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Abstract: The quasi-static solutions of the matter density perturbation in various dark energy
models and modified gravity models have been investigated in numerous papers. However,
the oscillating solutions in those models have not been investigated enough so far. In this
paper, we review the behavior of the oscillating solutions, which have a possibility to unveil
the difference between the models of the late-time accelerated expansion of the Universe, by
using appropriate approximations.
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1. Introduction

It is clarified by the observations of Type Ia supernovae in 1990s [1,2] that the current universe is
acceleratedly expanding if the Universe is almost homogeneous. We need to introduce some energy
which have negative pressure to explain the accelerated expansion when we utilize the Friedmann
equations which describe dynamics of the isotropic homogeneous universe. The energy introduced in
this way is called dark energy. There are candidates of dark energy, e.g., introducing the cosmological
constant into the Friedmann equations, assuming the existence of the classical scalar field spreading
over the whole universe, and so on. Whereas, there are modified gravity theories which can cause the
accelerated expansion of the Universe not by introducing dark energy but by modifying the geometry
of space-time or the gravitational constant. It is known that the Λ Cold Dark Matter (ΛCDM) model,
where Λ means cosmological constant, is almost consistent with the observations of cosmic microwave
background radiation, baryon acoustic oscillation, and type Ia supernovae. The ΛCDM model is regarded
as the standard model of cosmology because it is simple besides is consistent with the observations.
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However, the other models of dark energy and modified gravity can realize an almost same expansion
history of the Universe compared to that of the ΛCDM model. Therefore, we cannot determine the true
model which describes the real universe only from the growth history of the Universe. In this paper,
it is mentioned whether or not differences between the models are always appeared by considering the
evolution of the matter density perturbation as a perturbation from the background space-time of the
Universe. The ΛCDM model, k-essence model [3–5] and F (R) gravity model [6–10] will be considered
as the typical models of dark energy and modified gravity.

The cosmological perturbation theory is often used under the sub-horizon approximation, which
consists of the two approximations in the small scale a2/k � 1/H2 and in the Hubble scale
evolution 1/dt∼H , so that the perturbation should be consistent with the Newton gravity. However,
the sub-horizon approximation is merely an approximation and is not always correct. In the following
section, we will see what kinds of behaviors of the solutions are appeared when we do not adopt the
quasi-static approximation 1/dt∼H . We use units of kB = c = h̄ = 1 and denote the gravitational
constant 8 πG by κ2 in the following.

2. Evolutions of the Matter Density Perturbation in Each Model of Dark Energy and
Modified Gravity

The evolution equation of the matter density perturbation in the ΛCDM model is often expressed
as follows:

δ̈ + 2Hδ̇ − 3

2
ΩmH

2δ = 0 (1)

where δ ≡ δρ/ρ, ρ is the energy density of the matter, H is the Hubble rate defined by ȧ(t)/a(t),
and Ωm is the matter fraction of the energy density of the Universe. Equation (1) is derived by using
the sub-horizon approximation, whereas, if we do not use the sub-horizon approximation, then we
obtain [11]
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where w is the equation of state parameter of the matter w ≡ p/ρ, cs is the sound speed c2
s ≡ δp/δρ,

k is the wave number, a is a scale factor, and N ≡ ln a(t). weff is the effective equation of state
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parameter expressed as weff ≡ −2Ḣ/3H2 − 1. By expanding Equation (2) under the approximation
a/k � 1/H gives
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It is found from Equation (3) that there are the wave number dependence of the matter density
perturbation in the ΛCDM model, though it is sometimes said that the wave number dependence of
the matter density perturbation is the peculiar property of F (R) gravity model. As we have just seen,
to evaluate the matter density perturbation without using the sub-horizon approximation can unveil
some properties we have never known. In particular, the difference between the case the sub-horizon
approximation is used and the case the sub-horizon approximation is not used is conspicuously appeared
in k-essence model and F (R) gravity model. In the following, we treat the equation of state parameter
and the sound speed as w = cs = 0 by focusing on from the matter dominant era onwards.
k-essence model is one of dark energy models, and its action is described by

S =

∫
d4x
√
−g
{
R

2κ2
−K(φ,X) + Lmatter

}
, X ≡ −1

2
∂µφ∂µφ (4)

Here, φ is a scalar field and Lmatter expresses the Lagrangian density of the matter. In k-essence model,
the evolution of the matter density perturbation is described not by a two dimensional equation but by
a four dimensional equation [12] because the number of the parameters in the Einstein equation are
increased by the existence of the scalar field, i.e., δφ and its derivatives are appeared in the linearized
equations. We can decompose the four dimensional equation into the following two dimensional
Equation (5) and the solution Equation (6) by considering that the scale of the density fluctuation we
can observe is much less than the horizon scale of the Universe a/k � 1/H . The equation is given as
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where cφ is the sound speed in k-essence model defined by c2
φ ≡ (pφ),X/(ρφ),X = K,X/(K,X +

φ̇2K,XX) [4]. Here, ρφ and pφ are the energy density and the pressure of the scalar field, respectively.
The subscript ,X means derivative with respect to X . The solution is expressed by
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where r1 is an arbitrary real constant. Equation (5) is equivalent to Equation (3) in the leading terms
when cφ is not vanished. Therefore, the quasi-static solution of the matter density perturbation in
k-essence model is almost identical to that of the ΛCDM model if the background evolution of the
Universe is tuned to satisfy observations. On the other hand, the oscillating solution represented by
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Equation (6), which cannot be realized in the ΛCDM model, is peculiarity of k-essence model. If we
use the subhorizon approximation, the oscillating solution Equation (7) is neglected and we only obtain
the quasi-static Equation (6). The behavior of the oscillating solution is depending on the form of the
function K(φ,X) and it can be decaying or growing. Therefore, we should evaluate the behavior of the
solution by calculating the effective growth factor represented by Equation (7) in each model. While,
only the oscillating solution of the matter density perturbation is influenced by the sound speed of the
scalar field. Effects of the sound speed on large scale structure of the Universe is numerically studied in
Reference [13].

