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Abstract: Motivated by a ternary generalization of the Pauli exclusion principle proposed by R.
Kerner, we propose a notion of a Z3-skew-symmetric covariant SO(3)-tensor of the third order,
consider it as a 3-dimensional matrix, and study the geometry of the 10-dimensional complex space
of these tensors. We split this 10-dimensional space into a direct sum of two 5-dimensional subspaces
by means of a primitive third-order root of unity q, and in each subspace, there is an irreducible
representation of the rotation group SO(3) ↪→ SU(5). We find two SO(3)-invariants of Z3-skew-
symmetric tensors: one is the canonical Hermitian metric in five-dimensional complex vector space
and the other is a quadratic form denoted by K(z, z). We study the invariant properties of K(z, z)
and find its stabilizer. Making use of these invariant properties, we define an SO(3)-irreducible
geometric structure on a five-dimensional complex Hermitian manifold. We study a connection on a
five-dimensional complex Hermitian manifold with an SO(3)-irreducible geometric structure and
find its curvature and torsion.
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1. Introduction

The concept of skew symmetry underlies many structures of modern algebra and
geometry. Lie algebras, Grassmann algebras, and algebras of differential forms on smooth
manifolds are examples of structures that are based on the concept of skew symmetry. In the
case of a Lie algebra, its Lie bracket is skew symmetric with respect to a permutation of
arguments of this bracket. A Grassmann algebra can be constructed by means of covariant
totally skew-symmetric tensors defined on a finite-dimensional vector space. In this case,
the skew symmetry of a tensor means that the rearrangement of any two subscripts leads
to a change of the sign of a tensor, and the exterior multiplication of two such tensors
is defined with the help of the alternation of the tensor product of these tensors. At the
end of the last century and the beginning of this century, we witnessed the emergence of
interest towards an n-ary generalization of Lie algebra: that is, a generalization in which a
Lie bracket contains n arguments. The concept of skew symmetry can be easily extended
to n-ary multiplications if we require that any rearrangement of two arguments in an
n-ary product results in a change in the sign. An n-ary bracket of n-Lie algebra is skew
symmetric precisely in this classical sense. However, when passing from a binary law of
multiplication to an n-ary one, when n > 2, there arises an interesting question of possible n-
ary analogues of the classical concept of skew symmetry. In order to formulate the concept
of skew symmetry of a multiplication in an algebra, we use permutations of factors in a
product. In the case of a binary multiplication, we have only one permutation of variables in
a product and, consequently, we have only one notion of a skew-symmetric binary product.
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An equivalent form of the condition for skew symmetry of n-ary multiplication in the case
of a field of real or complex numbers is the requirement that a product of n elements equals
zero whenever it contains two equal elements. The notion of skew symmetry given in
this form explains why it plays an important role in theoretical physics. It is well known
that a fundamental role in quantum physics is played by the Pauli exclusion principle,
which states that two fermions in a quantum system cannot co-exist if they have identically
equal sets of quantum numbers. It follows then that a wave function of a quantum system
containing identical sets of quantum numbers of two fermions must vanish. Now, the skew
symmetry of a wave function with respect to the permutation of quantum states of any
two fermions follows from the linearity of a wave function.

If we consider an algebra with a ternary multiplication then we have a total of six
possible permutations of factors in a ternary product, where three of them are non-cyclic
permutations (rearrangements of two factors), and three are cyclic. One way to extend the
notion of skew symmetry from binary to ternary multiplication laws is to use non-cyclic
permutations: that is, a ternary multiplication is called totally skew-symmetric if it is
skew symmetric with respect to any pair of arguments. It is precisely this extension of
the notion of skew symmetry that is used in three-Lie algebras, and we will call it the
classical ternary skew symmetry. For example, a ternary bracket of a three-Lie algebra
changes its sign whenever we rearrange any two elements inside this ternary bracket.
Equivalently, if among the three elements of a ternary Lie bracket there are two equal ones,
then regardless of where these equal elements appear, a ternary bracket is equal to zero.
In this formulation, we see a direct connection with the classical Pauli exclusion principle.

Another way to extend the notion of skew symmetry from binary to ternary multipli-
cation, which we consider in the present paper, is based on cyclic permutations of three
elements. The use of cyclic permutations for generalizing the concept of skew symmetry
is interesting from the point of view that cyclic permutations form the Abelian group Z3,
while non-cyclic permutations do not. In order to explain how cyclic permutations can be
used to extend the concept of skew symmetry to ternary multiplication, consider a general
structure: that is, a vector space with a skew-symmetric binary multiplication defined on it.
If x, y are elements of this vector space and x · y is the product of these elements, then the
skew symmetry can be written in two equivalent ways:

x · y + y · x = 0, (1)

x · y = −y · x. (2)

Now assume that we have a complex vector space with ternary multiplication. If u, v, w
are elements of this complex vector space, then their ternary product will be denoted
by τ(u, v, w). Since now our aim is to extend the notion of skew symmetry to ternary
multiplication by means of cyclic permutations of three elements, it is obvious that a
Z3-analog of (1) is

τ(x, y, z) + τ(y, z, x) + τ(z, x, y) = 0. (3)

Note that the relation (2) can be interpreted as a solution to the relation (1) in the sense
that the product x · y is expressed with the help of −1 (which can be considered as the
primitive square root of unity) in the terms of the product y · x. Analogously, we can solve
the relation (3) by making use of the primitive cubic root of unity q = exp(2iπ/3). Indeed,
if a ternary multiplication τ satisfies one of the following relations:

τ(x, y, z) = q τ(y, z, x) = q̄ τ(z, x, y), (4)

τ(x, y, z) = q̄ τ(y, z, x) = q τ(z, x, y), (5)

then, due to the property 1 + q + q̄ = 0, it also satisfies the relation (3). Thus, each of the
relations (4) and (5) can be considered as a Z3-analog of binary skew symmetry written in
the form (2). It is important to note that in the binary case, the relation (1) is equivalent
to the relation (2): that is, one immediately follows from the other. This is generally not
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true in the ternary case because the relation (3) is not equivalent to the relation (4) or (5).
The relation (3) follows from the relation (4) or (5), but not vice-versa. In other words, (3) is
a more general condition than (4) or (5).

