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Abstract: Genome-scale metabolic models (GEMs) are manually curated repositories describing
the metabolic capabilities of an organism. GEMs have been successfully used in different research
areas, ranging from systems medicine to biotechnology. However, the different naming conventions
(namespaces) of databases used to build GEMs limit model reusability and prevent the integration of
existing models. This problem is known in the GEM community, but its extent has not been analyzed
in depth. In this study, we investigate the name ambiguity and the multiplicity of non-systematic
identifiers and we highlight the (in)consistency in their use in 11 biochemical databases of biochemical
reactions and the problems that arise when mapping between different namespaces and databases.
We found that such inconsistencies can be as high as 83.1%, thus emphasizing the need for strategies
to deal with these issues. Currently, manual verification of the mappings appears to be the only
solution to remove inconsistencies when combining models. Finally, we discuss several possible
approaches to facilitate (future) unambiguous mapping.

Keywords: identifier multiplicity; name ambiguity; databases; naming conventions; standardization;
chemical nomenclature; GEM; GEM interoperability

1. Introduction

Genome-scale metabolic models (GEMs) combine available metabolic knowledge of an organism
in a consistent and structured way that allows prediction and simulation of metabolic phenotypes [1].
GEMs have been successfully used in different research areas, ranging from biotechnology to systems
medicine, often resulting in new insights on metabolic processes in living organisms [2-5]. GEMs
may differ in content and scope, and can contain anything from a few hundred to a few thousand
reactions and metabolites. However, the structure of the model remains similar regardless of the
application: the main components are metabolites, metabolic reactions, enzymes and the corresponding
encoding genes.

The construction of a GEM includes three main steps [6,7]. First, the genome of the organism
considered is functionally annotated to identify enzymes and the associated reactions and metabolites.
Second, the list of enzymes and reactions is converted into a mathematical model, a so-called draft
model, in the form of a stoichiometric matrix to which constraints are added to account for reaction
reversibility and uptake and secretion of metabolites. Last, the model is manually curated using
experimental data (such as growth data), information from literature, and/or expert knowledge.
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Manual curation involves human workload and entails the verification of each reaction in the
model and its corresponding constraints, which is a very time-consuming task. Tools and pipelines
(such as, for example, the SEED [8], Pathway Tools [9], and the Raven toolbox [10]) have been
developed to automatize the annotation, draft the reconstruction and to aid high-throughput creation
of genome-scale draft models [11].

The tools for automated draft reconstruction rely on biochemical databases that are used to
find reactions associated with the enzymes identified in the genome through annotation. In general,
different tools use different databases. For instance: the SEED uses its own naming system [8],
Pathway Tools [9] uses MetaCyc [12], and Raven [10] uses KEGG [13]. Every database uses its own
namespace which is a particular set of identifiers (such as numerical tags or names) for metabolites
and reactions: because of this, it can happen that the same metabolites and reactions have different
naming conventions when different tools are used to generate draft GEMs. To complicate the matter
further, researchers often tend to use their own naming conventions such as custom abbreviations for
metabolites or consecutive numbering for metabolites and reactions and this adds up to the observed
heterogeneity of names and identifiers found in GEMs available in the literature [14]: the use of unique
identifiers, independent from the particular databases used, such as InChl [15,16], or references to
interlink different namespaces, have been suggested as an essential and fundamental part of GEM [17]
but this is seldom implemented.

GEMs are manually curated knowledge repositories integrating information from independent
(organism-specific) sources and thereby provide a comprehensive representation of what is presently
known about the metabolism of the modelled organism. There is often the need to combine the
information stored in individual GEMs to arrive to a consensus metabolic model for a given
organism [18,19]. The use of different namespaces limits the reusability of a GEM and often makes
it impossible, or extremely laborious, to combine two GEMs. Furthermore, it often hampers model
expansion, which is the addition of new reactions and/or metabolites to an existing model because if
different namespaces are used the same metabolite can be added many times with different names
and, consequently, considered as different chemical entities which can, in the worst case, invalidate the
model. In principle, different GEMs can be combined into a community model (partially) representing
the different organisms present in a microbial community, with the aim of modelling community
metabolic interactions such as cross feeding or substrate competition [20].

Since mapping manually different namespaces is highly laborious and practically unfeasible for
large models [18], the only viable solution to integrate different GEMs has often been to rebuild de
novo the required models [21,22]. However, while this approach leads to models that can be easily
combined, it causes the loss of all the expert knowledge introduced in the manual curation process.

Naive direct comparison of names using string algorithms is often insufficient [23] and to help
mapping among different namespaces in a more systematic way tools for consensus model generation
and for automatic translation have been introduced [19,24], together with databases such as MNXRef
from MetaNetX [25] and MetRxn [26], developed to provide cross-linking among the identifiers in the
namespaces of different databases.

In fact, mapping different namespaces using metabolite or reaction identifiers is not a trivial task
because researchers often refer to compounds with many different names and abbreviations and the
namespaces reflect this (Figure 1A). Often in GEMs different chemical entities (like, for instance, citrate
and citric acid) are used as exchangeable names and may end up in databases such as Biochemical,
Genetic and Genomic (BiGG) (which harvest reactions which have been used in metabolic modelling)
resulting in imprecise, misleading, and sometimes incorrect synonyms. Similarly, GEMs are often built
featuring reactions using generic compound classes (such as 'Lipids’ or 'Protein’). When these are
included in GEMs databases they cause the same compound to be linked to different identifiers.