Next, we consider the following action as F (R) gravity model,

S =
1

2κ2

∫
d4x
√
−g [R + f(R)] + Smatter (8)

where f is an arbitrary function of the scalar curvature R, and f(R) represents the deviation from
the Einstein gravity. When we use the spatially flat Friedmann-Lemaitre-Robertson-Walker metric,
ds2 = a2(η)(dη2 −

∑3
i=1 dx

idxi), the Friedmann-Lemaitre equations are written by
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where R = 6a−2(H′ + H2), fR ≡ df(R)/dR, and the prime represents the differentiation with
respect to conformal time η. ρ is the energy density of the matter coming from the variation of Smatter

and w is the equation of state parameter expressed by w = p/ρ. The Hubble rate with respect to
conformal time H is defined by H ≡ a′/a. It is known that F (R) gravity model is conformally
equivalent to the scalar field model, which has a non-minimal coupling between the scalar field and
the matter. Therefore, the evolution equation of the matter density perturbation is expected to be four
dimensional same as in k-essence model. In fact, it is shown in Reference [14] that the evolution
equation is four dimensional in F (R) gravity model. The coefficients of the equation are, however,
too complicated to be definitely written down, so we need to expand the coefficients by applying the
approximations |fR| ≡ |df(R)/dR| � 1 and a2/k2 � 1/H2. Then, it is necessary to be careful which
approximations we should give priority to. In the following, we consider the case that the approximations
|fR|, |RfRR|, |R2fRRR| � 1, where subscripts R means derivative with respect to R, take priority over
a2/k2 � 1/H2 to describe the expansion history of the Universe similar to that of the ΛCDM model.
The four dimensional equation is, then, expressed as follows [15]:
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Noting to the terms proportional to χ2, we obtain
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Equation (13) is equivalent to Equation (3) when the absolute values of the derivatives of f(R) with
respect to R are little. On the other hand, if we use the WKB approximation under the condition
|χ/(aH)| � 1 then we have
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where C1 and C2 are arbitrary constants, and the effective growth factor feff is defined as
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Considering the Friedmann Equations (9) and (10), and the condition |fR|, |RfRR|, |R2fRRR| � 1, we
can simplify Equation (15) into
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Here, H′′/H3 ' 1/2 is held in the matter dominant era. Whereas, viable models of F (R) gravity are
generally satisfies the condition fRR > 0 imposed from the quantum stability. Therefore, the behavior
of the oscillating solution is determined by the sign of fRRR. If the form of fRR is described by negative
power law of R or exp(−αR), α > 0, then fRRR and feff are negative. That is to say, the behavior
of the matter density perturbation is determined by the quasi-static solution because the other solution
Equation (14) is decaying oscillating solution. In this case, it is difficult to find the difference between
F (R) gravity model and the ΛCDM model from the matter density perturbation. In fact, famous viable
models of F (R) gravity have such a behavior, so we can make a model which cannot be distinguished
from the ΛCDM model by the observations concerned with the background and the linear perturbative
evolution of the Universe. While, we can also make a model which reproduces the background evolution
of the Universe in the ΛCDM model but realizes the different evolution of the matter density perturbation
from the ΛCDM model if fRRR > 0. In this case, the difference could be observed in the large
scale structure of the Universe because there is the oscillatory behavior depending on the redshift in
the evolution of the matter density perturbation.

We considered the case that approximations |fR|, |RfRR|, |R2fRRR| � 1 take priority over a2/k2 �
1/H2 , however, the other cases are also interesting. For example, if we give priority a/k � 1/H over
|RfRR| � 1, the quasi-static solution of the matter density perturbation grows faster than the ΛCDM
model as it is well known. However, we should note that the background evolution of the Universe is
modified by the term proportional to fRR in this case. The oscillating behavior of the oscillating solution
is decaying when a2/k2 � |RfRR/H2|, so it is enough to consider only the quasi-static solution.
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3. Summary

The following behaviors of the matter density perturbation in the models of dark energy and modified
gravity are unveiled by considering them without applying the subhorizon approximation. In the ΛCDM
model, the wave number dependence of the matter density perturbation is appeared in sub-leading terms.
There is not only the quasi-static solution but also the oscillating solution which can give unignorable
contributions in k-essence model. This oscillating solution is a peculiar property in k-essence model,
and its behavior depends on the sound speed of the scalar field, a time derivative of the scalar field and
X derivatives of the action K(φ,X). Although there is the oscillating solution in F (R) gravity, viable
F (R) gravity models cannot be distinguished from the ΛCDM model by evaluating the growth rate of
the structure formation when we fit their background evolution to the observational results. Because the
oscillating solutions in those models are decaying solutions. However, we can also make a model which
reproduces the background evolution of the Universe in the ΛCDM model but realizes the different
evolution of the matter density perturbation from the ΛCDM model if fRRR > 0. Thus, a careful
investigation of the nonlinear effect would be important.
F (R) gravity model is conformally equivalent to the scalar field model, which has a non-minimal

coupling between the scalar field and the matter. The clear differences between k-essence model and
F (R) gravity model in the matter density perturbation are whether there is an influence to the quasi-static
evolution from δφ or f(R) and the sound speed dependence of the oscillating solution.
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