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Abstract: Cachexia is a multifactorial syndrome that is characterized by loss of skeletal muscle mass
in cancer patients. The biological pathways involved remain poorly characterized. Here, we compare
urinary metabolic profiles in newly diagnosed colorectal cancer patients (stage I–IV) from the ColoCare
Study in Heidelberg, Germany. Patients were classified as cachectic (n = 16), pre-cachectic (n = 13),
or non-cachectic (n = 23) based on standard criteria on weight loss over time at two time points.
Urine samples were collected pre-surgery, and 6 and 12 months thereafter. Fat and muscle mass area
were assessed utilizing computed tomography scans at the time of surgery. N = 152 compounds
were detected using untargeted metabolomics with gas chromatography–mass spectrometry and
n = 154 features with proton nuclear magnetic resonance spectroscopy. Thirty-four metabolites were
overlapping across platforms. We calculated differences across groups and performed discriminant
and overrepresentation enrichment analysis. We observed a trend for 32 compounds that were
nominally significantly different across groups, although not statistically significant after adjustment
for multiple testing. Nineteen compounds could be identified, including acetone, hydroquinone, and
glycine. Comparing cachectic to non-cachectic patients, higher levels of metabolites such as acetone
(Fold change (FC) = 3.17; p = 0.02) and arginine (FC = 0.33; p = 0.04) were observed. The two top
pathways identified were glycerol phosphate shuttle metabolism and glycine and serine metabolism
pathways. Larger subsequent studies are needed to replicate and validate these results.
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1. Introduction

Cachexia is a multifactorial syndrome and affects 50–80% of all patients diagnosed with advanced
cancer. The highest prevalence has been observed in cancers of the lung (83%) and the gastrointestinal
tract (62%) [1]. Cachexia is defined as an ongoing loss of skeletal muscle mass that cannot be reversed
by nutritional support and leads to progressive functional impairment [2–4]. Cancer patients typically
progress from a pre-cachectic to a cachectic state over time (Table 1). Pre-cachectic cancer patients
experience early clinical and metabolic symptoms (i.e., anorexia and impaired glucose tolerance) that
may develop prior to involuntary weight loss [2]. Depending on cancer type and stage, pre-cachexia
is further characterized by systemic inflammation, low food intake, and poor response to cancer
treatment. Cachectic cancer patients experience similar, but more-intense, symptoms compared to
pre-cachectic cancer patients including severe weakness, fatigue, and loss of muscle strength [2]. Prior
studies have linked cancer cachexia to decreased quality of life, poor response to cancer treatment, and
increased risk of death for various cancer types [5–7], including colorectal cancer [8–11]. Particularly
obese cancer patients with low muscle mass, a state known as sarcopenic obesity, suffer from increased
treatment-related toxicity and higher mortality rates in comparison to patients not diagnosed with
sarcopenic obesity [12]. The loss of muscle mass in sarcopenic patients is frequently masked by a
high body mass index (BMI). Thus, identifying these patients remains clinically challenging [12,13].
Biomarkers to identify cachexia independent of BMI may help to identify these patients early on.
Furthermore, this may contribute to a better understanding of the mechanistic underpinnings of
cachexia to develop efficient intervention methods that are lacking to date [2–4]. Additionally, the
metabolic dysfunctions that lead to cancer cachexia are, as yet, poorly understood and thus, early
detection of cachexia remains an unmet clinical need [14]. Biomarkers for early detection of muscle
wasting and enhanced understanding of the molecular mechanisms leading to cachexia are urgently
needed [15].

Table 1. Criteria for classification of patients as cachectic or pre-cachectic.

Category Weight Loss BMI

Non-Cachectic weight loss ≤ 2% weight gain -

Pre-Cachectic weight loss * ≤ 5% BMI ≤ 20 kg/m2

Cachectic weight loss * > 5%

Cachectic weight loss * > 2% BMI < 20 kg/m2

* in the past 6 months. BMI, body mass index.

Here, we are expanding the results from two prior studies investigating the role of urinary
metabolomics profiling, collected at three different time points, in prospectively followed colorectal
cancer patients using an untargeted metabolomics approach [16,17]. We previously investigated the
changes in urinary metabolic profiles of colorectal cancer patients at surgery, and at 6- and 12-month
follow-ups, and identified microbial metabolites and described significant associations with disease
stage [16]. In a subsequent analysis, we investigated the associations of urinary branched-chain amino
acids (BCAAs) with parameters of energy balance and overall survival in colorectal cancer patients
over time [17]. Branched-chain amino acids were not associated with body mass index (BMI), physical
activity (metabolic equivalent [MET]), or muscle area (quantified by CT scans); however, BCAAs were
independently associated with worse overall survival, particularly for patients diagnosed with stage
IV colorectal cancer [17]. This study expands on our research interests in urinary metabolic profiles as
a unique method to enhance our understanding of the etiology and progression of colorectal cancer.
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The aim of this pilot project was to evaluate differences in urinary metabolomics profiles comparing
non-cachectic, pre-cachectic, and cachectic colorectal cancer patients and to identify relevant metabolites
and pathological pathways in the trajectory of cancer cachexia.

2. Results

We included a total of n = 27 newly diagnosed colorectal cancer patients. Table 1 shows the
classification of colorectal cancer patients into cachexia and pre-cachexia based on the concept proposed
by Fearon et al. [2]. Non-cachectic patients were defined as patients with ≤2% of weight loss in the
past 6 months or weight gain, independent of BMI.

All patients were classified at two time points: Between baseline and 6 months, as well as between
6 months and 12 months (Figure 1). Cachexia status was calculated based on prospectively collected
information on weight for each patient. Urine samples were collected at the same time points. Data
from metabolomics analysis were available at all three time points. For statistical analyses, we used the
metabolomics data generated from the second time point, i.e., if cachexia status was calculated from
weight loss between 6 months and baseline, the 6 month measurement was used for statistical analyses.
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Figure 1. Classification of patients into the three groups: Between baseline and 6 months, and between
6 months and 12 months.

