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Supplementary Materials:

S1: Simulating biologically relevant metabolic networks1

An important factor in generating random biological networks is the distribution of the2

connectivity. Biological networks follow a power law distribution [1], therefore it is important3

to maintain this property in the simulated networks. The Barabási-Albert model [2] allows the4

construction of networks with the appropriate distribution (Fig S1). Note that it is important to inspect5

the network connectivity matrix for the following properties:6

1. asymmetry: the network matrix cannot be symmetric with respect to the main diagonal, this7

would imply that every two metabolites that are connected, are connected in both directions.8

This is not the case in a biological network.9

2. non-triangularity: if the network matrix exhibits a triangular shape (lower or upper triangularity),10

then certain nodes (metabolites) have a larger probability of having many connections. When11

simulating many networks this would result in, for example, metabolite A having the most12

connections in most of the simulations. This is non beneficial to the randomness of the13

generated metabolic networks. If a triangular matrix has the correct power-law distribution, the14

triangularity problem can be solved by randomly shuffling columns or rows.15
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Figure S1. Generated biological network connectivity. The network generated with the
Barabási-Albert algorithm exhibits a connectivity distribution according to a power law.
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Table S1. Simulation parameters.

Parameter Value Description

Nreplicates 3 The number of replicates for each sample. For each replicate the
starting concentrations are different but the network is the same.

Nmetabos 50 The number of metabolites/nodes in the network

dt 0.001 The time step (taken sufficiently small for the Euler
approximation to hold).

tmax 2.1 The end time.

start_concentration 100 The starting concentration of each metabolite without noise.

max_abs_concentration_noise 10 The maximal absolute value of the noise that is added to
starting concentration. Set at 1/10th of start_concentration.

influx_tmax 0.5 The time point at which the influx (if present) stops.

N_influx 10 The number of metabolites that receive an influx.

Neg_ctrl_protein_factor_strong 0.01 The factor by which the rates are multiplied in the case of a
"no influx, no enzymes" simulation (Fig ??).

Neg_ctrl_protein_factor_weak 0.5 The factor by which the rates are multiplied in the case of a
"no influx, little enzymes" simulation (Fig ??).

Neg_ctrl_protein_fraction 0.5 The fraction of enzymes that receive the strong negative
control protein factor.

BApower 0.5 Parameter of the Barabási-Albert graph model generator from the
igraph R package [3]: The power of the preferential attachment

BA_mValue 4 Parameter of the Barabási-Albert graph model generator from the
igraph R package: the number of edges to add in each time step
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S2: Dynamics of a metabolic network, the mathematics of change over time16

For the example the following small network 1 is used:17

Figure S2. Metabolomic network example. Nodes are metabolites and the edges represent flow
between metabolites. These flows are rates based on concentrations of enzymes.

The nodes represent metabolites, A, B, C, etc. that have certain concentrations denoted as A, B,18

C respectively. These concentrations evolve based on the enzymes x, y and z. These are effectively19

the rates that govern the flow and are denoted as x, y and z respectively. Thus, the evolution of the20

concentration over time can be written according to the following ordinary differential equations:21

dA
dt

= −(x + y)A

dB
dt

= xA

dC
dt

= yA − (x + z)C

...

To numerically solve these equations the Euler approximation is used by substituting the following22

finite difference scheme into the equations for the metabolic network23

d f
dt

≈ f (t + δt)− f (t)
δt

by writing f (t + δt) in the following shorthand notation ft+δt we obtain the following24

1 Visualized with the ggnet R package.
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At+δt − At

δt
= −(x + y)At

Bt+δt − Bt

δt
= xAt

Ct+δt − Ct

δt
= yAt − (x + z)Ct

...

Reworking this gives the final result for the state of the network at time point t + δt in function of25

the state at time point t26

At+δt = −δt(x + y)At + At

Bt+δt = δtxAt + Bt

Ct+δt = δt(yAt − (x + z)Ct) + Ct

...

