of the creatine shuttle [29]. For those
reducing the use of the creatine shuttle, an element of the answer could be provided from the Kennedy’s
pathway, part of the choline metabolism. It is well known that in cancer cells the choline metabolism is
deregulated at two different levels. Firstly, the total choline content is increased as compared to normal
cells and, secondly, a modulation of the phosphocholine (PCho) to glycerophosphocholine (GPC) ratio
can be observed, with an increase in PCho and a decrease in GPC [30–32]. Phospholipase C, an enzyme
contributing to the choline metabolism, catalyzes the hydrolysis of phosphatidylcholine into PCho
and diacylglycerol, a second messenger that activates the phosphokinase C (PKC) responsible for
cancer cells proliferation, survival, and RAF activation [33,34]. Interestingly, the metabolome of PC-3,
MCF-7, and MDA-MB-231 included the highest level of PCho, together with the lowest amount in tCr.
One can assume that either the creatine shuttle or the choline metabolism could sustain the metastatic
phenotype. Hence, they should be considered and handled differently depending on the metastatic
metabolic direction.

Cancer cells are highly addicted to glucose uptake and metabolism, which can be consumed
through different pathways depending on their own genome mutations. Here, some glucose-related
metabolites detected in the metastatic 1H-NMR signature gave an overview of this differential glucose
handling. BRAF-mutated cell lines showed a common glucose-related profile clearly separated from
the others, orientated in both lactate and myo-inositol production, indicating a glucose use for ATP
and phosphoinositides productions, respectively. As discussed, all metastatic cell lines produced
detectable levels of lactate, indicating sustained anaerobic glycolysis. However, BRAF-mutated
cell lines showed the greatest lactate levels as a potential response to MAPK overstimulation,
HIF-1-α stabilization, and sustained glycolysis. In addition, BRAF-mutated metastases overproduced
myo-inositol, a precursor used in cancer cells for the synthesis of phosphoinositides, messengers
involved in the phosphoinositide signaling system. These lipids family are located in the inner
membrane of the cells and are involved in pro-tumoral key protein regulation such as PTEN and AKT,
resulting in cell survival, proliferation, and growth [35]. Interestingly, this feature was also detected
in the PC-3 cell line, less glycolytic-orientated but showing a high amount of myo-inositol. Focusing
now on the other cell lines, a larger use of glucose was detected, with a glycolytic tree orientated for
lactate, amino-acids (glycine, alanine), and UDP-GlcNAc (D10BMR, LNCaP) production. Glycine is
produced from glucose through serine metabolism, via the action of phosphoglycerate dehydrogenase
(PHGDH) [36]. PHGDH was shown overexpressed in some tumors, and its downregulation impaired
cancer growth [37]. Considering the alanine increase, it is correlated to an increase of protein synthesis
in those cells [36]. It is not unexpected to find the D10BMR cell lines in this category, because BRAFi

resistance has been incriminated in the metabolic switch of melanoma cells, with an increase in oxidative
metabolism and glutamine dependency [38]. Finally, the detection of UDP-N-Acetylglucosamine,
a metabolite derived from glucose and glutamine, in LNCaP and D10BMR cell lines indicated a
post-translational ability of the metastatic cells, to add a N-acetylglucosamine group on serine and
threonine residues of key proteins, promoting migration and invasion [39]. A recent study showed
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that inhibiting the UDP-GlcNAc production, by targeting the O-GlcNAc transferase, decreases cell
proliferation and invasion in LNCaP [40]. As a result, the 1H-NMR signature may give some clues
on how glucose is preferentially handled in different metastases, for phosphoinositides synthesis in
glycolytic-orientated cells, and amino acids synthesis in OXPHOS-orientated cells. In addition, the
production and detection of UDP-N-Acetylglucosamine indicate an O-glycosylation of key proteins
promoting metastasis invasion.

3.2. Disrupting Metastatic Metabolome Using Metabolic Inhibitors

Our experimental approach also picked up some biochemical pathways shared by the considered
metastatic cancer cells, such as those involving the glucose-related metabolites, glutamine, and
glutamate, and choline-related metabolites. Although the relatively low sensitivity of 1H-NMR (0.1
mM) is criticizable, nevertheless its ability to pinpoint the main metabolic hallmarks of a specific cell
type makes it a suitable technic for cancer investigation. In this study, the NMR results highlighted
the Kennedy’s pathway, the glycolysis, and the glutaminolysis as three relevant pathways showing
different relative intensities according to the genetic profiles of the metastatic cancer cells.