Patient characteristics are presented in Table 2. Patients were mostly male, independent of cachexia
phenotype (p = 0.33). Patients classified as cachectic or pre-cachectic were more often diagnosed with
rectal cancer (both groups 62%), while 48% of non-cachectic patients were diagnosed with rectal cancer
(p = 0.58). Distant metastasis (=stage IV) were only present in cachectic (25%) and pre-cachectic patients
(15%), but not in non-cachectic patients (0%; p = 0.11). Cachectic patients (38%) were more likely to
undergo neo-adjuvant therapy compared to non-cachectic patients (26%; p = 0.43). Adjuvant therapy
was more likely to occur in cachectic and pre-cachectic patients (62%) compared to non-cachectic
patients (30%; p = 0.14).

On an average, all patients were overweight at baseline with a mean BMI of 25.6 kg/m2 for
cachectic patients; 29.4 kg/m2 for pre-cachectic patients, and 26.5 kg/m2 for non-cachectic patients
with differences across the three groups (p = 0.02). As expected, we further observed differences in
the amount of weight change (in kg) in a 6-month period across the three groups: Cachectic patients
(–7.1 kg), pre-cachectic patients (−2.5 kg), and non-cachectic patients (+2.8 kg; p < 0.0001).
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Table 2. Description of cachectic, pre-cachectic, and non-cachectic patients.

Cachectic
(n = 16)

Pre-Cachectic
(n = 13)

Non-Cachectic
(n = 23) p-Value

Age at surgery + 58.38 (±10.33) 55.84 (±11.67) 62.74 (±12.22) 0.21 +

BMI 1 (kg/m2)
at Baseline 2,+ 25.60 (±2.71) 29.39 (±3.35) 26.48 (±4.26) 0.02 +

6 Months afterwards 3,+ 23.37 (±3.08) 28.11 (±3.42) 26.54 (±4.41) 0.004 +

Weight Change (kg) + −7.12 (±3.63) −2.54 (±1.27) 2.78 (±2.68) <0.001 +

Weight Change (%) −0.09 (±0.05) −0.02 (±0.02) 0.03 (±0.03) <0.001 +

Sex 0.33 ++

Male 11 (69%) 11 (85%) 14 (61%)
Female 5 (31%) 2 (15%) 9 (39%)

Stage 0.11 ++

I 5 (31%) 2 (15%) 7 (30%)
II 1 (6%) 5 (38%) 9 (40%)
III 6 (38%) 4 (31%) 7 (30%)
IV 4 (25%) 2 (15%) 0

Site 0.58 ++

Colon 6 (38%) 5 (38%) 12 (52%)
Rectal 10 (62%) 8 (62%) 11(48%)

Adjuvant Therapy 0.14 ++

Yes 10 (62%) 8 (62%) 7 (30%)
No 6 (38%) 5 (38%) 16 (70%)

Neo-Adjuvant Therapy 0.43 ++

Yes 6 (38%) 4 (31%) 6 (26%)
No 10 (62%) 9 (70%) 17 (74%)

1 BMI = body mass index; 2 Baseline as first assessment, either pre-surgery or at 6-month follow-up; 3 follow-up at 6
months after pre-surgery assessment or at 6-month follow-up. + One-way ANOVA was used to compare mean
differences across the three different phenotypes for continuous variables. ++ Pearson’s Chi-square test was used to
test for distribution differences in categorical variables across the three different phenotypes.

In Table 3, we compare body composition between cachectic, pre-cachectic, and non-cachectic
patients. We observed nominally significant differences for visceral fat area (VFA; L4/L5) across the
three groups (p = 0.04), comparing cachectic and pre-cachectic patients (p = 0.03) and pre-cachectic
and non-cachectic patients (p = 0.04), respectively. No significant differences across the three groups
or in two-group comparisons were observed for subcutaneous fat area on L3/L4 or L4/L5 (e.g., SFA;
L4/L5; p = 0.19). Comparing dorsal muscle area, psoas muscle area, and abdominal muscle area on
L3/L4 and L4/L5, we did not observe significant differences between the three groups or in two-group
comparisons, except for a nominally significant difference of abdominal muscle area between cachectic
and pre-cachectic patients on L3/L4 (p = 0.03).



Metabolites 2019, 9, 178 5 of 22

Table 3. Body composition at baseline in cachectic, pre-cachectic, and non-cachectic patients. +

Cachectic (n = 16)
Pre-Cachectic Non-Cachectic p-Value for Group Comparisons

(n = 13) (n = 23) Three Group
Comparison

Cachectic vs
Non-Cachectic

Cachectic vs
Pre-Cachectic

Pre-Cachectic vs
Non-Cachectic

Visceral Fat Area
L3/L4 152.93 (±92.56) 231.20 (±68.97) 184.26 (±68.59) 0.08 0.34 0.04 0.11
L4/L5 134.90 (±74.86) 204.51 (±57.86) 154.96 (±51.81) 0.04 0.44 0.03 0.04

Subcutaneous Fat Area
L3/L4 204.58 (±101.90) 301.70 (±125.96) 255.47 (±130.21) 0.20 0.30 0.06 0.39
L4/L5 230.00 (±97.10) 320.38 (±111.91) 286.10 (±125.43) 0.19 0.23 0.06 0.50

Dorsal muscle Area
L3/L4 37.77 (±14.86) 30.31 (16.34) 35.43 (17.25) 0.57 0.72 0.29 0.47
L4/L5 29.44 (±10.26) 21.84 (14.66) 27.93 (11.34) 0.32 0.73 0.18 0.26

Psoas muscle Area
L3/L4 19.30 (±8.57) 18.55 (±6.19) 19.34 (±6.86) 0.96 0.98 0.82 0.77
L4/L5 28.81 (±24.44) 19.29 (±6.58) 22.30 (±7.93) 0.34 0.36 0.25 0.34