Internal database inconsistency is also often caused by ambiguous abbreviations, with the same
shorthand used for different compound (Figure 1B). To make the matter worse, the same abbreviation
can refer to different compounds in different databases (see Figure 1C).
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Figure 1. Overview of namespace mapping problems. (A) The same chemical entities (coloured nodes)
link to different names (colourless nodes) in different namespaces: names in namespace A may link to
different chemical entities in namespace B; (B) Example of inconsistency within the same namespace:
the same name links to different chemical compounds; (C) Example of inconsistency between different
namespaces: the same name links to different compounds in different databases. Chemical entities are

represented with coloured nodes, names are represented with colourless nodes.
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The problems deriving from the inconsistency and the ambiguity in the namespaces of reaction
databases used to build GEMs have been mentioned before [27-30] and are a well-known source
of complaints in the modelling community. However, since the extent of the namespace mapping
problem has not been so far analyzed in depth, we investigate the level of inconsistency and ambiguity
encountered when (i) mapping metabolites within a database and (ii) mapping metabolites between
two databases. To this task, we analyzed and compared naming and identifier conventions in 11
biochemical databases commonly used for metabolic modelling and metabolomic data analysis.
Similar research has been done for small-molecule databases that have been used in pharmaceutical
research but did not consider databases used for metabolic modelling [31]. With this work we aim
at raising awareness on this problem within the modelling community; provide a framework for
evaluating when (or whether) GEMs and databases can be combined, suggest practices for dealing
with this issue on the short term and outline a strategy for a long-term solution.

2. Results

To avoid ambiguity, we explicitly define the specific terms used in this study as follows:

*  Identifier (ID): Identifiers are strings of alpha-numeric characters used to identify uniquely a
metabolite or a reaction in a database. Examples are C00001 in KEGG or ATPM in BiGG.

*  Name: Here we use name to refer not only to the chemical name, but also to the set of aliases,
synonyms, and abbreviations that are often included in a database as other names of the
compound. For instance, the KEGG ID C00001 is associated with the name ‘water’.

e Multiplicity: describes the case on which a single ID is linked to multiple names. For instance,
the KEGG ID C00001 is associated with the names ‘water” and "H20’; therefore, we state that this
ID has a multiplicity of 2.

*  Ambiguous. The Merriam-Webster dictionary defines ambiguous (second entry) as “capable of
being understood in two or more possible senses or ways’. Here, we use ambiguous (and its
derivatives) to refer to the case on which the same name links to more than one ID in the same
database. An example is shown in Figure 1B, where the name "H’ links to the MetaCyc IDs
"PROTON’ and "HIS’, associated with "hydrogen ion” and ’L-histidine’, respectively.

e Consistency: We use consistency (and its derivatives such as consistent) to refer to mappings on
which a molecular entity is mapped to itself. It follows that inconsistency is used to indicate a
mapping or a database on which a molecular entity is associated with a different one.

We have analyzed 11 biochemical databases for their consistency, and we have performed pairwise
comparisons to investigate the degree of inter-database consistency. These databases were chosen for
this study, primarily, because they were integrated in MetaNetX which facilitates data retrieval. Many
of them (BiGG, KEGG, SEED, HMDB, ChEBI and MetaCyc) are commonly often used for metabolic
model reconstruction [14,32]; HMDB is the reference database for metabolomic studies.

2.1. Mappings within the Same Database

2.1.1. Name Ambiguity

We calculated the average number of IDs per compound name for each of the 11 databases: results
are summarized in Table 1.
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Table 1. Ambiguity in biochemical database: number of compound names associated with more than
one identifier (ID.) s.d. stands for standard deviation. Blue boxes are used to highlight highest numbers.

Average Number of IDs % Ambiguous # Ambiguous Highest Number

Database #Name per Name =+ s.d. Names Names of IDs per Name
BiGG 5102 1.0141 + 0.126 1.31 67 3
ChEBI 388,505 1.3846 + 1.52 14.8 57,497 413
enviPath 11,648 1.0804 + 0.325 7.38 860 10
HMDB 101,101 1.0377 + 3.865 1.67 1686 921
KEGG 59,682 1.1461 + 0.422 13.3 7936 16
LIPID MAPS 77,457 1.0113 £ 0.33 0.62 478 63
MetaCyc 55,823 1.0058 + 0.103 0.5 279 13
Reactome 6972 1.7902 + 2.458 29.43 2052 34
SABIO-RK 11,475 1.0008 + 0.031 0.07 8 3
SEED 47,410 1.0108 + 0.106 1.06 503 4
SLM 1,218,750 1.0782 + 0.321 6.72 81,894 9

With ChEBI and Reactome as exceptions, in most databases the average ID number is around 1:
however, there is a low consistency. Reactome has the lowest consistency: nearly 30% of compounds
are associated with more than one ID, metabolites with generic descriptive names such as ’secretory
granule lumen proteins’, ‘secretory granule membrane proteins’, and ficolin-rich granule lumen
proteins” associate to 34 different IDs; there are also more specific names, such as "hydron’, ‘'water” and
"ATP’ associated with 21, 14, and 11 IDs, respectively. In the latter cases the cause is that different IDs
are used to indicate the same metabolite in different subcellular compartments, although they all get
assigned to the same name, for example the ID 5278291 indicates water in the cytoplasm while water
in extracellular compartment is identified as 109276.

Overall, the most ambiguous metabolite name is ‘lecithin’, which is associated with 921 different
IDs in the Human Metabolome database (HMDB). In this database, the most ambiguous names are
general compound classes such as “diacylglycerol’, 'PPP” and "pyridin-3-ylboronic acid’.

The overall consistency of HMDB is very high, as only 1.7% of names are linked to multiple
IDs, followed by ChEBI and KEGG, where 14.8% and 13.3% of names map to multiple IDs; also in
ChEBI ’lecithin” is the most ambiguous compound, linked to 413 IDs; other ambiguous names
are, again, generic names such as ‘Diglyceride’, ‘Diacylglycerol’, "Triglyceride’ and "Triacylglycerol’
(see Figure 2A). Also in KEGG the most ambiguous names refer to generic compounds such as "DS-18’
with 16 corresponding IDs. Furthermore, this compound shares ID with ‘Chondroitin 4-sulfate” which
is a sulfated glycosaminoglycan while DS-18 generally refers to glycan, which further complicates
metabolite characterization, as shown in Figure 2B.

EnviPath and SLM databases have also relatively low consistency with 7% names being
ambiguous. SLM is the largest database considered (>1.2 x 10° entries) and the most ambiguous
name refers to "Triacylglycerol’. In enviPath the most ambiguous compound is ‘compound 0044249,
with SMILES representation CC1=CC=C(C=C10)O that corresponds to 4-methyl-1,3-benzenediol.
In this database, many metabolites are renamed with numbers, i.e., "P06’,’/M320123’, or ‘compound
869’, which makes it cumbersome to the human user to identify them.