Thus, we have an approach for extending the concept of skew symmetry from binary
to ternary multiplication that differs from the classical one (rearranging two elements
changes the sign of a product). This approach uses cyclic permutations of three elements:
that is, it is based on the group Z3 and one of the relations (3)–(5). Here, it should be
noted that the approach to ternary skew symmetry based on cyclic permutations differs
significantly from the classical approach. Indeed, it is easy to see that no matter which
of the conditions (3)–(5) we take as a ternary analogue of the concept of skew symmetry,
for any element x, we will have τ(x, x, x) = 0. However, the presence of two equal elements
in a ternary product, regardless of where they appear in a ternary product, generally does
not mean that the whole product will be equal to zero. In this way, Z3-based ternary skew
symmetry differs from classical ternary skew symmetry, wherein a product containing two
equal elements vanishes.

An investigation of the above algebraic relations (3)–(5) underlying the Z3-based
ternary concept of skew symmetry was stimulated by a ternary generalization of the Pauli
exclusion principle proposed by Richard Kerner [1–4]. A theoretical justification for this
ternary generalization of the Pauli exclusion principle is well and thoroughly outlined in the
above-mentioned articles by Richard Kerner. Therefore, we will give only a brief description
of this principle, and an interested reader will find a detailed description and justification
in the articles of Richard Kerner. The ternary generalization of the Pauli exclusion principle
proposed by Richard Kerner can be stated as follows: Three particles cannot coexist in
a quantum system if these three particles are in the same quantum state, but two such
particles can. In the quark model of elementary particles, quarks are considered as fermions,
and three quarks or three anti-quarks form a baryon. As an argument in favor of the
proposed ternary generalization of the Pauli exclusion principle, Richard Kerner points
to the fact that in the quark model, three quarks in the same quantum state cannot form a
stable configuration—observed as one of strongly interacting particles—but at the same
time, the coexistence of two quarks with the same isospin value is possible. Comparing
the ternary generalization of the Pauli exclusion principle formulated in this way with
the properties of Z3-based ternary skew symmetry, we see that Z3-based ternary skew
symmetry is an algebraic structure to give an adequate mathematical description of the
ternary generalization of the Pauli exclusion principle.

Relations (3)–(5) can be used to construct a ternary analogue of Grassmann and Clifford
algebra: that is, we can consider an algebra over the field of complex numbers generated by
a system of generators that obey one of the relations (3)–(5). The properties, structure, and
possible applications of such algebras were studied in papers [5–14]. A generalization of
the Dirac operator by means of the above-mentioned algebras can be found in [3,4,12,15,16].

In this paper, we study a Z3-based ternary analog of skew symmetry from a geo-
metric point of view. We consider a complex-valued trilinear form τ defined on a three-
dimensional Euclidean space and take Equation (3) as one of the conditions for the ternary
skew symmetry of τ: that is, we assume that τ satisfies

τ(x, y, z) + τ(y, z, x) + τ(z, x, y) = 0. (6)

However, if this condition is the only one, then it does not give a very good, so to
speak, approximation of classical skew symmetry, for which two equal elements lead to
zero. So choosing an orthonormal basis e1, e2, e3 for three-dimensional Euclidean space, we
impose three more conditions:

3

∑
i=1

τ(ei, ei, x) = 0,
3

∑
i=1

τ(ei, x, ei) = 0,
3

∑
i=1

τ(x, ei, ei) = 0, (7)
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which are a more general form of the requirement that having two equal elements results
in zero. Thus, we say that a trilinear complex-valued form τ is Z3-skew-symmetric if it
satisfies (6) and (7). It is easy to see that the conditions (6) and (7) of Z3-skew-symmetry are
SO(3)-invariant and do not depend on the choice of an orthonormal basis.

The aim of the present paper is to study a geometry of the space of Z3-skew-symmetric
complex-valued trilinear forms defined on a three-dimensional Euclidean space. The space
of Z3-skew-symmetric complex-valued trilinear forms can be identified with the space of
complex-valued third-order covariant SO(3)-tensors that satisfy the conditions

Tijk + Tjki + Tkij = 0, (8)

and
3

∑
i=1

Tiij = 0,
3

∑
i=1

Tiji = 0,
3

∑
i=1

Tjii = 0. (9)

Let us denote this space by T 3. Then, T 3 is a representation space of a twofold
irreducible tensor representation of the rotation group, and the dimension of this space is
10 [17]. A twofold irreducible tensor representation of the rotation group in T 3 splits into
two irreducible tensor representations if we decompose the 10-dimensional representation
space T 3 into a direct sum of two 5-dimensional subspaces in a way that is invariant under
the action of the rotation group. A decomposition into two subspaces can be made with the
help of the relations (4) and (5): that is, we define the subspace T 3

q ⊂ T 3 by imposing the
additional condition

Tijk = q Tjki = q̄ Tkij. (10)

It is easy to see that in this case the condition (8) follows from (10). Hence, we have

T 3
q = {T = (Tijk) ∈ T 3 : Tijk = q Tjki = q̄ Tkij}, (11)

and analogously,

T 3
q̄ = {T = (Tijk) ∈ T 3 : Tijk = q̄ Tjki = q Tkij}. (12)

Then T 3 = T 3
q ⊕ T 3

q̄ , and in each of the subspaces T 3
q , T 3

q̄ , we have an irreducible
representation of the rotation group. It is known that every representation of the rotation
group can be made unitary if we endow a representation space with an appropriate
Hermitian metric. We endow the space T 3

q with the Hermitian metric

h(T, S) = TijkSijk (13)

and show that the irreducible representation of the rotation group in T 3
q is an inclusion

R : SO(3) ↪→ SU(5). We find the orthonormal basis EA, 1 ≤ A ≤ 5 (here, EA are complex-
valued third-order covariant tensors satisfying (9) and (10)) for the Hermitian space T 3

q and
identify the space C5 with the Hermitian vector space of tensors T 3

q by putting

z = (zA) ∈ C5 → T(z) = zA EA ∈ T 3
q .