Abdominal muscle Area
L3/L4 42.88 (±17.46) 26.02 (±14.07) 34.25 (±15.12) 0.06 0.20 0.03 0.19
L4/L5 36.07 (±14.49) 24.92 (±14.58) 30.01 (±15.61) 0.24 0.33 0.09 0.43

+ One-way ANOVA was used to compare mean differences across the three different phenotypes for continuous variables.
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We detected 152 features with gas chromatography–mass spectrometry (GC–MS) and 154 features
with proton nuclear magnetic resonance (1H-NMR) spectrometry, respectively. We excluded
10 metabolites either from 1H-NMR or GC–MS datasets due to low Spearman rank correlation
over the entire study population or serious overlap across spectra (malate, 3-hydroxyphenylacetate,
vanillate, aspartate, creatinine, indole-3-acetate, 1-methylhystidine, phenylalanine, xanthine, and
serine). A total of 34 metabolites were overlapping across the two platforms. We present Spearman
correlation coefficients (crude) for all overlapping metabolites in Supplementary Materials Table S1.

Thirty-two compounds were nominally significantly different in group-wise comparisons.
However, none of these results remained statistically significant after adjustment for multiple testing.
Of these, 19 compounds were identified (Tables 4–6). Six metabolites differed in more than one group
comparison, including three unknown metabolites: Acetone, arginine hydroquinone, glucuronide
29.801 min, sugar acid 15.570 min, and sugar acid 15.429 min. We compared metabolite concentrations
by tumor stage across the phenotypes and observed overall comparable concentrations across tumor
stages (Supplementary Table S2).
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Table 4. Comparison of mean level of metabolites in cachectic and non-cachectic patients. Intensities of the raw peak area of a certain ion (GC–MS) were normalized
by sum, log-transformed, and auto-scaled and each spectral bin (1H-NMR) was normalized to creatinine (µmol/mmol creatinine) and auto-scaled. +

Platform Metabolite (mean ± std) Cachectic Non-Cachectic Fold Change pValue
1 pFDR

2 Identification

GC–MS 3 2.3-Butanediol 0.2 ± 0.76 1.0 ± 0.73 0.45 0.01 0.93 Level 2
2.3-Dihydroxybutyrate 0.1 ± 0.59 −0.5 ± 0.56 1.82 0.02 0.93 Level 2

Sugar 15.798 min 0.3 ± 1.02 1.1 ± 0.89 0.45 0.04 0.93 Level 3
4-Hydroxyphenylacetate −0.2 ± 0.67 0.5 ± 0.98 0.50 0.04 0.93 Level 2

Unknown Glucuronide 28.543 min 0.3 ± 0.66 0.9 ± 0.98 0.55 0.04 0.93 Level 3
1H-NMR 4,5 3-Methylxanthine 3.3 ± 1.81 5.8 ± 2.87 0.76 0.02 0.97 NMR library

Acetone 7.1 ± 7.37 1.7 ± 1.01 3.17 0.02 0.97 NMR library
Arginine 25.8 ± 6.66 19.4 ± 8.03 0.33 0.04 0.97 NMR library

+ One-way ANOVA was used to compare mean differences across different phenotypes for continuous variables. 1 pValue: p-value for the comparison of mean levels across cachectic and
non-cachectic patients; 2 pFDR: p-value from Benjamini–Hochberg procedure; 3 GC–MS: Gas chromatography–mass spectrometry; 4 1H-NMR: Proton nuclear magnetic resonance; 5 for
1H-NMR values were not log transformed, thus we present log fold change values.

Table 5. Comparison of mean level of metabolites in cachectic and pre-cachectic patients. Intensities of the raw peak area of a certain ion (GC–MS) were normalized by
sum, log-transformed, and auto-scaled and each spectral bin (1H-NMR) was normalized to creatinine (µmol/mmol creatinine) and auto-scaled.+

Platform Metabolite (Mean ± Std) Cachectic Pre-Cachectic Fold Change pValue
1 pFDR

2 Identification

GC-MS 3 Hydroquinone 0.6 ± 0.49 −0.5 ± 1.20 3.00 0.006 0.59 Level 1
Unknown 13.271 min 0.0 ± 0.86 0.8 ± 0.80 0.45 0.009 0.59 Level 4
Aminomalonate 0.4 ± 0.59 −0.3 ± 0.77 2.01 0.01 0.59 Level 2
Sugar Acid 15.429 min 0.5 ± 0.74 −0.1 ± 0.55 1.82 0.01 0.60 Level 3
4-Hydroxy-3-Methoxy-Mandelate 0.6 ± 1.15 −0.3 ± 0.83 2.46 0.03 0.79 Level 2
Unknown Glucuronide 29.801 min 0.7 ± 0.79 0.0 ± 1.06 2.01 0.03 0.79 Level 3
Sugar Acid 15.750 min 0.6 ± 0.79 −0.1 ± 1.16 2.01 0.04 0.79 Level 3
Unknown Sugar 14.575 min 0.4 ± 0.94 −0.4 ± 1.23 2.23 0.04 0.79 Level 3
Unknown Dissacharide 29.943 min 0.5 ± 0.76 −0.2 ± 1.12 2.01 0.04 0.79 Level 3

1H-NMR 4,5 Isobutyrate 0.8 ± 0.78 1.7 ± 1.21 1.13 0.02 0.97 NMR library
0.79

Glycine 150.1 ± 118.51 72.5 ± 42.98 1.07E+33 0.04 0.97 NMR library
+ One-way ANOVA was used to compare mean differences across different phenotypes for continuous variables. 1 pValue: p-value for the comparison of mean levels across cachectic and
non-cachectic patients; 2 pFDR: p-value from Benjamini–Hochberg procedure; 3 GC–MS: Gas chromatography–mass spectrometry; 4 1H-NMR: Proton nuclear magnetic resonance; 5for
1H-NMR values were not log transformed, thus we present log fold change values.
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Table 6. Comparison of mean level of metabolites in pre-cachectic and non-cachectic patients. Intensities of the raw peak area of a certain ion (GC–MS) were
normalized by sum, log-transformed, and auto-scaled and each spectral bin (1H-NMR) was normalized to creatinine (µmol/mmol creatinine) and auto-scaled. +