Other databases, namely SABIO-RK, MetaCyc, and LIPID MAPS are highly consistent,
with SABIO-RK containing only 8 metabolites with ambiguous names.
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Figure 2. Intra database consistency. Edges indicate a link between a metabolite name and a database ID.
Database name has been added to the ID (denoted as database names followed by ‘', i.e., kegg:C00228).
(A) Examples of metabolite names associated with multiple IDs in ChEBI. (B) Examples of metabolite
names associated with multiple IDs in KEGG. (C) Examples of metabolite IDs associated with multiple
names in Reactome. (D) Examples of metabolite IDs associated with multiple names in LIPID MAPS.

2.1.2. ID Multiplicity and Use of Synonyms

In an effort to increase readability of entries in the database, often multiple names are linked to
the same ID, i.e., IDs have a multiplicity larger than 1. Please note that multiplicity is different from
ambiguity as defined at the start of the Results section. Multiplicity increases human readability and is
beneficial, as long as the alias, names, and synonyms describe the same metabolite. Table 2 presents
the average ID multiplicity for the 11 databases considered.

Table 2. ID multiplicity in each database: number of IDs in each database, average number of names
per ID (average multiplicity), percentage and number of IDs that associate to more than one name,
and highest number of names an ID links to; s.d. stands for standard deviation. Blue boxes are used to
highlight highest numbers.

Average % of IDs with # of IDs with Highest Multiplici
Database #D Multiplicigr +s.d.  Multiplicity>1 Multiplicity > 1 s in Database v
BiGG 5174 1.0£0.0 0.0 0 1
ChEBI 123,835 4344 +3588 97.74 121,034 57
enviPath 12,306 1.0226 + 0.229 1.6 197 10
HMDB 43,179 2.4297 + 0.512 99.71 43,052 8
KEGG 40,256 1.6991 + 1.231 38.93 15,671 31
LIPID MAPS 40,772 3.9213 + 0.962 100.0 40,772 23
MetaCyc 17,159 3.2722 +1.984 99.75 17,116 98
Reactome 5344 2.3355 + 16.65 47.46 2536 1106
SABIO-RK 7683 1.4947 +1.193 24.17 1857 21
SEED 27,693 1.7305 + 1.311 39.83 11,031 28
SLM 505,004 2.602 0611 99.87 504,333 9

BiGG is the only exception to this rule. Every metabolite identifier is associated with one and only
one metabolite name, but, as shown in Table 1, the contrary does not hold true. BiGG is the smallest
database here considered (with only 5102 metabolite names and 5174 metabolite IDs), although it
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should be stressed that this database has been built by integrating reactions and metabolites appearing
in several published and manually curated genome-scale metabolic networks.

All other databases have some extent of multiplicity: in ChEBI, HMDB, MetaCyc, SLM and
LIPID MAPS nearly 100% of IDs are linked to more than 1 name. The use of multiple names is
intended to increase usability of the database. However, inconsistencies might arise when ambiguous
names are linked to IDs with high multiplicity, as illustrated in Figure 2C,D. This can result in
errors and mismatches when identifying compounds. A most extreme case is Reactome identifier
reactome:5278291 which is linked to 1106 difference names (see Figure 2C), among them ‘H20’,
‘water’, ‘phys-ent-participant60981” and ‘phys-ent-participant63109’. The latter two names are linked
to identifiers pointing to ‘diphosphate” and ‘pyruvate’, which means that within this database is
possible to map ‘water’ to ‘pyruvate’. Other striking examples can be found in Table 3. When mapping
with these compounds extra care needs to be taken.

Table 3. Example of compound names and IDs with high ambiguity and multiplicity.

Metabolite Name # Associate IDs Metabolite ID # Associated Names
lecithin 922 reactome:5278291 1106
diacylglycerol 812 reactome:1131511 266

Lecithin 417 reactome:1236709 266
Diglyceride 317 reactome:1132345 180
Diacylglycerol 317 reactome:1132084 155
Triacylglycerol 106 reactome:1132304 140
Triglyceride 103 reactome:5278409 123

PPP 66 reactome:5278317 107
Cer[NS] 63 MetaCyc:PARATHION 98

2.1.3. Database Mapping to IDs from MNXRef

MNXRef is a common namespace derived from MetaNetX and has been developed to combine
namespaces from multiple databases and provides links between compounds (and identifiers) from
different databases, the overarching goal is to enable bringing together GEMs.

We found that each of the IDs in the 11 databases link to a MNXRef ID; however, as shown in
Table 4, one MNXRef ID can connect to several IDs within a database resulting in a multiplicity larger
than 1. This happens, for instance, when MetaNetX associates one ID to several compound synonyms.
This might be due to conscious modelling-specific decisions. For instance, it would make sense to
combine citrate/citric acid identifiers in different databases to deal with protonation state differences.
Thus, linking several IDs to the same MNXRef ID addresses the multiplicity present in the database.
However, this also generates errors if the ID links to ambiguous names. The most striking case is
observed when mapping Reactome and MetaNetX: 2058 MetaNetX IDs are associated with Reactome
IDs and 41.93% of them link to more than one Reactome ID.
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Table 4. Number of IDs (#ID) in each database, number of MNXRef IDs (#MNXRef ID) linking to
each database, multiplicity of MNXRef IDs when mapping to IDs in the corresponding database,
and average and highest number of MNXRef ID per database ID; s.d. stands for standard deviation.
Blue boxes are used to highlight highest numbers, while red boxes are for lowest numbers.