Enhanced glycolysis enzymes have been strongly correlated as a cancer hallmark, underlying
the high-dependency of cancers to glucose uptake and metabolism. Indeed, GLUT-1 and GLUT-3
transporters presenting higher expression and activity (10–12 fold higher) in cancer cells as compared
to healthy tissues [41]. The end-product of this enhanced glycolysis is lactate, originating from the
conversion of pyruvate thanks to the lactate dehydrogenase A activity (LDH-A). The higher production
of lactate supports the cancer malignant status by restoring the NAD+ cellular pool and stimulating
glycolysis in cancer cells. In addition, lactate also promotes angiogenesis, the escape from the immune
system, and the acidification of the microenvironment [42]. As a result, inhibiting the LDH-A activity
with the small inhibitor Oxamate has already been shown to weaken cancer metabolism [42,43].
Oxamate was, therefore, selected in our strategy as the first metabolic inhibitor.

Glutamine, one of the most blood circulating amino acids, is overused by cancer cells to produce
antioxidants, lipids through the de novo lipogenesis process, as well as purines and pyrimidines [5].
Glutamine penetrates cancer cells using the SLC1A5 transporter, which is upregulated in many cancers
such as non-small cell lung cancer (NSCLC), breast cancer, and brain tumors [44,45]. Next, glutamine
is converted into glutamate thanks to the GLS enzyme activity, which is also upregulated in many
cancers [46]. Therefore, the GLS presents itself as a key element in the glutaminolysis process, targetable
with small inhibitors such as CB-839 [4,5]. Regarding its anti-glutaminolysis activity, CB-839 was,
therefore, selected in our strategy as the second metabolic inhibitor.

The choline metabolism was also incriminated in our study, with both detection of phosphocholine
(PCho) and glycerophosphocholine (GPC). A correlation between the choline metabolism enzymes
and the choline metabolism metabolites have already been described in cancer. Higher amounts of
tCho metabolites were detected in both prostate and breast cancer tissues, with respect to healthy ones,
and associated with an increase in key enzyme activity and/or expression [31]. It appears that the ChoK
enzyme, responsible for choline transformation into PCho, is strongly correlated to cell proliferation
and human tumors [47]. As it turns out, Hemicholinium-3 (HC-3), a known inhibitor of the ChoK
enzyme [48], was considered as the third inhibitor in our strategy.

In this regard, a cell viability strategy was investigated to jeopardize metastatic cells by using
specific inhibitors of critical cancer cell pathways. Interestingly, our findings suggest that blocking
simultaneously both glutaminolysis and lactate production, using CB-839 and Oxamate, disrupts
metastatic cell viability. Nowadays, these inhibitors are mainly used alone, or in combination with the
standard of care in cancer treatments. However, a few promising studies investigated the synergistic
combination of these inhibitors and provided encouraging results, such as the couple CB-839/3-BP that
demonstrated positive synergistic effects in tuberous sclerosis mice [49].

This study provides a novel metastatic metabolome classification, highlighting common metabolic
shares and differences between prostate, breast, and melanoma metastatic cell lines. The overview of the
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metabolome enabled the selection of three targetable pathways, being the glycolysis, the glutaminolysis,
and the Kennedy’s pathway. As it turns out, the viability test validated the combined glutaminolysis
and glycolysis inhibition, opening up an interesting approach in the metastatic metabolome disruption.