Platform Metabolite (Mean ± Std) Pre-Cachectic Non-Cachectic Fold Change pValue
1 pFDR

2 Identification

GC-MS 3 Sugar Acid 15.429 min −0.1 ± 0.55 0.8 ± 0.86 0.41 0.007 0.59 Level 3
2-O-Glycerol-α-d-galactopyranoside −0.4 ± 1.09 0.6 ± 0.49 0.37 0.01 0.59 Level 2

Sugar 15.798 min 0.0 ± 1.06 1.1 ± 0.89 0.33 0.01 0.59 Level 3
Tartrate 0.0 ± 0.85 1.0 ± 1.07 0.37 0.01 0.59 Level 1

Hydroquinone −0.5 ± 1.20 0.7 ± 1.14 0.30 0.02 0.59 Level 1
Sugar Acid 15.750 min −0.1 ± 1.16 0.8 ± 0.61 0.41 0.03 0.59 Level 3
Unknown 28.636 min 0.1 ± 1.14 1.1 ± 0.94 0.37 0.03 0.59 Level 4

Unknown Glucuronide 27.116 min 0.0 ± 0.83 0.7 ± 0.67 0.50 0.03 0.59 Level 3
Unknown Glucuronide 28.543 min 0.1 ± 0.89 0.9 ± 0.98 0.45 0.04 0.59 Level 3

Sugar 14.052 min −0.4 ± 1.34 0.7 ± 1.02 0.33 0.04 0.59 Level 3
p-cresol-glucuronide −0.3 ± 1.27 0.6 ± 0.68 0.41 0.04 0.59 Level 1

Unknown Glucuronide 27.688 min 0.1 ± 0.86 0.9 ± 0.75 0.45 0.04 0.59 Level 3
Unknown Glucuronide 29.801 min 0.0 ± 1.06 0.8 ± 0.90 0.45 0.049 0.59 Level 3

1H-NMR 4,5 Uracil 6.5 ± 2.10 3.9 ± 2.15 0.67 0.008 0.91 NMR library
Cholate 0.8 ± 0.12 1.6 ± 0.27 1.00 0.03 0.91 NMR library

Methionine 4.4 ± 2.54 2.2 ± 1.37 1.00 0.03 0.91 NMR library
Acetone 3.2 ± 1.83 1.7 ± 1.01 0.88 0.03 0.91 NMR library

3-Phenylpropionate 9.1 ± 3.97 14.4 ± 6.05 0.58 0.03 0.91 NMR library
Arginine 28.7 ± 11.98 19.4 ± 8.03 0.48 0.045 0.91 NMR library

+ One-way ANOVA was used to compare mean differences across different phenotypes for continuous variables. 1 pValue: p-value for the comparison of mean concentrations across
cachectic and non-cachectic patients; 2 pFDR: p-value from Benjamini–Hochberg procedure; 3 GC–MS: Gas chromatography–mass spectrometry, 4 1H-NMR: Proton nuclear magnetic
resonance; 5 for 1H-NMR values were not log transformed, thus we present log fold change values.



Metabolites 2019, 9, 178 9 of 22

Comparing cachectic and non-cachectic patients (Table 4), eight metabolites had differing mean
levels, with four being lower in cachectic patients (2.3.-butanediol, 2.3.- dihydroxybutyrate, acetone, and
arginine) and four being higher (sugar 15.798 min, 4-hydroxyphenylacetate, glucuronide 28.543 min,
and 3-methylxanthine) compared to patients without cachexia. Comparing cachectic and pre-cachectic
patients (Table 5), 12 metabolites were different between the two groups. Of these, nine were lower
(hydroquinone, aminomalate, sugar acid 15.429 min, 4-hydroxy-3-methoxy-mandelate, glucuronide
29.801 min, sugar acid 15.750 min, sugar 14.575 min, disaccharide 29.943 min, and glycine) and three
were higher (one unknown at 13.271 min, isobutyrate and ethleneglycol) in cachetic compared to
pre-cachectic patients. Comparing pre-cachectic and non-cachectic patients (Table 6), 19 metabolites had
differing mean levels in the two groups. Of these, 15 were higher (such as tartrate, hydroquinone, and
several glucuronides) and three were lower in pre-cachectic compared to non-cachectic patients (uracil,
acetone, and arginine). None of these differences were significant after adjustment for multiple testing.

The results of orthogonal partial least-squares discriminant analysis (OPLS-DA) are presented
in Figures 2–4. We present two score plots for each comparison, one including solely the identified
metabolites and one with additional information on visceral and subcutaneous fat area as well as
muscle area. Using urinary metabolites only, we were able to successfully discriminate cachectic from
non-cachectic patients (Figure 2A), and pre-cachectic from non-cachectic patients (Figure 3A), but not
pre-cachectic from cachectic patients (Figure 4A). Adding the information on fat and muscle mass area
did not improve discrimination in these group comparisons. For example, the score for the comparison
of cachectic and non-cachectic patients was only slightly different when data on fat and muscle mass
were included: Orthogonal T score (15.6% versus 16.7%) and a slightly lower T score (7.0% versus 6.3%;
Figure 2B).
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Figure 4. Orthogonal projections to latent structures discriminant analysis. (A) Pre-cachectic patients
and cachectic patients. Urinary Metabolites only. (B) Pre-cachectic patients and cachectic patients.
Urinary metabolites and information on fat and muscle area from CT scans.