Then, the irreducible representation R of the rotation group can be written in the form

gim gjl gkp (EB)mlp = (R(g))A
B (EA)ijk, (14)

where g = (gij) ∈ SO(3). We calculate all SO(3)-invariants of the representation R, and this
calculation shows that there are only two non-trivial independent invariants. Obviously,
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one of them is the canonical Hermitian metric h(z, z̄) = ∑A zA z̄A, and the other is the
quadratic form

K(z, z) = KAB zAzB = (z1)2 + (z2)2 + (z3)2 + 2q z4z5. (15)

We study the properties of the quadratic form K(z, z). Particularly, we show that the
matrix KAB of the quadratic form K(z, z) is symmetric and unitary and that its determinant
is the sixth-order primitive root of unity ϵ = exp(π i/3). These properties are invariant
under the action of the unitary group U(5) in the five-dimensional complex space T 3

q . Then,
we find the subgroup of the group SU(5) that is a stabilizer of the quadratic form K(z, z) in
the five-dimensional complex vector space T 3

q . In analogy to the approach proposed in [18]
and developed in [19], we define an SO(3)-irreducible geometric structure in complex
dimension five and study its geometry.

2. Five-Dimensional Complex Space of the SO(3)-Irreducible Representation

The aim of this section is to describe an irreducible tensor representation of the rotation
group. In what follows, we consider complex-valued covariant tensors defined in three-
dimensional Euclidean space R3. Let T = (Ti1i2 ...ip) be a tensor of rank p. In what follows,
we will use the Einstein convention of summation over repeated indices. Then, the formula

T̃j1 j2 ...jp = gi1 j1 gi2 j2 . . . gip jp Ti1i2 ...ip , (16)

where g = (gij) ∈ SO(3) is a rotation in R3, defines a linear transformation in a vector
space of covariant tensors of rank p, i.e., it defines a representation of the rotation group,
which is called a ‘tensor representation’. A linear transformation (16) will be denoted by
g · T: that is, T̃ = g · T. In this section, we give an explicit description of an irreducible
five-dimensional tensor representation of the rotation group in the complex vector space of
covariant tensors of rank three.

Let T 3 be the vector space of tensors of rank three that satisfy the following conditions:

T1. A contraction of a tensor T = (Tijk) over any pair of subscripts (trace) is zero: that is,
for any j = 1, 2, 3, it holds that

Tiij = 0, Tiji = 0, Tjii = 0.

T2. For any combination of integers i, j, k (each running from 1 to 3), the sum of the
components of tensor T = (Tijk) obtained by cyclic permutation of its subscripts is
equal to zero: that is,

Tijk + Tjki + Tkij = 0.. (17)

It can be easily verified that the conditions T1, T2 are invariant under the action of the
rotation group (16). Hence, for any rotation g ∈ SO(3), we have Rg : T 3 → T 3. It is shown
in [17] that the vector space T 3 is 10-dimensional, and the Formula (16) defines a twofold
irreducible tensor representation of the rotation group in this vector space. If we split the
10-dimensional vector space T 3 into a direct sum of two 5-dimensional subspaces in a way
so that they are invariant with respect to the action of the rotation group (16); then, in each
5-dimensional subspace of T 3, we will have an irreducible tensor representation of the
rotation group.

One can split the 10-dimensional vector space T 3 into a direct sum of two 5-dimensional
subspaces that are invariant with respect to a tensor representation of the rotation group
by making use of a linear operator induced by a substitution. Let us denote by σ the cyclic
substitution of the first three integers σ(1) = 2, σ(2) = 3, σ(3) = 1. Then, one can define
the operator Φσ : T → T̃ acting on the tensors of rank three as follows:

T̃i1i2i3 = Φσ(Ti1i2i3) = Tiσ(1)iσ(2)iσ(3) = Ti2i3i1 ,
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and extend this by linearity to the vector space of all tensors of rank three. Obviously,
Φ3

σ = id, where id is the identity transformation, and

(id + Φσ + Φ2
σ) (Tijk) = Tijk + Tjki + Tkij, (18)

Thus, Equation (17) can be written in the form

(id + Φσ + Φ2
σ)(T) = 0. (19)

Now, it is easy to show that the vector space T 3 is invariant under the action of the
operator Φσ: that is, Φσ : T 3 → T 3. Assume that a tensor T = (Tijk) satisfies the condition
T2 or, equivalently, Equation (19). Denote T̃ = Φσ(T). Then,

(id + Φσ + Φ2
σ) (T̃) = (id + Φσ + Φ2

σ) (Φσ(T)) = (id + Φσ + Φ2
σ) (T) = 0,

and T̃ also satisfies Equation (19). Similarly, one can verify that the operator Φσ preserves
the condition T1.

Generally, the property of the linear operator Φ3
σ = id implies that it has three eigen-

values 1, q, q̄ in the vector space of all tensors of rank three. Here, q = exp (2iπ/3) is the
primitive third-order root of unity and q̄ is its complex conjugate. Another general formula
is based on the property of the third-order roots of unity 1 + q + q̄ = 0. Indeed, it is easy to
see that due to the mentioned property of the third-order roots of unity, any tensor of rank
three can be decomposed into the sum of three tensors:

T = T1 + Tq + Tq̄, (20)

where

T1 =
1
3
(id + Φσ + Φ2

σ)(T) or (T1)ijk =
1
3
(Tijk + Tjki + Tkij),

Tq =
1
3
(id + q̄ Φσ + q Φ2

σ)(T) or (Tq)ijk =
1
3
(Tijk + q̄ Tjki + q Tkij),

Tq̄ =
1
3
(id + q Φσ + q̄ Φ2

σ)(T) or (Tq̄)ijk =
1
3
(Tijk + q Tjki + q̄ Tkij).

Obviously, the tensors T1, Tq, Tq̄ are the eigenvectors of the linear operator Φσ corre-
sponding to the eigenvalues 1, q, q̄, respectively. Thus, we have

Φσ(T1) = T1, Φσ(Tq) = q Tq, Φσ(Tq̄) = q̄ Tq̄,

or, equivalently,

(T1)ijk = (T1)jki, (Tq)ijk = q̄ (Tq)jki, (Tq̄)ijk = q (Tq̄)jki.