Average #ID per % of IDs with # of IDs with Highest ID
Database #ID  #MNXRefID o8 o Multiplicity >1  Multiplicity > 1 Mult%plicity >1
BiGG 5174 5062 1.0221  0.165 1.96 99 4
ChEBI 123,835 96,746 1.28 + 1.005 11.93 11,541 30
enviPath 12,306 11,087 1.1099 + 0.4 8.14 902 9
HMDB 43,179 42,354 1.0195 + 0.176 1.63 691 12
KEGG 40,256 37,722 1.0672 + 0.293 6.14 2316 12
LIPID MAPS 40,772 40,546 1.0056 + 0.083 0.51 207 6
MetaCyc 17,159 16,985 1.0102 + 0.115 0.9 153 5
Reactome 5344 2058 25967 + 3.895 4193 863 34
SABIO-RK 7683 7512 1.0228 + 0.154 22 165 3
SEED 27,693 26,804 1.0297 + 0.181 2.79 749 4
SLM 505004 504,881 1.0002 = 0.016 0.02 119 3

2.2. Namespace Mapping between Databases

To study namespace consistency between databases, we performed a pairwise mapping of the
11 databases. We performed the mapping using both the names in the corresponding database and
MNXRef identifiers.

2.2.1. Mapping between Databases Using Metabolite Names

Table 5 shows the results of pairwise database mapping using metabolite names. Here, we map
IDs in the databases using associated names. The databases have different metabolite coverages,
for instance SLM contains 1218750 names while BiGG only 5102, this is because some are specific for a
certain class of compounds (like SLM for lipids) while others aim to be comprehensive and do not
describe all compound classes in exhaustive details (like HMDB for lipids). The difference in coverage
and multiplicity of names associated with IDs (previously presented in Tables 1 and 2) can cause the
mapping between two databases not to be symmetric as evident from Table 5.

In all comparisons, the fraction of compounds sharing the same name is rather limited. Overall,
except for mapping from SEED to KEGG and ChEBI with 60.1% and 57.2% overlap, respectively,
all databases have less than 50% of compound names in common. The namespace of ChEBI has the
largest overlap with other namespaces: around 40% towards MetaCyc, Reactome, and KEGG can be
mapped to ChEBL The namespaces of SLM, enviPath, and LIPID MAPS have the smallest overlap
with other namespaces, which is most likely because these are very specific databases. The low ratios
in Table 5, indicate that mapping using string algorithms is not effective since trivial differences in the
names (such as the use of underscore and hyphen) can results in mismatches.

Ambiguous naming, i.e., one name associated with more than one ID, can result in mapping
inconsistencies where one ID in the first database, gets mapped to multiple IDs in the second database.
The fraction of non-univocal mappings is indicated in Table 6. Hence, although 40.2% of the Reactome
IDs can be mapped to ChEBI (see Table 5), 81.3% of the successfully mapped Reactome IDs are
ambiguously mapped to multiple ChEBI IDs.

In some cases, more than 50% of the mappings are non-unique. The highest fractions of
non-unique ID mapping occurs when mapping to ChEBI, although when mapping from ChEBI
to the other databases, this fraction reduces significantly. When considering Reactome, both mappings
to and from this database lead to relatively high number of non-univocal assignments. SLM and
SABIO-RK have a significant low ambiguity when mapping from other databases, although as shown
in Table 5, only a small fraction in these databases can be mapped from other databases.
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Table 5. Number of IDs in one database (column) that map to IDs in the database in the corresponding row using database names as a bridge for mapping. Percentages

indicate fraction of the initial database. Blue boxes indicate highest overall mapping. Red boxes are used to highlight the lowest numbers.

Database BiGG ChEBI enviPath HMDB KEGG LIPID MAPS MetaCyc Reactome SABIO-RK SEED SLM
BiGG - 5097 (4.1%) 150 (1.2%) 702 (1.6%) 1489 (3.7%) 158 (0.4%) 210 (1.2%) 361 (6.8%) 839 (10.9%) 1829 (6.6%) 61 (0.0%)
ChEBI 1303 (25.2%) - 816 (6.6%) 9178 (21.3%) 16013 (39.8%) 4662 (11.4%) 7209 (42.0%) 2146 (40.2%) 2552 (33.2%) = 15,837 (57.2%) 4336 (0.9%)
enviPath 142 (2.7%) 2284 (1.8%) - 304 (0.7%) 1111 (2.8%) 55 (0.1%) 31 (0.2%) 90 (1.7%) 300 (3.9%) 983 (3.5%) 6 (0.0%)
HMDB 643 (12.4%) 15,749 (12.7%) 310 (2.5%) - 4745 (11.8%) 4078 (10.0%) 1693 (9.9%) 877 (16.4%) 1268 (16.5%) 3868 (14.0%) 14,007 (2.8%)
KEGG 1286 (24.9%) 30,098 (24.3%) 1050 (8.5%) 3922 (9.1%) - 1725 (4.2%) 731 (4.3%) 928 (17.4%) 2604 (33.9%) = 16,646 (60.1%) 84 (0.0%)
LIPID MAPS 149 (2.9%) 7832 (6.3%) 54 (0.4%) 4200 (9.7%) 1862 (4.6%) - 622 (3.6%) 311 (5.8%) 377 (4.9%) 1893 (6.8%) 13,478 (2.7%)
MetaCyc 212 (4.1%) 20,183 (16.3%) 31 (0.3%) 1967 (4.6%) 851 (2.1%) 648 (1.6%) - 1266 (23.7%) 340 (4.4%) 7703 (27.8%) 326 (0.1%)
Reactome 156 (3.0%) 5833 (4.7%) 41 (0.3%) 620 (1.4%) 588 (1.5%) 254 (0.6%) 717 (4.2%) - 368 (4.8%) 542 (2.0%) 146 (0.0%)
SABIO-RK 864 (16.7%) 10,413 (8.4%) 324 (2.6%) 1456 (3.4%) 3127 (7.8%) 390 (1.0%) 342 (2.0%) 781 (14.6%) - 2692 (9.7%) 55 (0.0%)
SEED 1824 (35.3%) 32,212 (26.0%) 1020 (8.3%) 4971 (11.5%) 18,489 (45.9%) 1915 (4.7%) 7580 (44.2%) 985 (18.4%) 2641 (34.4%) - 233 (0.0%)
SLM 55 (1.1%) 4964 (4.0%) 4 (0.0%) 12,354 (28.6%) 94 (0.2%) 10,634 (26.1%) 289 (1.7%) 225 (4.2%) 44 (0.6%) 211 (0.8%) -

Table 6. Percentage of IDs in the database (column) that gets mapped to more than one ID in the database in the corresponding row using database names as a bridge.

Blue boxes are used to highlight highest numbers. While red boxes indicate lowest numbers.