We performed over-representation analyses overall and in two-group comparisons (Figures 5–8).
Using all identified metabolites, the top three pathways identified were: Glycerol phosphate shuttle,
ketone body metabolism, and glycine and serine metabolism (Figure 5). Using the metabolites that
were nominally significantly different between pre-cachectic and non-cachectic patients, the same three
pathways were identified (Figure 6). For the comparison between cachectic and pre-cachectic patients,
glycerol phosphate shuttle, and alanine and riboflavin metabolism were identified (Figure 8). The top
pathway comparing cachectic and non-cachectic patients was ketone body metabolism (Figure 7).
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Figure 5. Summary plot for over-representation analyses (ORA). Overall urinary metabolites. For
each of the listed pathways the respective metabolites identified are listed below: Glycine and serine
metabolism: Glycine, L-arginine, L-methionine (3/53); glycerol phosphate shuttle: Hydroquinone
(1/11); methionine metabolism: Glycine, L-methionine (2/43); ketone body metabolism: Acetone (1/13);
arginine and proline metabolism: L-arginine (1/35); alanine metabolism: Glycine, L-arginine (2/53);
spermidine and spermine biosynthesis: L-methionine (1/18); riboflavin metabolism: Hydroquinone
(1/20); glutathione metabolism: Glycine (1/21); betaine metabolism: L-methionine (1/21); carnitine
synthesis: Glycine (1/22); bile acid biosynthesis: Glycine, cholic acid (2/65); glycerolipid metabolism:
Hydroquinone (1/25); tyrosine metabolism: p-Hydroxyphenylacetic acid, aminomalate (2/72); urea cycle:
L-arginine (1/29); starch and sucrose metabolism: Sucrose (1/31); ammonia recycling: Glycine (1/32);
beta-alanine metabolism: Uracil (1/34); aspartate metabolism: L-arginine (1/35); retinol metabolism:
Glucoronide (1/37); galactose metabolism: Sucrose (1/38); porphyrin metabolism: Glycine (1/40);
glutamate metabolism: Glycine (1/50); pyrimidine metabolism: Uracil (1/59); purine metabolism:
Glycine (1/74).
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Figure 6. Summary plot for over-representation analyses (ORA): Urinary metabolites that were different
between cachectic and non-cachectic patients. For each of the listed pathways, the respective metabolites
identified are listed below: Ketone body metabolism: Acetone (1/13); urea cycle: Arginine (1/29);
aspartate metabolism: L-arginine (1/35); arginine and proline metabolism: L-arginine (1/35); glycine
and serine metabolism: L-arginine (1/59); tyrosine metabolism: p-Hydroxyphenylacetic acid (1/72).
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Figure 7. Summary plot for over-representation analyses (ORA). Metabolites that were different
between pre-cachectic and non-cachectic patients. For each of the listed pathways, the respective
metabolites identified are listed below: Glycine and serine metabolism: L-arginine and L-methionine
(2/59); glycerol phosphate shuttle: Hydroquinone (1/11); ketone body metabolism: Acetone (1/13);
spermidine and spermine biosynthesis: L-methionine (1/18); riboflavin metabolism: Hydroquinone
(1/20); betaine metabolism: L-methionine (1/21); glycerolipid metabolism: Hydroquinone (1/25); urea
cycle: L-arginine (1/29); beta-alanine metabolism: Uracil (1/34); aspartate metabolism: L-arginine (1/35);
methionine metabolism: L-methionine (1/43); arginine and proline metabolism: L-arginine (1/53);
pyrimidine metabolism: Uracil (1/59); bile acid biosynthesis: Cholic acid (1/65).
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Figure 8. Summary plot for over-representation analyses (ORA). Metabolites that were different between
pre-cachectic and cachectic patients. For each of the listed pathways, the respective metabolites identified
are listed below: Glycerol phosphate shuttle: Hydroquinone (1/11); alanine metabolism: Glycine
(1/17); riboflavin metabolism: Hydroquinone (1/20); glutathione metabolism: Glycine (1/21); carnitine
synthesis: Glycine (1/22); glycerolipid metabolism: Hydroquinone (1/25); ammonia recycling: Glycine
(1/32); porphyrin metabolism: Glycine (1/40); methionine metabolism: Glycine (1/43); glutamate
metabolism: Glycine (1/49); arginine and proline metabolism: Glycine (1/53); glycine and serine
metabolism: Glycine (1/59); bile acid biosynthesis: Glycine (1/65); tyrosine metabolism: Aminomalonate
(1/72); purine metabolism: Glycine (1/74).

3. Discussion

This is the largest study to date aiming to discriminate cachectic from non-cachectic colorectal
cancer patients (n = 27) using an untargeted metabolomics approach. Thirty-two metabolites were
nominally significantly different across the three phenotypes; of those, 19 were classified (level 1 and 2)
and linked to glycerol phosphate shuttle metabolism and glycine and serine metabolism pathways.
Adding information on fat and muscle area did not improve discrimination.

Three prior studies used metabolomics to identify specific biomarkers and pathways that
are related to cancer cachexia utilized urine or serum, or both biospecimens with GC–MS,
LC–MS, or 1H-NMR [18–20]. Two studies combined several cancer types under the assumption
that cachexia-related pathways are independent of cancer types, while one study focused on
pancreatic cancer.

Fujiwara et al. examined intra-day variation of serum metabolites in a group of advanced
pancreatic cancer cases, 9 of which were classified as cachectic and 12 as non-cachectic using Eastern
Cooperative Oncology Group (ECOG) guidelines [18]. In a pilot study, serum samples from n = 8
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cachectic and n = 7 non-cachectic patients diagnosed with various cancer types (including one
non-cachectic colon cancer patient) were analyzed on three different metabolomic platforms: GC–MS
(70 metabolites), LC–MS (244 metabolites), and CE–MS (232 metabolites) [19]. Yang et al. measured
metabolites in serum and urine samples from n = 306 cancer patients and healthy controls, using a
discovery-validation approach on the 1H-NMR platform.

This study included a total of n = 21 colorectal cancer patients [18]. In summary, these prior
studies identified similar metabolites as the current study, including acetone, arginine, and glycine, as
well as pathways such as glycine and serine metabolism.