It is worth mentioning that the components Tq and Tq̄ of a tensor T satisfy the condition
T2. Restricting (20) to the vector space T 3, we see that due to the condition T2, the first
term on the right-hand side vanishes, i.e., T1 = 0, and (20) takes on the form T = Tq + Tq̄,
where Tq, Tq̄ ∈ T 3. Hence, we can decompose the vector space T 3 into the direct sum of
two subspaces, which are denoted as T 3

q and T 3
q̄ . According to the definitions (11) and (12),

T 3
q is the subspace of the eigenvectors of the linear operator Φσ with eigenvalue q̄, and

T 3
q̄ is the subspace of the eigenvectors of the linear operator Φσ with eigenvalue q. Thus,

T 3 = T 3
q ⊕ T 3

q̄ .
The subspaces T 3

q , T 3
q̄ play a basic role in what follows, and it is useful to give their

exact description here. T 3
q is a vector space of complex-valued tensors of rank three that

satisfy the condition T1 (a trace over any pair of subscripts is zero), and the tensors are
eigenvectors of the linear operator Φσ with eigenvalue q̄: that is, they satisfy Φσ(T) = q̄ T
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or Tijk = q Tjki. Similarly, T 3
q̄ is a vector space of complex-valued tensors of rank three that

satisfy T1, and the tensors are the eigenvectors of the linear operator Φσ with eigenvalue q,
i.e., Φσ(T) = q T or Tijk = q̄ Tjki. Hence,

T 3
q = {T ∈ T 3 : Φσ(T) = q̄ T}, T 3

q̄ = {T ∈ T 3 : Φσ(T) = q T}. (21)

The important role of these subspaces is that they are spaces of a five-dimensional
irreducible representation of the rotation group.

A tensor of the third rank T = (Tijk) is a quantity with three subscripts i, j, k. Therefore,
in what follows, it will be convenient for us to represent tensors of the third rank in the form
of three-dimensional matrices, which are also called hypermatrices. By a three-dimensional
matrix, we mean a three-dimensional cube with the components of a tensor Tijk located
on the sections of this cube. Here, by section, we mean a section of a cube by a plane
perpendicular to its edges. We assume that the cube is located in space so that the first
subscript i of a tensor Tijk enumerates sections of a cube parallel to the plane of this page,
and the numbering starts from the section closest to us (i = 1) and then takes values 2, 3 as
the distance from us increases (see Figure 1).

Figure 1. Tensor components arranged as a three-dimensional matrix.

We map a three-dimensional matrix onto the plane of the page of this paper by placing
the numbered sections of a cube (which are the usual third-order square matrices) from
left to right: that is, on the left, there is the section with i = 1, the center is i = 2, and the
right is i = 3. Thus, a three-dimensional matrix of a third-order tensor T = (Tijk) can be
represented as follows:

T =

 T111 T112 T113
T121 T122 T123
T131 T132 T133

∣∣∣∣∣∣
T211 T212 T213
T221 T222 T223
T231 T232 T233

∣∣∣∣∣∣
T311 T312 T313
T321 T322 T323
T331 T332 T333

. (22)

If a three-dimensional matrix T is represented in the form (22), then we say that T = (Tijk)
is written in the direction i. Analogously, we can define j-directional and k-directional
representations of a three-dimensional matrix.

Now, we consider the five-dimensional complex vector space C5 endowed with the
canonical Hermitian metric h. The coordinates of this space are denoted by zA, where A
runs from 1 to 5. Then, h(z, z̄) = ∑5

A=1 zA z̄A. We identify this five-dimensional complex
vector space with the complex vector space of the third-rank covariant tensors (or three-
dimensional matrices) T 3

q by identifying a point (zA) ∈ C5 with the three-dimensional
matrix T(z), i.e.,

(zA) ∈ C5 → T(z) =
(
Tijk(z)

)
∈ T 3

q ,
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where

T(z) =


0 − q̄ z2

√
6

q̄ z3
√

6

− q z2
√

6
z1
√

6
z4
√

3
q z3
√

6
q z5
√

3
− z1

√
6

∣∣∣∣∣∣∣∣∣∣
− z2

√
6

q z1
√

6
q̄ z5
√

3
q̄ z1
√

6
0 − q̄ z3

√
6

q̄ z4
√

3
− q z3

√
6

z2
√

6

∣∣∣∣∣∣∣∣∣∣
z3
√

6
q z4
√

3
− q z1

√
6

z5
√

3
− z3

√
6

q z2
√

6

− q̄ z1
√

6
q̄ z2
√

6
0

. (23)

It is easy to verify that T(z) satisfies the condition T1: that is, the trace over any
pair of subscripts is zero, and Tijk(z) = q Tjki(z). Thus, in what follows, we consider the
five-dimensional complex vector space for which the points are identified with three-
dimensional complex matrices T(z).

The Formula (16) defines an action T → g · T of the rotation group SO(3) on our
five-dimensional complex vector space, and this action yields an irreducible tensor repre-
sentation of the rotation group [17]. Now our aim is to find and study the invariants of this
representation, which we will use to construct an irreducible special geometry.

In this paper, we use the classification of invariants of third-order tensors that trans-
form according to Formula (16): that is, under the action of the rotation group SO(3). This
classification can be found in [20]. If we do not assume that a tensor T = (Tijk) has any
symmetries, then there is only one linear invariant:

I = ϵijk Tijk = T123 + T231 + T312 − T321 − T213 − T132,

where ϵijk is the Levi–Civita tensor in three-dimensional Euclidean space. Since we consider
the space of tensors that satisfy property T2—that is, the sum of the components obtained
by cyclic permutations of subscripts is equal to zero—the linear invariant I1 vanishes.