Database BiGG ChEBI enviPath HMDB KEGG LIPID MAPS MetaCyc Reactome SABIO-RK SEED SLM
BiGG - 2.9 1.3 3.0 3.6 3.2 1.4 0.6 2.9 2.7 1.6
ChEBI 76.3 - 67.0 38.1 38.3 34.3 58.7 81.3 78.7 37.3 26.9
enviPath 6.3 6.5 - 8.2 6.1 0.0 0.0 12.2 7.7 4.6 0.0
HMDB 10.7 11.5 6.8 - 7.3 43 13.2 22.8 12.8 7.4 0.7
KEGG 17.0 15.2 11.1 28.5 - 10.2 18.5 34.5 19.6 124 333
LIPID MAPS 8.7 9.8 1.9 1.8 3.2 - 4.2 13.2 4.5 3.2 0.8
MetaCyc 0.5 3.9 0.0 25 3.9 2.0 - 6.0 4.1 15 0.6
Reactome 42.3 41.4 51.2 49.0 51.4 244 38.9 - 49.5 432 479
SABIO-RK 0.0 45 0.0 0.0 3.8 1.0 3.8 2.2 - 3.3 1.8
SEED 3.0 6.0 0.9 2.0 24 2.2 3.1 8.9 5.3 - 1.7
SLM 7.3 37.2 25.0 12.3 18.1 22.3 10.4 244 20.5 9.5 -
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2.2.2. Mapping between Databases Using MNXRef ID

Another approach to map IDs from different databases is to use MetaNetX/MNXRef as a bridge.
Table 7 shows the fraction of IDs in each database pair that can be mapped through MetaNetX/MNXRef.
Again, the differences in coverage between the databases cause this table to be non-symmetric.

Figure 3 shows that mapping via MNXRef ID results in more identified mappings than the
previous approach that used names. Nevertheless, the overall map is also not high. None of tested
databases maps higher than 70% either to or from other databases. The highest match is 67.7%
when mapping MetaCyc to SEED. SEED can be mapped fairly well from BiGG, Reactome and KEGG
with more than 40% match. Please note that these are all databases specialized in reactions and
metabolic pathways. There is almost no overlap between SEED and SLM, the latter specialized in
lipids. Databases with overall good match are ChEBI, KEGG, and MetaCyc. Among them, ChEBI has
the highest overlap with other databases. Almost 50% of IDs in SEED, Reactome, MetaCyc, KEGG,
SABIO-RK, and BiGG can be mapped to ChEBIL. However, there is not so much overlap when mapping
enviPath (12.8%), LIPID MAPS (13.5%) and especially SLM (0.8%) to ChEBI. The remaining databases
have a significant low overlap percentage when mapping via IDs. Especially SLM, there is just a minor
part of the database that can be mapped to other databases.

This approach also results in instances of one ID from the first database associated with more
than one ID in the target database, an example is provided in Figure 4 and Table 8 summarizes the
identified cases.

10° -
o
Qe
}b
[ J ° o %o
[} .’
) [ z
g 103 [2) ‘
£ . ¢
= ®
87 0’{ ®
= ® ©®
= *n’
= %
[ )
10*-
[ ]
[ ]
10* 103 105

Mapping via MetaNetX/MNXRef

Figure 3. Number of mappings using the two approaches: The x axis shows the mappings resulted
using MNXRef ID as a bridge; the y axis shows the number of mappings via name. Each red dot
indicates a mapping between a pair of databases, points in blue indicate mappings from a database
to itself. Mapping results from/to SLM are not shown in the plot due to the high number of matches
outside the considered range.
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Table 7. Number of IDs in one database (column) that map to IDs in the database in the corresponding row using MetaNetX as a bridge. Percentages indicate fraction
of IDs in the initial database. Blue boxes are used to highlight highest numbers, while red boxes indicate lowest numbers.

Database BiGG ChEBI enviPath HMDB KEGG LIPID MAPS MetaCyc Reactome SABIO-RK SEED SLM
BiGG - 2064 (2.1%) 232 (2.1%) 1469 (3.5%) 1781 (4.7%) 533 (1.3%) 1715 (10.1%) 609 (29.6%) 1180 (15.7%) 2652 (9.9%) 221 (0.0%)
ChEBI 2064 (40.8%) - 1424 (12.8%) 8775 (20.7%) 19,244 (51.0%) 5464 (13.5%) 9019 (53.1%) 1242 (60.3%) 3252 (43.3%) 17,649 (65.6%) 3848 (0.8%)
enviPath 232 (4.6%) 1424 (1.5%) - 549 (1.3%) 1093 (2.9%) 166 (0.4%) 733 (4.3%) 120 (5.8%) 377 (5.0%) 1123 (4.2%) 23 (0.0%)
HMDB 1469 (29.0%) 8775 (9.1%) 549 (5.0%) - 5028 (13.3%) 5387 (13.3%) 3283 (19.3%) 788 (38.3%) 1804 (24.0%) 5021 (18.7%) 9870 (2.0%)
KEGG 1781 (35.2%) 19,244 (19.9%) 1093 (9.9%) 5028 (11.9%) - 2397 (5.9%) 7030 (41.4%) 926 (45.0%) 2651 (35.3%) = 16,791 (62.4%) 375 (0.1%)
LIPID MAPS 533 (10.5%) 5464 (5.6%) 166 (1.5%) 5387 (12.7%) 2397 (6.4%) - 2056 (12.1%) 325 (15.8%) 719 (9.6%) 2807 (10.4%) 10,076 (2.0%)
MetaCyc 1715 (33.9%) 9019 (9.3%) 733 (6.6%) 3283 (7.8%) 7030 (18.6%) 2056 (5.1%) - 877 (42.6%) 2538 (33.8%) = 11,502 (42.8%) 655 (0.1%)
Reactome 609 (12.0%) 1242 (1.3%) 120 (1.1%) 788 (1.9%) 926 (2.5%) 325 (0.8%) 877 (5.2%) - 705 (9.4%) 1006 (3.7%) 200 (0.0%)
SABIO-RK 1180 (23.3%) 3252 (3.4%) 377 (3.4%) 1804 (4.3%) 2651 (7.0%) 719 (1.8%) 2538 (14.9%) 705 (34.3%) - 2915 (10.8%) 253 (0.1%)
SEED 2652 (52.4%) 17,649 (18.2%) 1123 (10.1%) 5021 (11.9%) @ 16,791 (44.5%) 2807 (6.9%) 11,502 (67.7%) 1006 (48.9%) 2915 (38.8%) - 647 (0.1%)
SLM 221 (4.4%) 3848 (4.0%) 23 (0.2%) 9870 (23.3%) 375 (1.0%) 10,076 (24.9%) 655 (3.9%) 200 (9.7%) 253 (3.4%) 647 (2.4%) -
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Figure 4. Visualization of the infer database inconsistency. An ID from BiGG (in yellow) can link to

many other IDs in CheBI (red) when using MetaNetX ID (green) for the mapping.