In the present study, we observed increased concentrations of glycine in cachectic versus
non-cachectic patients. This is in line with the studies from Cala et al. [19] and Yang et al. [18].
High serum concentrations of glycine have been previously associated with metastatic colorectal
cancer among patients who had cachexia [21]. Glycine supplementation in vivo has been shown to
protect against muscle loss in obese mice on caloric restriction [22]. There is further evidence that
mitochondrial dysfunction in skeletal muscle leads to increased cellular glycine production, which in
turn is protective against muscle wasting conditions, such as cachexia (reviewed in [22,23]). One of the
major pathways identified in the present study was the glycine and serine pathway, which has also
been described by the two prior studies that included various cancer types [18,19]. Unfortunately, we
had to exclude serine from the analyses due to severe spectral overlap and we were unable to replicate
the findings from prior studies [18,19].

We observed higher arginine concentrations in cachectic compared to non-cachectic patients,
similar to the study by Yang et al. [18] Arginine is a semi-essential amino acid and can be synthesized
from glutamine [24]. Dual functions have been described for arginine in the context of cancer: As
an onco-nutrient essential for cancer growth, as well as an immuno-nutrient enhancing immune
response (as reviewed in [25]). Arginine metabolism has been linked to several cancer types that rely
on extracellular arginine to maintain rapid tumor growth [24,26]. In vitro studies have shown that
colorectal cancer cells quickly deplete intracellular arginine stores [26]. In a murine model, arginine
supplementation decreased colorectal tumor incidence and overall colorectal tumor burden when
supplemented early in the disease course [25].

In our study, we also observed that hydroquinone was higher in cachectic compared to
non-cachectic patients, but lower in pre-cachectic compared to non-cachectic patients. Hydroquinone
(1,4-benzenediol) is a benzene metabolite. None of the prior studies have related hydroquinone to
cancer cachexia. However, the study by Fujiwara et al. in pancreatic cancer patients has described
significant intra-day variations of p-hydroxybenzoic acid comparing cachectic and non-cachectic
patients. Hydroquinone is a result of enzymatic biodegradation of p-hydroxybenzoic acid. Prior
in vitro and in vivo studies have reported anti-cancer activity of hydroquinone [27]. The pathway
related to hydroquinone—glycerol 3 phosphate shuttle pathway—is further related to glycolysis,
fatty acid metabolism, and oxidative phosphorylation [28]. Mitochondrial glycerol-3-phosphate
dehydrogenase (mGPDH), which was identified in the present study, is a basic element of the
mitochondrial respiratory chain. mGDPH is the rate-limiting step in the glycerol 3 phosphate shuttle
pathway [29]. It further attenuates skeletal muscle regeneration in vitro and in vivo by controlling
mitochondrial biogenesis [30].

We observed a >3-fold increase in acetone comparing cachectic and non-cachectic patients, similar
to the results published by Yang and colleagues [18]. Acetone belongs to the group of endogenous ketone
bodies and is produced by the spontaneous breakdown of acetoacetate. All cells with mitochondria
can use these ketone bodies and reconvert them into acetyl-CoA. Acetyl-CoA is used as subsequent
fuel in citric acid cycles. Ketone bodies are usually absent in the urine of healthy individuals, but
their presence is indicative of fat being used as an energy source instead of carbohydrates. High
concentrations of acetone in the blood during starvation can lead to ketosis, and in its extreme form to
ketoacidosis. Pleiotropic effects of acetone including the regulation of inflammation, oxidative stress,
and anti-catabolic effects in human skeletal muscle have been described previously [31]. The observed
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associations between metabolites and different cachexia phenotypes may reflect subclinical changes in
muscle metabolism and the use of fat as source of energy instead of carbohydrates.

Larger subsequent studies will allow consolidation of the results. A particular strength of this study
is the use of a non-invasive approach for continuous disease monitoring [32]. Plasma measurements
have been shown to be poor indicators of skeletal muscle metabolism [9]. However, in a recent study
in patients diagnosed with advanced cancer, urine metabolites predicted skeletal muscle mass with
high accuracy (Pearson r = 0.98; p < 0.0001) and therefore, were selected as the best matrix for the
present study [10].

Differences between the present and prior studies may be due to differential classification of
cachexia and slightly different categorization of BMI. We considered individuals who had a weight
change of ±5% and a BMI >20 kg/m2 within 6 months according to the predominantly used method by
Fearon et al. [2], while Yang et al. classified non-cachectic patients as individuals that are weight-stable:
‘No marked weight change’ in the prior year and a BMI <25 kg/m2. BMI values, as well as cancer stage,
were not presented, so it is difficult to see how our sample differs from Yang et al. [16]. Another source
for differences between this and prior studies may be the use of different metabolomics platforms. The
present study focused on GC–MS and 1H-NMR, while other studies used LC–MS. Given the underlying
technical differences between these analytical platforms, the chemical diversity of metabolites varies;
thus, each platform provides a specific metabolomics profile.

This study has strengths and limitations. We used state-of-the-art metabolomics platforms, namely
GC–MS and 1H-NMR, for the measurement of urinary metabolites. A specific advantage of 1H-NMR
is that sample preparation does not require extra steps, which enables very accurate measurement of
compounds. Missing chromatographic separation of metabolites and limited sensitivity are known to
complicate compound identification. GC–MS offers combined sensitivity and selectivity platforms
for metabolomics profiling studies. However, identification of detectable peaks using GC–MS is, in
general, less complete compared to 1H-NMR. The present study did not include LC–MS analysis. It
is possible some relevant metabolites may have been omitted because of this approach. Although
we observed 32 metabolites that were significantly different (nominal p-values) between the different
phenotypes, the majority of compounds are classified as unknowns (level 3 and 4). The identification
of these compounds continues to be a challenge in metabolomics studies in general [33]. None of the
identified metabolites that were different across groups were robust after adjustment for multiple
testing in this pilot study. While this may be the largest to date, the group sizes were small and there
were a lot of multiple comparisons done. The significance did not remain after adjustment for multiple
comparisons. At the Heidelberg ColoCare study site, we measured the muscle tissue using a threshold
limit of 40 to 100 HU to measure selectively the dense, functional relevant part without fatty infiltration.
In the literature, however, a wider threshold (−29 to 150 HU) is used to measure the total muscle tissue.
Thus, the available CT scan data could not be reliably utilized for assessing sarcopenia [12,34,35]. In the
present study we observed that patients defined as pre-cachectic had higher BMI and higher visceral
adipose tissue area compared to the two other phenotypes. It appears that criteria that are solely based
on weight loss over time may not be adequate to define pre-cachexia. Additionally, using information
on sarcopenia may have resulted in a more accurate classification of patients.