The complete set of quadratic SO(3)-invariants of a third-order real-valued tensor T
(no symmetries) includes eleven invariants. Six of the eleven invariants contain the trace of
a tensor T with respect to some pair of subscripts, and, due to property T1, these invariants
vanish when restricted to the space T 3

q . This leaves us with five SO(3)-invariants of a
real-valued tensor, and these invariants are on the left side of the table shown below. Due to
the fact that we are considering complex-valued tensors, this list of five invariants should
be extended by supplementing it with additional invariants. These additional invariants
are constructed from those on the left side of the table by replacing one of the factors in a
product of tensor components with the complex conjugate, and the additional invariants
are shown on the right side of the table. Direct calculation leads to the following table
of invariants:

I1 = Tijk Tijk = 0, I∗1 = Tijk Tijk =
5

∑
A=1

zA z̄A = h(z, z̄), (24)

I2 = Tijk Tikj =
3

∑
A=1

(zA)2 + 2 q z4z5, I∗2 = Tijk Tikj = 0, (25)

I3 = Tijk Tjik = q Tijk Tikj = q I2, I∗3 = Tijk T jik = q̄ Tijk Tikj = q̄ I∗2 = 0, (26)

I4 = Tijk Tkji = q̄ TijkTikj = q̄ I2, I∗4 = TijkTkji = q TijkTikj = q I∗2 = 0, (27)

I5 = TijkTkij + TijkTjki = 0, I∗5 = TijkTkij + TijkT jki = −I∗1 . (28)

The table of invariants shows that we have two independent quadratic invariants
I∗1 , I2, with the first one I∗1 being the canonical Hermitian metric of the complex five-
dimensional space C5. Hence, each rotation of the three-dimensional space R3 induces a
unitary transformation of the complex five-dimensional Hermitian space C5: that is, we
have a representation R : g ∈ SO(3) → Rg ∈ U(5). Obviously the homomorphism R
from the rotation group into the group of unitary matrices of order five is injective. At the
infinitesimal level, the representation R generates the representation of the Lie algebra of
the rotation group ϱ : τ ∈ so(3) → ϱτ ∈ u(5). Our next goal is to find an explicit form
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of this representation using the basis of the five-dimensional complex Hermitian space
of three-dimensional matrices (23). In other words, given a skew-symmetric third-order
matrix τ = (τij) ∈ so(3), we will calculate a fifth-order skew-Hermitian traceless matrix
ϱτ =

(
(ϱτ)A

B
)
∈ u(5). We see that the form of the skew-Hermitian matrix ϱτ is determined

by the second invariant I2, and this matrix is surprisingly similar to the matrix used in the
Georgi–Glashow model for unification of elementary particles [21].

In order to calculate the infinitesimal part of the representation R : SO(3) → U(5), we
use the exponential map from the Lie algebra so(3) to the rotation group SO(3); we take
only the linear part of the corresponding expansion gij = δij + τij + . . ., where τ = (τij) is a
skew-symmetric matrix. We can write

(g · T)ijk = gipgjrgksTprs = (δip + τip + . . .)(δjr + τjr + . . .)(δks + τks + . . .)Tprs

= Tijk + τipTpjk + τjrTirk + τksTijs + . . . (29)

Hence, the infinitesimal part of the action T → g · T (up to the terms of the second
order and higher) defines the linear operator ϱτ : C5 → C5, where

(ϱτ(T))ijk = τipTpjk + τjrTirk + τksTijs. (30)

It will be convenient for us to pass to a parameterization of matrix τ = (τij) with the
help of parameters containing one index. Let us define τi = − 1

2 ϵijkτjk. Then

τ =

 0 −τ3 τ2
τ3 0 −τ1
−τ2 τ1 0


Now we can calculate a matrix of this operator (we will use the same notation ϱτ for

the matrix of the operator) by means of the following basis in five-dimensional complex
space of three-dimensional matrices (23):

0 0 0

0 1 0

0 0 −1

∣∣∣∣∣∣∣∣
0 q 0

q̄ 0 0

0 0 0

∣∣∣∣∣∣∣∣
0 0 −q

0 0 0

−q̄ 0 0

,


0 −q̄ 0

−q 0 0

0 0 0

∣∣∣∣∣∣∣∣
−1 0 0

0 0 0

0 0 1

∣∣∣∣∣∣∣∣
0 0 0

0 0 q

0 q̄ 0

,


0 0 q̄

0 0 0

q 0 0

∣∣∣∣∣∣∣∣
0 0 0

0 0 −q̄

0 −q 0

∣∣∣∣∣∣∣∣
1 0 0

0 −1 0

0 0 0

,


0 0 0

0 0
√

2

0 0 0

∣∣∣∣∣∣∣∣
0 0 0

0 0 0
√

2q̄ 0 0

∣∣∣∣∣∣∣∣
0

√
2q 0

0 0 0

0 0 0

,


0 0 0

0 0 0

0
√

2q 0

∣∣∣∣∣∣∣∣
0 0

√
2q̄

0 0 0

0 0 0

∣∣∣∣∣∣∣∣
0 0 0
√

2 0 0

0 0 0

,

Let us denote the three-dimensional matrices of this basis by EA, where A = 1, 2, . . . , 5.
By straightforward calculation, we find

ϱτ(E1) = −τ3 E2 + τ2 E3 +
√

2τ1 E4 +
√

2 q̄ τ1 E5,

ϱτ(E2) = τ3 E1 − τ1 E3 +
√

2 q τ2 E4 +
√

2 q τ2 E5,

ϱτ(E3) = −τ2 E1 + τ1 E2 +
√

2 q̄ τ3 E4 +
√

2 τ3 E5,

ϱτ(E4) = −
√

2 τ1 E1 −
√

2 q̄ τ2 E2 −
√

2 q τ3 E3,

ϱτ(E5) = −
√

2 q τ1 E1 −
√

2 q̄ τ2 E2 −
√

2 τ3 E3.
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Hence, the matrix of the operator ϱτ has the form

ϱτ =


0 τ3 −τ2 −

√
2 τ1 −

√
2 q τ1

−τ3 0 τ1 −
√

2 q̄ τ2 −
√

2 q̄ τ2
τ2 −τ1 0 −

√
2 q τ3 −

√
2 τ3

√
2 τ1

√
2 q τ2

√
2 q̄ τ3 0 0√

2 q̄ τ1
√

2 q τ2
√

2 τ3 0 0

. (31)

Due to the fact that the irreducible representation of the rotation group in the complex
space of three-dimensional matrices (23) is unitary (as we mentioned above, one of the
invariants of this representation is the Hermitian metric of the five-dimensional complex
space), the matrix of the representation of the Lie algebra of the rotation group ϱτ must be
skew-Hermitian, and this is indeed the case, because the matrix ϱτ satisfies the relation
ϱτ + ϱ†