Table 8. Percentage of IDs in the database in the column that get mapped to more than one ID in
the database in the corresponding row using database MetaNetX as a bridge. Blue boxes are used to
highlight highest numbers. While red boxes indicate lowest numbers.

Database BiGG ChEBI enviPath HMDB KEGG LIPID MAPS MetaCyc Reactome SABIO-RK SEED SLM
BiGG = 39 52 35 39 32 4.0 3.8 4.5 32 2.7
ChEBI 83.1 - 56.2 39.7 36.4 37.8 64.7 76.8 72.2 39.4 27.8
enviPath 9.9 10.6 - 12.0 8.1 8.4 7.6 14.2 111 8.1 8.7
HMDB 19.1 6.8 12.6 - 9.3 51 12.7 26.4 17.2 9.7 1.6
KEGG 15.0 10.0 11.0 221 8.4 9.6 19.7 17.5 11.2 14.7
LIPID MAPS  10.5 2.8 6.0 25 45 - 4.6 14.5 7.0 42 0.5
MetaCyc 3.6 14 3.4 21 17 0.9 - 4.3 2.8 11 0.5
Reactome 4.7 33.3 45.0 32.4 37.1 289 36.7 - 41.7 37.2 35.0
SABIO-RK 8.1 47 5.6 6.1 53 3.8 5.6 9.2 - 5.1 4.7
SEED 8.4 35 4.2 4.6 3.7 3.6 5.7 12.1 9.5 - 5.1
SLM 5.0 1.1 0.0 0.2 5.6 0.4 2.7 6.0 5.1 32 -

Name ambiguity and non-unique ID mapping between databases can lead to inconsistencies
(different metabolites considered to be equivalent) and included as such in the metabolic model. Table 9
lists some illustrative examples. These examples show that automatic mapping (manual mapping is

impossible for large scale models) of compounds between or within databases can lead to introduction

of unrealistic reactions that can potentially reduce the accuracy of the predictions of the model.

Table 9. Examples of mapping inconsistencies.

Abbreviation Database IDs in Database MetaNetX ID  Compound(s)

suc MetaCyc  SUC MNXM25 succinate

suc Reactome 188980 MNXM167 sucrose

H MetaCyc  PROTON MNXM1 proton

H MetaCyc  HIS MNXM134 L-histidine

tmp BiGG tmp MNXM87343  TMP

tmp ChEBI 10529 MNXM257 Thymidine monophosphate
tmp KEGG C01081 MNXM662 Thiamine monophosphate
tmp MetaCyc  CPD-610 MNXM88031  cyclo-triphosphoric acid
PPP Reactome 1475054 MNXM3109 triphosphate ion

PPP MetaCyc  2-PHENYL-2-1-PIPERDINYLPROPANE MNXM150634 2-phenyl-2-1piperdinylpropane
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3. Discussion

GEMs aim to be comprehensive representations of the metabolism of one organism. They are
often built based on more than one database. As explained, the initial step of model constructions is
typically automated model drafting. Tool selection will determine with which namespace the model
is associated. For instance, modelSEED uses SEED as a reference reaction database while Pathway
Tools uses MetaCyc. In the next step in the model building process—manual curation—gap-filling is
possibly the most important task. Tools for gap-filling often systematically explore the GEM to identify
possible gaps [33]. Other methods rely on additional experimental data such as measured metabolites
to identify the gaps [34]. In this step, researchers may use different sources and databases to identify
reactions and associated metabolites. Errors might arise due to inconsistencies in this mapping.

A second application of GEMs is the integration and contextualization of ‘omics’ data such as
transcriptomic, proteomic, metabolomic and/or fluxomic data. These applications often require a
mapping of metabolite identifiers to match the namespace of the model and that of the database that
has been used in the data generation process. Both applications may imply potential problem(s) caused
by ambiguous names or identifiers.

Among the 11 explored databases, KEGG, BiGG, ChEBI, MetaCyc, HMDB, and SEED are the most
commonly used in metabolic modelling. We calculated the ambiguity of names and the multiplicity of
non-systematic identifiers within and between 11 databases. Within the same database, the percentage
of identifiers with multiplicity larger than one varies from 0% to 100%, whereas the ambiguity of
names ranges from 0.07% to 29.4%. When mapping between databases, these ambiguities and
multiplicities lead to larger inconsistencies, and this agree with previous observations regarding
small molecules databases [31,35]. The inconsistencies when mapping using metabolite names range
from 0% to 81.2%. Similar results are obtained while mapping via MNXRef ID, between databases,
as the number of inconsistencies varies from 0% to 83%; however, on average, better results are
obtained. Mapping with the databases with the highest number of ambiguous names also results
in higher number of inconsistencies than when mapping between other databases. Among the 11
tested databases, Reactome, HMDB, ChEBI, and KEGG are those that show the highest intra- and
inter-database ambiguity.

Most of the ambiguous names are associated with general compounds such as triacylglycerol,
glycan, or protein. These names and IDs represent classes of compounds rather than metabolites with
defined structures and are included in metabolic models as they have a clear biological interpretation.
However, care should be taken when introducing them in databases and these names should not be
included in the list of synonyms for specific compounds, as mentioned in [35]. Using abbreviations
to refer to compounds is also highly ambiguous as the same abbreviations can represent different
compounds in the same or in different databases.