Glycine is a metabolite that is known to be detected via GC–MS, as well as 1H-NMR. In the
present study, glycine was detected via 1H-NMR but not GC–MS. Although we are not entirely sure,
we speculate that this discrepancy could potentially be related to the derivatization proc.

Furthermore, metabolite concentration may vary according to internal as well as external
confounders that could not be adequately addressed due to small sample size.

The results of this pilot study, however, justify larger studies to investigate the mechanistic
underpinnings of cancer cachexia. Currently larger efforts are ongoing in the ColoCare Study to
conduct longitudinal analysis of metabolomics biomarker data and trajectories across cachexia groups.
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4. Materials and Methods

The ColoCare Study is a multicenter international prospective cohort recruiting newly diagnosed
colorectal cancer patients (stages I through IV; International Classification of Diseases, 10th edition,
C18–C20) and aiming to investigate predictors of cancer recurrence, treatment toxicities, survival, and
health-related quality of life (ClinicalTrials.gov: NCT02328677) [16,36,37].

The present pilot study was performed in n = 52 patients recruited at the ColoCare site in Heidelberg,
Germany between October 2010 and January 2013. After study approval by the Institutional Review
Board of the Medical Faculty at the University of Heidelberg (IRB identification code 310/2001), written
informed consent was obtained from all participants.

Demographic information, as well as data on established risk factors, were collected using
standardized questionnaires at surgery, and at 6 and 12 months thereafter. BMI was measured and
calculated as kg/m2 at each time point. Baseline examination includes questionnaires, anthropometric
measurements, assessment of physical activity, and biospecimen collection (e.g., blood and urine
samples). Information on adjuvant chemotherapy and medical history were abstracted from clinical
records. Patients’ survival data was monitored both by access to medical records and as part of the
active patient follow-up within ColoCare. If patients died, the time point of death was documented.

We defined cases as cachectic (n = 18) or pre-cachectic (n = 16) for colorectal cancer patients
based on the predominantly used criteria by Fearon et al. [2] (Table 1). We further selected n = 11
non-cachectic cancer patients (e.g., cancer patients with stable weight over 6 months).

4.1. Patient Selection and Classification

In the present study, we included patients that had data available on urinary biospecimens,
GC–MS, and 1H-NMR measures, as well as weight measurements at all three time points: Before
surgery (baseline), and at 6 months and 12 months after surgery. Patients were defined as cachectic or
pre-cachectic based on weight change in the past 6 months, either between (i) baseline and 6 month
or (ii) 6 month and 12 month time points (Table 1, Figure 1) [2]. Non-cachectic cancer patients were
selected from the same study population and included if they had <2% of weight loss in the past
6 months, independent of their BMI. For option (i), urinary measurements at the 6-month follow-up
were used for statistical analyses, and for option (ii), urinary measurements at the 12-month follow-up
were used for statistical analyses.

4.2. Biospecimen Collection

Urinary samples were collected at the National Center of Tumor Diseases (NCT), Heidelberg
at three time points—prior to surgery (n = 97) and in some cases 1–8 days after surgery (n = 12),
and 6 months (n = 52) and 12 months (n = 38) after surgery. If patients underwent adjuvant
chemotherapy, follow-up visits were scheduled at least 2 weeks after their last chemotherapy cycle
had been completed. Urine samples were aliquoted immediately and stored at −80 ◦C until analysis.
Self-reported food and fluid intake before sample collection was monitored during follow-up visits.
Eligible patients were then selected based on the availability of urinary metabolomics data and at least
two subsequent time points where weight had been measured.

4.3. Laboratory Analyses and Quality Control Measurements

We used gas chromatography–mass spectrometry (GC–MS) and proton nuclear magnetic resonance
spectroscopy (1H-NMR) for the metabolomics profiling of urinary samples, as described in detail
previously [16].

4.4. Sample Preparation and Quality Control: GC–MS

Preparation of urine samples for GC–MS was based on the method by Cheng and colleagues [11].
Urine samples were thawed and vortexed briefly and aliquots of 50 µL were transferred into a reaction
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tube and 10 µL internal standard solution was added. The sample was transferred into an amber vial
with micro inserts and subjected to GC–MS analysis. We used pooled quality control (QC) samples
and Kovats retention mixtures (50 µg*mL−1) injected with every analytical batch. A LOESS function
was used to correct drifts for each metabolite and relative standard deviations (%RSD) were used to
estimate the analytical noise. In addition, we analyzed paired samples (samples from one patient
collected at three time points: Pre-surgery, and 6 and 12 months after surgery) in the same analytical
batches to account for time-dependent bias due to analytical drifts. Analyses were carried out on an
Agilent 6890 GC/ 5973 MS single quadrupole system. Data acquisition was started after a solvent delay
of 5 min. Spectra were acquired over a range of 50–500 m/z [16].

4.5. Sample Preparation and Quality Control: 1H-NMR

Sample preparation for 1H-NMR was performed according to the method by Xiao and colleagues:
540 µL urine was spiked with 60 µL K2HPO4/NaH2PO4 buffer in D2O (pH 6.5, 1.5 M). [38] QC samples
were run at the beginning and end of each analytical batch. Citrate was measured in duplets during all
data acquisitions and a 14.7% RSD in the raw 1H-NMR data was indicative of an analytically robust
method and a short-term variance (across n = 100 samples) of a median %RSD of 5%.