τ = 0, where ϱ†
τ = ϱTτ . It is easy to see that ρτ is a traceless matrix. Hence, ρτ belongs

to the Lie algebra of the group SU(5): that is, ρτ ∈ su(5). Hence, we can express this
matrix in terms of generators of su(5), which are denoted in physics papers by Li, where
i = 1, 2, . . . , 24, and Li are Hermitian traceless matrices of the fifth-order normalized by
Tr(Li Lj) =

1
2 δij. In this paper, we use the following numbering for the generators of su(5):

• The first eight generators correspond to SU(3): that is,

Lk =
1
2

(
λk 0
0 0

)
,

where λi are Gell–Mann matrices;
• the next four generators L9, L10, L11, L12 have the form

L8+k =
1
2

(
0 0
0 σk

)
, L12 =

1
2
√

15
Diag(−2,−2,−2, 3, 3),

where k = 1, 2, 3 and σ1, σ2, σ3 are Pauli matrices;
• the next twelve generators (sometimes called broken matrices) are of the form

L12+k =
1
2
(dk

4 + d4
k), L15+k =

1
2
(dk

5 + d5
k),

L18+k = − i
2
(dk

4 − d4
k), L21+k = − i

2
(dk

5 − d5
k),

where k = 1, 2, 3, and di
k is a matrix with only one non-zero element, which is at the

intersection of ith row with the kth column.

Then, the matrix ρτ can be written in the terms of su(5)-generators Li as follows:

ρτ = 2i τ1 (L7 −
√

6
2

L16 −
√

2 L19 +

√
2

2
L22)

+ 2i τ2 (−L5 +

√
6

2
L14 −

√
6

2
L17 +

√
2

2
L20 +

√
2

2
L23)

+2i τ3 (L2 −
√

6
2

L15 +

√
2

2
L21 −

√
2 L24).

It should be noted here that the matrix ρτ is not only skew-Hermitian and traceless,
it also satisfies some additional conditions that follow from the fact that the irreducible
representation of the rotation group has one more quadratic invariant I2 (25). We denote
the quadratic form in the five-dimensional complex vector space induced by this invariant
as follows:

K(z, z) = KAB zA zB = (z1)2 + (z2)2 + (z3)2‘ + 2 q z4 z5. (32)
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The matrix of this quadratic form

K = (KAB) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 q
0 0 0 q 0

, (33)

can be considered as a covariant second-order tensor in the five-dimensional complex
vector space, and the properties of this tensor will be studied in the next section. Here, we
only note that the matrix K = (KAB) is symmetric and unitary, i.e.,

K = KT, K K† = E, (34)

where E = (δAB) is the identity matrix.
The infinitesimal action (30) generates the following vector fields in five-dimensional

complex space:

X1 = (
√

2 z4 +
√

2 q z5)
∂

∂z1 − z3 ∂

∂z2 + z2 ∂

∂z3 −
√

2 z1 ∂

∂z4 −
√

2 q̄ z1 ∂

∂z5 ,

X2 = z3 ∂

∂z1 +
√

2 q̄ (z4 + z5)
∂

∂z2 − z1 ∂

∂z3 −
√

2 q z2 ∂

∂z4 −
√

2 q z2 ∂

∂z5 ,

X2 = −z2 ∂

∂z1 + z1 ∂

∂z2 +
√

2(q z4 + z5)
∂

∂z3 −
√

2 q̄ z3 ∂

∂z4 −
√

2 z3 ∂

∂z5 .

These vector fields span the Lie algebra [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2
isomorphic to the Lie algebra of matrices (31). Due to the fact that the Hermitian metric
h(z, z̄) and the quadratic form K(z, z) are invariants of the irreducible representation of the
rotation group g ∈ SO(3) → Rg ∈ U(5), the vector fields X1, X2, X3 vanish on the Hermitian
form h(z, z̄) and the quadratic form K(z, z).

Now our goal is to show that, in fact, the irreducible representation of the rotation
group g ∈ SO(3) → Rg ∈ U(5) has the form g ∈ SO(3) → Rg ∈ SU(5): that is, each rota-
tion generates a unitary with determinant 1 transformation in the five-dimensional complex
vector space. For this purpose, we will find a parameterization of the irreducible represen-
tation using Euler angles. Let us consider one-parameter subgroups of the rotation group

g1(t) =

 cos t − sin t 0
sin t cos t 0

0 0 1

, g2(t) =

 1 0 0
0 cos t − sin t
0 sin t cos t

. (35)

The one-parameter subgroups of unitary transformations in five-dimensional com-
plex vector space generated by the irreducible representation of g1(t) and g2(t) have the
following forms, respectively:

R1(t) =


cos t sin t 0 0 0
− sin t cos t 0 0 0

0 0 cos 2t − q√
2

sin 2t − 1√
2

sin 2t

0 0 q̄√
2

sin 2t cos2 t −q̄ sin2 t
0 0 1√

2
sin 2t −q sin2 t cos2 t

, (36)
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R2(t) =



cos 2t 0 0 − 1√
2

sin 2t − q√
2

sin 2t
0 cos t sin t 0 0
0 − sin t cos t 0 0

1√
2

sin 2t 0 0 cos2 t −q sin2 t

q̄√
2

sin 2t 0 0 −q̄ sin2 t cos2 t


. (37)

Direct calculation shows that the determinants of these matrices are equal to 1. Since
any rotation can be written as a composition g1(ϕ) g2(θ) g1(ψ), where ϕ, θ, ψ are Euler
angles, we conclude that each rotation generates a unitary transformation with determinant
1: that is, the irreducible representation has the form of inclusion R : SO(3) ↪→ SU(5), and
we denote the image of the rotation group with respect to this inclusion as G3. Hence,
G3 ⊂ SU(5).

3. SO(3)-Irreducible Geometric Structure on a Five-Dimensional Hermitian Manifold

The purpose of this section is to study the properties of the quadratic form

K(z, z) = (z1)2 + (z2)2 + (z3)2 + 2 qz4 z5, (38)

which is invariant under the irreducible representation R of the rotation group, where
R : SO(3) ↪→ SU(5). In the previous section, we denoted the image of this inclusion by G3,
and according to Formulas (36) and (37), any element of the group G3 can be written as a
product R1(t) R2(s) R1(v), where t, s, v are real parameters. Hence, G3 is a stabilizer of the
quadratic form K(z, z) in SU(5).