When choosing δt sufficiently small the Euler approximation is valid. As mentioned in the27

manuscript, the rates are influenced by the concentration of metabolites. Specifically, when the28

concentration of a metabolite increases, the rates that deplete that metabolite will also increase, up to a29

certain maximum. The sigmoid function is suited to this behavior, for example, the equation governing30

the evolution of rate y is31

y(At) =
ymax

1 + exp[−k(At − A0 − c)]

with c a parameter that needs to be set according to the following equation32

c =
ln(ymax − 1)

k

This parameter shifts the sigmoid function so that the value is 1 at the starting concentration ymax.33
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S3: Multiple testing correction problem for EDGE and metabolomics34

A critical note on p-values and multiple testing correction has to be made. EDGE performs a35

test for an improvement in model performance. This is effectively a one-sided test i.e. the full model36

with two curves performs better than the null model with 1 curve. Large numbers of these one-sided37

tests can result in a bimodal p-value distribution. Such a bimodal p-value distribution can prevent38

the adequate application of the often used FDR correction, as it uses the distribution of the p-values39

to estimate the π0 value (proportion of true nulls), and this distribution is assumed to be roughly40

uniform in the high p-value region [5]. With regard to bimodal p-values, such a distribution can41

further be caused by a large number of features without any difference between sample classes, This42

can often occur in biological experiments as large numbers of (uninformative) features are measured.43

In this case, the bimodal distribution problem can be solved by either removing these features or by44

applying surrogate variable analysis techniques, which can also be used to remove batch effects and45

other unwanted variation.46
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S4: Performance comparison of machine learning models.47

To find the optimal machine learning model for the longitudinal metabolomics data the predictive48

performance was evaluated on the external tinderesting data as discussed in the main manuscript. The49

compared models are:50

1. a random forest with 500 trees, 8 variables sampled at each split, minimum size of terminal node51

1, sampling with replacement (the default parameters from the randomForest R package [6]),52

2. a support vector machine with a radial basis kernel (rest of parameters are default from e1071 R53

package)54

3. a naive Bayes classifier (default e1071 R package parameters, no priors set).55

The performance of the three classifiers was compared in a 10 fold cross validation setup, each56

repeated 20 times with different folds (to get an estimate of the ROC curve variability). The results are57

visualized in Fig S3. The random forest model consistently outperforms the SVM and naive Bayes58

classifier2. The code to run these models and obtain similar plots is available in the MetaboMeeseeks R59

package [7]. For completeness, the Precison-Recall plot of the Random forest model is plotted in Fig S4.60

The random forest model trained with this simulated data is used to compare to the EDGE model.61

This is to avoid overfitting on the data and to allow a fair comparison between EDGE and tinderesting.62
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Figure S3. ROC curves for random forest, SVM and naive Bayes classifiers. Classifier performance
is represented with the respective receiver-operator-characteristics. Comparing the area under the ROC
curves (AUC values) justifies the choice for the random forest classifier.

2 The SVM and naive Bayes model are implemented with the e1071 R package.
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Figure S4. Precision-Recall curve for the random forest classifier.
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S5: Shiny app and user interaction63

To review the quality of the significant features and to train the machine learning model, we64

constructed a Shiny web app called tinderesting. Shiny is an R package to produce such interactive65

web apps that require little effort to construct and can easily be run on a server. The app queries the66

user for the quality of features, and uses these results to build a model in the background (Fig S5). All67

responses are stored in an SQLite database for straightforward storage and access.68

Figure S5. Visualization of the full tinderesting app. The user selects the subset of the data on the
left hand side, the selected subset is visualized. Next, features appear on the right hand side that need
reviewing by the expert. The results are logged at the bottom of the app and simultaneously stored in
an SQL database.
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S6: Examples of actual dynamic metabolomics data69
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Figure S6. Two examples from a dynamic metabolomics experiment. Visualization of two features
from the processed LC-MS dataset [4]. The sample class (S) shows different behavior over time
compared to the other classes (MB = method blank, NC = negative control). Left, a biotransformation
product is formed in the sample class and right, a biotransformation product is initially formed,
followed by a further biotransformation.
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S7: Extra visualization of tinderesting results70