4. Materials and Methods

4.1. Cell Lines and Culture

Melanoma cell lines were composed of M229, 451-Lu and D10BMR cell lines, prostate cancer was
represented by the PC-3 and LNCaP cell lines, and breast cancer by the MCF-7 and MDA-MB-231
cell lines. The melanoma cell lines used in this study (M229, 451-Lu, D10BMR) were kindly provided
from the laboratory of Lipid Metabolism and Cancer (KUL-Belgium), and used in the following
publication (https://www.nature.com/articles/s41467-018-04664-0). The PC-3 (ATCC® CRL-1435™),
LNCaP (ATCC® CRL-1740™), MDA-MB-231 (ATCC® HTB-26™) and MCF-7 (ATCC® HTB-22™) cell
lines were purchased from ATCC. All cells, except LNCaP, were grown in 75 cm2 flask using DMEM
High-Glucose (ThermoFisher 11960, Merelbeke, Belgium) supplemented with 4 mM of Glutamine
(ThermoFisher), 10% of fetal bovine serum (Gibco Lot 42G8378K), 100 U/mL of penicillin, and 100
µg/mL of streptomycin (ThermoFisher). LNCaP condition was slightly different with the use of
RPMI 1640 (ATCC 30-2001) instead as a growth media. Concerning the D10BMR melanoma cell line,
two conditions were included depending on the presence or absence of the Dabrafenib/Trametinib
therapy (Selleckchem). Thus, the D10BMR DT condition corresponded to the cells that were grown in
the previous described media with an addition of 0.4 µM Dabrafenib and 0.1 µM Trametinib dose,
whereas D10BMR were grown with the therapy and then deprived of it during 72 h for metabolic
changes observations.

4.2. Metabolic Inhibitors and Viability Test

The following metabolic inhibitors were used in this study: CB-839 (Cayman Chemical) solubilized
in DMSO, Hemicholinium-3 and Oxamate (Sigma-Aldrich) directly solubilized in the culture medium.
For viability testing, cells were first seeded in a 96-well plate (4-6 k cells/well) and grown for 4 days in
10% FBS media. Then, the media were removed and replaced by fresh media containing the metabolic
inhibitor(s) for 72 h. After incubation, cells were washed twice with PBS and fixed with glutaraldehyde
4%. The staining was then performed using a 1% crystal violet solution, and cell wall permeabilized
using Triton. A number of n = 12 wells were performed for each condition, and absorbance was read
at 570 nm.

4.3. 1H-NMR Samples Collection and Extraction

Every cell line was grown to confluency before sample collection, with n = 6 samples per group.
Culture media were replaced by fresh media with 10% FBS to standardize the NMR analysis 24 h
before collecting the samples. The 24 h culture media were removed from each flask and stored at
−20 ◦C. The remaining cells were washed twice with 7 mL cold D-PBS (Sigma-Aldrich), quenched
using 3 mL of cold methanol, and then collected using a scraper. Cells metabolism was de novo
quenched by immersing the cell pellet into liquid nitrogen for a few seconds before storing at −80 ◦C.
A methanol: water: Chloroform 1:0.9:1 (3 mL) extraction was carried out on the cell pellet to separate
polar metabolites from macromolecules. The polar phase was dried using a SpeedVacuum and was
stored at −80 ◦C before analysis.

4.4. 1H-NMR Spectroscopy

The intracellular dried samples were resuspended in 700 µL phosphate buffer (0.2 M
Na2HPO4/0.04M NaH2PO4, pH 7.4) prepared in a mixture of H2O/D2O (80:20; v:v). The samples were
centrifuged at 13,000 g for 10 min. 50 µL of a 7 mM solution of 3-trimethylsilyl propionic-2,2,3,3-d4
acid (TSP) reference prepared in 100% deuterium oxide was added to 650 µL of each supernatant.

https://www.nature.com/articles/s41467-018-04664-0
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Finally, 700 µL of this final mixture was transferred into 5 mm NMR tubes prior to analysis. For the
culture media preparation, 500 µL of each sample were mixed with 250 µL of phosphate buffer.
The samples were prepared as described above, with an addition of 14 mM TSP solution. Acquisition
of the 1H-NMR spectra were processed on a Bruker 600-MHz Advance spectrometer for 1H, using
the NOESYPRESAT-1D pulse sequence. The same acquisition method was applied to the samples of
cellular extracts and culture media using 256 scans.