Assume that zA = UA
B z̃B, where U = (UA

B ) is a regular complex 5 × 5-matrix, is a
linear transformation in the five-dimensional complex space C5. Then, the matrix of the
quadratic form K(z, z)

K =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 q
0 0 0 q 0

, (39)

transforms under this transformation as follows:

K̃AB = UC
A UD

B KCD, K = K̃AB z̃A z̃B, (40)

or in the matrix form:
K̃ = UT K U, (41)

where K = (KAB), K̃ = (K̃AB) are matrices of the form K(z, z) in different bases of the
Hermitian space C5, and UT is the transposed matrix of U. The set of all matrices K̃
obtained with the help of (41) will be referred to as an orbit of the quadratic form K(z, z)
with an indication of a group of transformations. For example, the set of all matrices K̃
obtained by means of unitary transformations will be referred to as an U(5)-orbit of K(z, z).
Obviously, we can consider the matrix K = (KAB) as a second-order covariant tensor in
a five-dimensional vector space, and in this case, we will talk about the U(5)-orbit of the
tensor K = (KAB). Our aim in this section is to find properties of the quadratic form K(z, z)
(or of the corresponding tensor K = (KAB)) such that they will uniquely determine the
orbit of this quadratic form.

First of all, it is easy to see that the tensor K is symmetric and unitary and that these
properties are invariant with respect to the group of unitary transformations U(5). Indeed
for any U ∈ U(5), we have

K̃T = (UT K U)T = UT KT U = UT K U = K̃,
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and
K̃ K̃ = UT K (U UT

)K U = UT (K K)U = UT U = E,

where U is the complex conjugate matrix of U, and E is the unit matrix. Hence, the
U(5)-orbit of the tensor K = (KAB) is an orbit of a symmetric and unitary tensor.

We recall that the determinant of the matrix of a quadratic form is referred to as a
discriminant of a quadratic form. It is easy to find that the discriminant of the quadratic
form K(z, z) is ϵ, where ϵ = exp(i π/3) is the primitive sixth-order root of unity. But the
discriminant of the quadratic form K(z, z) is invariant with respect to the action of the
group U(5). Indeed, we have

det K̃ = det (UT K U) = (det U)2 det K = ϵ.

Hence, the U(5)-orbit of the second-order covariant tensor K = (KAB) is an orbit of
the tensor with a determinant equal to ϵ.

The U(5)-invariant properties of the tensor K = (KAB) found above do not yet
uniquely determine the U(5)-orbit of this tensor in the space of U(5)-orbits of all second-
order covariant tensors. In order to find additional invariant conditions, we use the
following fact from the matrix calculus. It is known [22] that a symmetric and unitary
complex matrix X, that is,

X = XT = X−1,

can be written in the exponential form X = eiY, where Y is the real symmetric matrix.
The tensor K = (KAB) is symmetric, unitary, and det K = ϵ, and these properties are U(5)-
invariant. Thus, in any orthonormal basis for the five-dimensional complex space C5, or in
other words, at any point of U(5)-orbit, this tensor considered as a matrix can be written in
the exponential form K = exp(iS), where S is a real symmetric matrix. Particularly in the
case of matrix (39), a straightforward computation gives the block form of the fifth-order
real symmetric matrix S:

S =

(
0 | 0
0 | Σ

)
, Σ =

(
π
6

π
2

π
2

π
6

)
. (42)

In the particular case for which U = (UA
B ) is a real unitary transformation—that is,

UT = U−1
= U−1—we can easily find a transformation law of the matrix S. Indeed, in the

case of a real unitary matrix U, we have

K̃ = UT K U = U−1 K U = U−1 eiS U = ei (U−1 S U),

and K̃ = exp(iS̃) implies S̃ = U−1 S U. But a real unitary matrix is an orthogonal real
matrix, and making use of a transformation S̃ = U−1 S U, the real symmetric matrix S can
be put into a diagonal form. Straightforward computation gives the diagonal forms of
matrices S̃, K̃:

S̃ =

(
0 | 0
0 | Σ̃

)
, Σ̃ =

(
−π

3 0
0 2π

3

)
, K̃ = eiS̃ =

(
E | 0
0 | Ξ

)
, Ξ =

(
ϵ5 0
0 ϵ2

)
, (43)

where ϵ5 = −q, ϵ2 = q, and E is the third-order unit matrix. It is easy to verify that the sixth
power of the matrix K of the quadratic form K(z, z) is equal to the identity matrix—that
is, K6 = E—and this relation is invariant under real unitary transformations of the five-
dimensional complex space. It is well known that if the nth power of a matrix is equal to
the identity matrix, then the eigenvalues of such a matrix are the nth roots of unity. Thus,
the diagonal form K̃ of the matrix K in (43) with the sixth-order roots of unity on the main
diagonal is a consequence of the fact that K or K̃ to the sixth power is equal to the identity
matrix. We proved the following statement:
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Proposition 1. For any orthonormal basis {EA}, where A = 1, 2, . . . , 5, for the five-dimensional
complex Hermitian space C5, the second-order covariant tensor KAB = K(EA, EB) determined
by the quadratic form K(z, z) = (z1)2 + (z2)2 + (z3)2 + 2q z4 z5 has the following U(5)-
invariant properties:

• KAB = KBA (symmetric);
• KAB KCB = δAC (unitary);
• det (KAB) = ϵ, where ϵ = eiπ/3 is the sixth-order root of unity.

It also has the following properties, which are invariant with respect to real unitary transformations:

• K6 = E, where the tensor K = (KAB) is considered as a matrix;
• the eigenvalues of K = (KAB) are 1, 1, 1, q,−q, where q = e2πi/3 is the cubic root of unity.