The vizualization in Fig S7 does not fully grasp the results as many features are plotted on top of71

each other, for example in the bottom left corner of the right plot. A dot is depicted for each irrelevant72

feature (left) or relevant feature (right). The colour of this dot represents the tinderesting score and the73

uncorrected p-values from EDGE are plotted on the x and y positions: sample (S) vs negative control74

(NC) and sample (S) vs blank (B) respectively. Overall, uninteresting features have low tinderesting75

scores and interesting ones have high scores. Also note that the irrelevant features are spread out over76

the y axis as the EDGE model for sample vs negative control model underperforms overall. Most of the77

relevant features are plotted on top of each other making it difficult to observe the actual tinderesting78

score79
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Figure S7. Feature scores of EDGE and tinderesting. Overall, the irrelevant features have a low
tinderesting score (blue colour), and the relevant ones generally have a high score (red). The EDGE
comparison of sample vs blank exhibits mostly very low (uncorrected) p-values for the relevant features.
The (uncorrected) p-values of the EDGE sample vs negative control comparison are more spread out,
which is consistent with the results of the performance comparison.
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S8: Experimental validation dataset80

A gastrointestinal model developed by Breynaert et al. [8] and adapted by Peeters et al. [4] was81

used to study the biotransformation of quercetin, one of the most abundant flavonoids found in plants.82

Details of the gastrointestinal model can be found in Peeters et al [4] including the experimental setup.83

Three sample classes were biotransformed in the gastrointestinal model consisting of stomach, small84

intestine and colon: sample, negative control and blank. The sample class contains quercetin and gut85

bacteria for biotransformation of the compounds were added during the colon phase. The negative86

control class contains the quercetin compounds but no bacteria. The blank sample contains bacteria87

but no quercetin. The objective is to find the metabolites that form after biotransformation of quercetin.88

Specifically, the time profile of the sample class should be different from both blank and negative89

control.90

91

The experiments were performed on a Waters Xevo G2-XS QTOF instrument (accurate mass).92

Specific liquid chromatography and mass spectrometry settings and other experimental details can93

be found in Peeters et al. [4] as the exact same settings were used to for this quercetin experiment.94

Because the Waters LocksprayTM was used in the experiment, the files were converted to the open95

source mzXML format with the msConvert tool from ProteoWizard [9]. Because the Waters lockspray96

technique was used, the method of Stanstrup et al. [10] was used to remove the lockspray runs. Next97

XCMS [11] was used for pre-processing the open source data files to obtain a matrix ready for further98

data analysis. Specifically the centWave function was used for peak-picking followed by grouping99

with the density method and finally peak-filling, see Table S2 for the parameter settings. The final data100

matrix contained 70 samples and 17793 features.101

Table S2. XCMS pre-processing parameter settings

function parameter value

xcmsSet method “centWave”
ppm 10
peakwidth c(5,25)
mzdiff 0.01
prefilter c(3,5000)
integrate 1
snthresh 10
noise 1000

group method “density”
bw 5
mzwid 0.015
minfrac 0.20
max 100
minsamp 2

After the pre-processing steps an initial EDGE analysis was performed to find a subset of the102

data for expert revision. This step is not strictly necessary but it aides in reducing the amount of103

irrelevant features to be reviewed by the expert. Usually there will be a class imbalance towards the104

uninteresting features. An initial EDGE filtering can reduce this imbalance. The p-value thresholds for105

both EDGE analysis (sample vs blank and sample vs negative control) was set at 0.25. This resulted in106

507 out of 17793 features to be reviewed by the expert. This resulted in 423 uninteresting features, 79107

interesting features and 5 for which the reviewer was uncertain. Although an initial EDGE analysis was108

performed there is still a majority of uninteresting features. We can now use these expert-rated data as109

a validation dataset for the overall tinderesting approach. In Fig S8 the performance of tinderesting is110

illustrated by performing 10-fold cross validation on the expert-rated dataset. In each cross validated111

loop a random forest model is trained with the informed default parameters of the randomForest R112
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package [12]. The performance indicates that the model is capable to reproduce the expert labelling in113

most cases. Although the performance is lower than for the simulated dynamic data case but this is114

not unrealistic because experimental data is more diverse than simulated data.115
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Figure S8. ROC curve for tinderesting on expert-reviewed experimental data.
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