4.5. Spectra Processing and Multivariate Data Analysis

1H-NMR spectra were processed using the MestreLab Research 10.0.2 software (Mestrelab
Research, S.L, Santiago de Compostela, Spain). Phases and baseline of each spectra were corrected
using the automatic and manual software tools. The water peak region ranging from 4.20 to 5.50
ppm was excluded, and spectra intensities were calibrated to the TSP chemical shift arbitrary fixed at
100. Spectra were binned in small subregions of 0.04 ppm width called descriptors, which gave rise
to 220 descriptors for each spectrum. Next, the area under the curve (AUC) was calculated for each
descriptor in all spectra to obtain numerical data. Each descriptor value was divided by the total area
of the spectrum for normalization. Data were then processed for multivariate data analysis using the
software SIMCA-P+ 12.0 (Umetrics, Umeå, Sweden). Principal Component Analysis (PCA) followed
by a Partial Least Square Discriminant Analysis (PLS-DA) were carried out on the dataset. Possible
group separations were observed in the scores plot and descriptors responsible for such separation
on the loadings plot. Only descriptors with a VIP >1 were considered, and their corresponding
metabolites were identified. To evaluate the quality of the model, two parameters were considered,
R2, which corresponds to the « goodness of fit parameter » and explains variation in the data, and Q2,
which is the « goodness of prediction parameter » and represents the predictive power of the model.
Validation was carried out for the PLS model reliability using two tests: A permutation test followed
by a cross-validation analysis of variance test (CV-ANOVA). Discriminant descriptors were correlated
to metabolites using the Chenomx NMR suite software (version 8.1.1) and the Human metabolome
database (HMDB). Because of the descriptor size of 0.04 ppm that can contain several metabolites
chemical shifts, and also metabolites that have a low intensity, the multivariate data analysis was not
able to detect all of the discriminant metabolites. A semi-quantification comparison of the spectra in
the MestRenova software was then processed to find these new metabolites that can escape from our
first analysis.

4.6. Metabolic Signature Validation, Heatmap, and Enrichment

The Peak Peaking tool of the MestRenova software was able to detect and precisely calculate
the area under the curve (AUC) of all the peaks from each spectrum and was used for the metabolic
signature validation. For each discriminant metabolite detected in the previous step, the AUC of one
isolated chemical shift, previously normalized by the total AUC of each spectrum, was calculated using
the Peak Picking tool in order to obtain numerical data. These numerical data were then processed
in the R statistical software, using two non-parametric simultaneous tests on the data. Basically, a
Kruskal—Wallis test followed by a Dunn test was performed. The Holm method adjustment was used
in this validation process and applied to p-values. Discriminant identified metabolites were converted
to a heatmap in order to better visualize the metabolic signature between the cell lines. The heatmap
was generated using the Morpheus online software. To identify the most changed pathways between
the cell lines, a metabolic enrichment was performed on the discriminant metabolites using the online
available software Metaboanalyst 4.0. The Homo Sapiens Pathway Library was selected as a reference,
and the pathway analysis was investigated based on the p-values from pathway enrichment analysis
and pathway impact values.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/281/s1,
Figure S1: Principal component analysis (PCA-X) of the intracellular metastatic compartments of the different
cancer cell lines used in this study. Figure S2: Intracellular space of the 451-Lu cell line either grown into a

http://www.mdpi.com/2218-1989/9/11/281/s1
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glutamine-containing (black) or glutamine-free (red) medium. Figure S3: Scores Plot (A) and Loadings Plot (B)
of the PLS-DA analysis of the melanoma (D10BMR, 451-Lu, M229), prostate cancer (LNCaP, PC-3), and breast
cancer (MCF-7, MDA-MB-231) 1H-NMR spectra culture media. Figure S4: Intracellular (A) and extracellular (B)
1H-NMR spectra of the 451-Lu cell line. Figure S5: Intracellular (A) and extracellular (B) 1H-NMR spectra of the
M229 cell line. Figure S6: Intracellular (A) and extracellular (B) 1H-NMR spectra of the D10BMR cell line. Figure
S7: Intracellular (A) and extracellular (B) 1H-NMR spectra of the D10BMR DT cell line. Figure S8: Intracellular (A)
and extracellular (B) 1H-NMR spectra of the MCF-7 cell line. Figure S9: Intracellular (A) and extracellular (B)
1H-NMR spectra of the MDA-MB-231 cell line. Figure S10: Intracellular (A) and extracellular (B) 1H-NMR spectra
of the PC-3 cell line. Figure S11: Intracellular (A) and extracellular (B) 1H-NMR spectra of the LNCaP cell line.
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