4.6. Data Pre-Processing

GC–MS: Raw files were converted to netCFD format, imported into MZMine 2.0 [39], and
chromatograms crop filtered (5–32 min) and baseline corrected. Masses were detected with centroid
algorithm and chromatogram building was carried out with minimum time span of 0.1 min, minimum
height of 1E3, and mass accuracy 0.5 m/z. For peak chromatogram deconvolution, noise amplitude
of 1E3, a time span of 0.05–1.5 min, and a peak minimum of 1E4 were chosen. Peaks were aligned
with the join aligner with 0.5 m/z mass accuracy and 0.1 min time tolerance, and a 50:50 weight for
mass and retention time. Gap filling was performed with 1% tolerance at 0.5 m/z mass accuracy
and 0.1 min [retention time] tolerance. Artifact peaks resulting from the derivatization process and
interferences due to urea were removed from the data set. Since glutamate and pyroglutamate are
interconvertible during GC–MS derivatization, these metabolites were combined. The retention time
(Rt), mass spectrometric base peak used for quantification, confidence level in identification, matches
those listed in the Human Metabolome Database (HMDB) and PubChem.

1H NMR: Spectra were processed automatically using the Bruker TopSpin software with zero-filling
(6-fold), the application of 0.3 Hz of line broadening, phase correction, and referenced relative to TSP
incorporated as an internal standard [16]. Processed data files were subsequently imported in batch
mode into the dataChord spectrum miner software (OneMoon Scientific, Westfield, NJ, USA). Each
region was integrated and the total integral area of each bin divided by the area of the internal standard
TSP creating the final data table for statistical analysis. The spectroscopic bins for which resonances of
urinary metabolites were reported, based on the Chenomx Library version 7.7 / HMDB.

Metabolite annotation: We annotated chromatographic peaks based on four different levels: Level
1: Authentic reference standard available; level 2: Electron impact (EI) spectral match (>75%) and
Kovats retention indices (RI) match (20) to the NIST 2011 database; level 3: Only EI spectral match
(>75%) to multiple components of a chemical class (i.e., sugar acids); level 4: Unknown metabolite.

4.7. Normalization of Metabolite Concentrations

Concentrations of metabolites in urine are dependent on hydration status and fluid intake. In
order to account for these factors, metabolite concentrations in the urine were normalized. The raw
peak area of GC–MS data was normalized by sum, log-transformed, and auto-scaled prior to analysis.
1H-NMR data were normalized to creatinine (µmol/mmol creatinine) and auto-scaled [40].
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4.8. Area-Based Computed Tomography (CT) Quantification of Abdominal Adipose Tissue and Muscle
Tissue Area

We have described the quantification of abdominal adipose tissue area [41] and muscle tissue
area previously [17]. In brief, abdominal CT scans conducted between August 2010 and December
2014 were assessed retrospectively using Centricity RIS 4.1i and GE PACS (GE Medical Systems,
Buckinghamshire, UK). CT scans were predominantly performed before surgery (mean time, before:
42 days, after: 41 days). A prior study that used data from the same population showed that pre- and
post-surgical CT scans were similar, and thus, could be combined for analyses. [42] The quantification
of VFA and SFA based on diagnostic CT data was performed using a dedicated post-processing
software (Syngo Volume tool, MMPW, Siemens Healthcare, Munich, Berlin, Germany). An area-based
quantification of adipose tissue compartments was performed on two spinal levels most representative
of the abdominal adipose tissue distribution (L3/L4, L4/L5) using a lower threshold of –190 HU and an
upper threshold of –30 HU to selectively measure adipose tissue [42]. The area of the dorsal muscles,
abdominal muscles, and muscle psoas major were also quantified using abdominal CT scans [42] CTs
from pre- and post-surgery were similar and thus, combined for statistical analyses [42]. Specific
regions of interest (ROI) of muscle area (dorsal muscles, abdominal muscles, and the muscle psoas major)
were manually determined and measured on the same levels (vertebral body L3/4 and L4/5) by a
volumetric tool (MMWP, Syngo Volume tool, Siemens Healthcare, Munich, Berlin, Germany) [42,43].
The measurement limits for aforementioned selected ROIs were at a minimum attenuation of 40
Hounsfield Units (HU) to a maximum of 100 HU to selectively measure muscle tissue by avoiding
muscles’ lipid content [35].

4.9. Statistical Analysis

Data processing of urine metabolite measures from 1H-NMR and GC–MS were conducted
separately using the commercially available Metaboanalyst software 4.0 [44].

Mean and standard deviations were calculated for continuous variables. Data on weight, height,
and BMI were available at all three time points. Fold change was calculated for all two-group
comparisons using GC–MS data, logFoldChange was calculated for all two-group comparisons using
1H-NMR data. We used the Benjamini–Hochberg procedure to control the false discovery rate (FDR)
and to account for multiple testing [45].

One-way ANOVA was applied for multiple group comparison. Pearson’s Chi-squared test was
conducted for testing differences in categorical variables. Pearson’s partial correlation coefficients
were calculated, adjusting for sex and age at surgery. We used over-representation enrichment
analysis and excluded metabolites from the analysis that have not been detected by the two detection
systems (GC–MS, 1H-NMR) to avoid biases, as some metabolites sets may be overrepresented by the
nature of the detection systems. Orthogonal partial least-squares discriminant analysis (OPLS-DA)
was used to investigate if urinary metabolomics can discriminate cachectic from pre-cachectic or
non-cachectic patients.

Statistical analyses and figure-plotting were performed using SAS for Windows, version 9.4 and
the Metaboanalyst software [44]. All tests were two-sided with significance level 0.05.

5. Conclusions

The metabolic profiling of urinary samples across multiple metabolomics platforms revealed
differences in glycerol phosphate shuttle and glycine and serine pathways in cachectic, pre-cachectic,
and non-cachectic colorectal cancer patients. These results need to be replicated in larger cohorts.
Using a non-invasive untargeted metabolomics approach may enable the identification of biomarkers
for early detection of cachexia and could potentially be used for continuous monitoring of cancer
patients in the clinic.
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