Our findings show that compound names or IDs cannot be clearly mapped automatically. Even
if we use non-ambiguous identifiers, many mappings are still inconsistent because they can link
to ambiguous names. MetaNetX solved some of the issues as shown in Table 9. However, not all
compounds in the 11 tested databases can be mapped with MNXRef. Mapping from MetaCyc to SEED,
SEED to ChEBI, and SEED to KEGG using MNXRef give the highest number of matches, but still only
around 60% of compounds matched. Other databases show much lower coverage.

To use MetaNetX/MNXRef ID to map compounds in a GEM, the namespace of the model needs
to be related to at least one of the 11 databases considered. However, many models use custom-made
naming conventions [14]. For these models, mapping through name is the only option.

Ambiguous namespaces also hamper the (re)use of models from different research labs or
organisms. Due to a low level of interoperability, in practice it is impossible to directly compare
models, as metabolites can hardly be cross-mapped, which in turn makes it impossible to compare
reactions in both models, see examples in Table 9. Nevertheless, comparing models is important
and necessary: it helps to reduce the time to build models for closely related species; to combine
efforts from different research groups that study the same organism; and to study the metabolic
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differences between different organisms. In addition, microbial communities are notoriously difficult
to characterize. While transcriptomic and proteomic measurements can be associated (to a great extent)
to the originating microorganism, it is not possible to do this for metabolites. Therefore, there is a need
for models that can help combine both types of measurements. As a result, there are on-going efforts
to define modelling frameworks, based on combining GEMs of individual organisms, to characterize
the behaviour of the community [21,22,36,37]. Enabling unambiguous mapping will be required to
take full advantage of these on-going developments.

Below we have enumerated several recommendations that may increase the level of
interoperability of GEMs, facilitating unambiguous mapping

e  Limit the use of aliases, i.e., compound classes or abbreviations, as synonyms in databases. These
aliases increase human readability, but should be clearly distinguished from names and synonyms
in the databases and should not be used for mapping.

* In the context of metabolic modelling it is frequent and desirable to use compound classes to
identify generic compounds [28]. Compounds such as ‘biomass’ or 'lipid” are often used in GEMs;
this does not affect the use of the model, except when predicting or simulating the production
(of a specific component) of generic compounds, i.e., when ‘lipids’ are the main focus of the
model. In fact, it is often better to use generic compounds whenever a specific compound is not
needed, as they can be universal. For instance, ‘biomass” has been used as a standard among
the modelling community as an artificial compound that represents the growth objective of the
cell [6,17]. Another reason is that often the precise identity of the compounds is not needed and
there is a lack of experimental data for their characterization. Therefore, when using generic
compounds, it is desirable to add extensive annotation to the model to clearly state which
compounds they represent, and for which purpose they are used in the model. These generic
compounds are among the most ambiguous entities in the 11 analyzed databases and we therefore
advise to exclude them from any automatic mapping process.

*  Avoid using highly ambiguous names as the sole description of the compound in the model.
When referring to these compounds, clear annotation needs to be included to prevent mismatches
and inconsistencies.

e In addition to human-readable identifiers and database-dependent identifiers, include
database-identifiers, such as InChl [15,16], whenever possible for compounds with defined
structures. Using InChl can help to fully automate the mapping [28]. However, it should be
taken into account that mismatches and errors can also happen because identifiers can also link to
incorrect InChl as shown in [29,35,38].

*  Model mapping only based on metabolite information can imply certain mismatch due to
differences in namespaces, even if systematic identifiers were used. Hence, different mapping
strategies, i.e., mapping through encoding genes and network topology [19], should be used to
complement name or identifier-based mapping.

*  GEMs also need to have a unique standard annotation so that they generate the same output
even when different tools are used for the simulation. Neal et al. [39] suggest that semantic
annotation can help to store and combine models, but these models need to stick to a unique
standard annotation format.

Simply deciding a standard database/identifier /annotation to represent metabolites in models
will also not help to improve the situation, as they will limit the available model construction tools.
Nevertheless, while increasing the level of interoperability none of the presented approaches above
can by itself ensure automated mapping without errors. Different approaches need to be combined
when translating between namespaces. Manual curation is still required, at least for compounds with
highly ambiguous names.

We did analyze the (in)consistency of databases (commonly) used in metabolic modelling but
we did not analyze the (in)consistency of GEMs built using different databases. However, since every
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metabolite in a GEM is usually associated with at least one identifier from biochemical databases such
as KEGG, BiGG, SEED, or MetaCyc, every GEM can be considered as a small subset of the identifiers
and names from those database(s). Hence, the ambiguity of the compound names in GEMs can be
considered to be equivalent the ambiguity of the compound names in the tested databases. Moreover,
it should be noted that some databases (such as BiGG) aggregate compounds names used in deposited
GEMs and thus mapping of these databases against other databases provide an overall, direct measure
of the ambiguity of the compound names in GEMs. In addition to solving mapping inconsistencies,
GEM namespace translation can be further improved by using tools that analyze the consistency of the
generated models [19].

Finally, our analysis has some limitations. It should be noted that the list of inconsistencies
provided represents just an upper bound to the number of possible errors when changing namespaces.
We have only studied non-systematic identifier and names. We did not use structure data such as
MOL files, we cannot evaluate how many of the consistent mappings are actually correct. We have not
included such information in our analysis because it is not often found in metabolic models. In any
case, the inconsistencies here described pertain automatic mapping and most (or all) of them should be
fixable upon manual curation. Comparing names between databases is not trivial due to heterogeneity
issues: our approach may be over simplified, which may reflect in the results shown. It should be
noted that in some databases, synonyms are clearly differentiated, in this case, the inconsistency will
not arise. However, in many databases considered in this study, synonyms are not well distinguished.
For instance, H in MetaCyc belong to the synonym:s list of both proton and L-histidine. This is one of
the primary causes of ambiguous mapping. In addition, MetaNetX data that was downloaded at the
moment of conducting this study contained data from the originating databases that was produced
in 2017 and some in 2016 (see Section 4.1 for more detail). As databases change over time, a similar
analysis with the most recent database updates might lead to different results. Stat Roma pristina
nomine, nomina nuda tenemus.

4. Material and Methods

4.1. Data Collection and Preprocessing

Data about compound identifiers and synonyms were downloaded from MetaNetX [25].
MetaNetX is a repository of GEMs and biochemical pathways. It contains entries from some of
the most relevant databases that have been used in GEMs construction and simulation such as KEGG,
BiGG, MetaCyc and SEED [32]. The platform (http://www.metanetx.org/) allows access to these
databases as well as provides tools to map/translate them. In this study, the chem_xref.tsv file was
downloaded from the MetaNetX website on 31 October 2018. In the following, we provide a brief
description of the content of these databases.

BiGG models [40] is a knowledge database of genome scale metabolic models (GEMs). Currently,
it contains 85 high-quality, manually curated GEMs, 24,311 reactions, and 7339 metabolites (data
retrieved on 30 November 2018 from http:/ /bigg.ucsd.edu/). In BiGG, the metabolite is identified as
the abbreviation of its name. For example, ‘10fthf” for 10-Formyltetrahydrofolate. MetaNetX obtained
data from BiGG on 11 April 2017.

Model SEED [41] is a platform to construct GEMs that uses its own database for metabolites
and reactions. This database combines information from KEGG and existing metabolic models in a
non-redundant set of reactions. In this database, metabolite identifiers start with “cpd” and followed by
a 5 digits number. For example, D-Glucose-1-Phosphate is cpd00089. The database can be downloaded
from https://github.com/ModelSEED /ModelSEEDDatabase/ tree /master /Biochemistry. MetaNetX
obtained data from SEED on 13 April 2017.

ChEBI [42]. (http://www.ebi.ac.uk/chebi/aboutChebiForward.do) is a database of Chemical
Entities of Biological Interest [42] and is a repository for small chemical compounds. In ChEBI,
metabolites are named by 5-digit numbers. For example, Alpha-D-glucose-1-phosphate(2-) is 58601.


http://www.metanetx.org/
http://bigg.ucsd.edu/
https://github.com/ModelSEED/ModelSEEDDatabase/tree/master/Biochemistry
http://www.ebi.ac.uk/chebi/aboutChebiForward.do
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File can be downloaded from ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file tab_delimited/.
ChEBI data in MetaNetX are from the release version 150.

enviPath [43]. (https://envipath.org/). Is a database to store and predict the microbial
biotransformation of organic environmental contaminants. Data in MetaNetX were downloaded
on 12 April 2017.

HMDB [44], (http://www.hmdb.ca), is a comprehensive and curated collection of human
metabolite and human metabolism data. Data in MetaNetX was obtained on 12 April 2017.

KEGG [13] (http:/ /www.KEGG jp). The Kyoto Encyclopedia of Genes and Genomes is a resource
that provides information about pathways and reactions in organisms. In KEGG, metabolites started
with a letter ‘C’ (compound) and followed by 5-digit numbers. For example, D-Glucose-1-Phosphate is
identified as C00103. Data in MetaNetX were obtained on 12 April 2017.

LIPID MAPS [45]. (http://www.ipidmaps.org). Is a database that contains structures and
annotations of biologically relevant lipids. Data in MetaNetX were obtained on 13 April 2017.

MetaCyc [12]. (http://metacyc.org). Is a curated database of metabolic pathways. All data in
MetaCyc are experimentally validated. The metabolite is identified by its full name. For example,
D-glucose-1-Phosphate is D-glucose-1-phosphate. The database can be downloaded here http:
/ /bioinformatics.ai.sri.com/ptools/flatfile-format.html. Data in MetaNetX were obtained on
13 April 2017.

Reactome [46]. (http:/ /www.reactome.org). Is a curated and peer-reviewed database of human
biological processes. Data in MetaNetX were obtained on 13 April 2017.

SABIO-RK [47], (http:/ /sabiork.h-its.org/), Is a database containing comprehensive information
about biochemical reactions and their kinetic properties. Data in MetaNetX were obtained on
27 May 2016.

SwissLipids (SLM) [48] (http://www.swisslipids.org/) contains curated data about lipid
structures and metabolism. Data in MetaNetX were obtained on 13 April 2017.

The original data file was modified prior to analyzing. The modification includes the removal
of the description part, of IDs starting by bigg:M as they are not real compound ID in BiGG, and
the removal of ‘biomass’ compounds. Data from MetaNetX were organized in four columns in this
order: compound ID in original database with database indicator in front, for example bigg:10fthf,
corresponding compound IDs in MetaNetX, evidence and description (name).

4.2. Intra-Database Analysis

For intra-database consistency analysis, the first, the second and the last column of the MetaNetX
data file were used for mapping. Name ambiguity was calculated as the number of ID each name links
to. Similarly, the name multiplicity of each ID was calculated as the number of names it refers to.

4.3. Inter-Database Analysis

We mapped compound IDs between databases. A direct map between IDs in the database is not
possible. The tested databases use different system for compound identifiers. For instance, in KEGG,
the compound ID is a capital ‘C” following by a 5-digit numbers, i.e., “C00002” for ATP. In contrast,
in BiGG, the compound is identified as abbreviation of its name, for example, ‘atp” for ATP. Therefore,
to map from one ID in database 1 to other ID in database 2, we used either the associated compound
name or the associated MNXRef ID. That is also what MNXRef is meant for, as a link between databases.

Mappings via name were done by link from name to name in one database to the other. We first
identified all compound names from one database, i.e., database A. From this list, we counted the
number of IDs in the second database, i.e., database B, that link to each name in the database A.
It means in this case, we did not use any string processing algorithm, i.e., processing case sensitive,
underscore, or brackets, the name was mapped as exact match. Ambiguous names were treated
as normal name in the database. In other words, we did not distinguish ambiguous names from
unambiguous names from the mapping.


ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/
https://envipath.org/
http://www.hmdb.ca
http://www.KEGG.jp
http://www.lipidmaps.org
http://metacyc.org
http://bioinformatics.ai.sri.com/ptools/flatfile-format.html
http://bioinformatics.ai.sri.com/ptools/flatfile-format.html
http://www.reactome.org
http://sabiork.h-its.org/
http://www.swisslipids.org/
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