This statement provides a basis for studying five-dimensional complex manifolds
with a structure determined by the tensor K = (KAB). Let (M, h) be a five-dimensional
Hermitian manifold, where h is a Hermitian metric. A Hermitian metric h makes it possible
to reduce the group of non-degenerate linear transformations of a tangent space Tx M, x ∈
M of a manifold M to the group of unitary transformations U(5). In other words, we
can consider the principal bundle of orthonormal frames over a manifold M with the
structure group U(5). Thus, by a tensor field on a manifold M, we mean a tensor defined
at each point of a manifold M and transformed under the action of the structure group
U(5). If OR(5) ⊂ U(5) is the subgroup of real unitary matrices, then we can consider the
sub-orbit of a U(5)-tensor field: that is, the tensor field transforming according to the action
of the subgroup OR(5) and this sub-orbit will be referred to as a OR(5)-tensor.

Definition 1. An SO(3)-irreducible geometric structure on a five-dimensional complex Hermitian
manifold (M, h) is a second-order covariant symmetric unitary tensor field KAB for which the
determinant is equal to the primitive sixth-order root of unity ϵ = eiπ/3. Moreover, the tensor field
KAB, considered as an OR(5)-tensor field, has the eigenvalues 1, q,−q, for which the multiplicity of
the eigenvalue 1 is 3, and q is the primitive cubic root of unity q = e2iπ/3.

From this definition, it follows that an SO(3)-irreducible geometric structure on a
five-dimensional Hermitian manifold M can be considered as a triple (M, h, K), where h
is a Hermitian metric of M, and K is a second-order covariant tensor field defined on M
or the corresponding quadratic form. Two triples, (M, h, K) and (M̃, h̃, K̃), will be referred
to as equivalent SO(3)-irreducible geometric structures on Hermitian manifolds M, M̃,
respectively, if there exists a diffeomorphism ψ : M → M̃ such that

h(v, w) = h̃(ψ∗(v), ψ∗(w)), K(v, w) = K̃(ψ∗(v), ψ∗(w)),

where v, w are tangent vectors to a manifold M, ψ∗ is the differential of a diffeomorphism
ψ, and K, K̃ are quadratic forms induced by the tensors KAB, K̃AB, respectively.

Let us study a local structure of a manifold M. It follows from Proposition 1 and
Definition 1 that, locally, we can choose a frame {EA} of vector fields EA and its dual
coframe {θA} of complex-valued one-forms, i.e., θA(EB) = δA

B , such that

• {EA} is an orthonormal frame: that is, h(EA, EB) = δAB and

h = θ1 θ
1
+ θ2 θ

2
+ θ3 θ

3
+ θ4 θ

4
+ θ5 θ

5
;

• The components of the tensor KAB form the following matrix:

K =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 q
0 0 0 q 0

,
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and the quadratic form induced by these components is

K = (θ1)2 + (θ2)2 + (θ3)2 + 2q θ4 θ5. (44)

It is clear that the subgroup G3 ⊂ U(5) (isomorphic to the rotation group) studied at
the end of the previous section is the stabilizer of the quadratic form (44). Hence, we can
reduce the gauge group U(5) to this subgroup and consider a g3-connection one-form ω on
a manifold M, where g3 is the Lie algebra of G3. We can write this g3-valued connection
one-form as follows:

ω =


0 ω3 −ω2 −

√
2 ω1 −

√
2 q ω1

−ω3 0 ω1 −
√

2 q̄ ω2 −
√

2 q̄ ω2

ω2 −ω1 0 −
√

2 q ω3 −
√

2 ω3

√
2 ω1

√
2 q ω2

√
2 q̄ ω3 0 0√

2 q̄ ω1
√

2 q ω2
√

2 ω3 0 0

,

where ω1, ω2, ω3 are real-valued one-forms. It is easy to see that a connection one-form ω
is a skew-Hermitian: that is, ωT = −ω. Then, the torsion two-form TA and the curvature
two-form RAB of a connection ω can be expressed as follows:

TA = dθA + ωA
B ∧ θB, RAB = dωA

B + ωA
C ∧ ωC

B .

Straightforward calculation gives for the torsion

T1 = dθ1 + ω3 ∧ θ2 − ω2 ∧ θ3 −
√

2 ω1 ∧ (θ4 + q θ5),

T2 = dθ2 + ω1 ∧ θ3 − ω3 ∧ θ1 −
√

2q̄ ω2(θ4 + θ5),

T3 = dθ3 + ω2 ∧ θ1 − ω1 ∧ θ2 −
√

2 ω3 ∧ (q θ4 + θ5),

T4 = dθ4 +
√

2(ω1 ∧ θ1 + q ω2 ∧ θ2 + q̄ ω3 ∧ θ3),

T5 = dθ5 +
√

2(q̄ ω1 ∧ θ1 + q ω2 ∧ θ2 + ω3 ∧ θ3),

and for the curvature

R12 = ζ312, R13 = −ζ231, R14 = −
√

2 ζ123, R15 = −
√

2 q ζ123,

R23 = ζ123, R24 = −
√

2 q̄ ζ231, R25 = −
√

2 q̄ ζ231,

R34 = −
√

2 ζ312, R35 = −
√

2 ζ312,

R45 = 0,

where ζ ijk is a two-form defined by ζ ijk = dωi +ω j ∧ωk, where i, j, k is a cyclic permutation
of integers 1, 2, 3. It can be proved that a connection ω is consistent with a Hermitian metric
h and that it preserves the tensor K = (KAB); that is,

ω
∇ h = 0,

w
∇K = 0,

where
ω
∇ is the covariant derivative of tensor fields induced by a connection ω.

4. Discussion

In this paper, we propose a ternary analog of the concept of skew symmetry based
on the group of cyclic permutations Z3 and its faithful representation by the cubic roots of
unity 1, q, q̄. We call this ternary analog of skew-symmetry a Z3 skew symmetry.

The notion of a Z3-skew-symmetric trilinear form proposed in the present paper is
motivated by the ternary generalization of the Pauli exclusion principle proposed by R.
Kerner. We remind that a trilinear form is called Z3-skew-symmetric if it satisfies the cyclic
relation (6) and the traces zero relations (7). The cyclic relation (6) implies τ(x, x, x) = 0
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(but not necessarily τ(x, x, y) = 0), and this can be interpreted within the framework
of the ternary generalization of the Pauli exclusion principle: as the impossibility of the
coexistence of three quarks with identical quantum characteristics but the possibility of
the coexistence of two quarks with equal isospin values. We think that the traces zero
condition (7) can also be interpreted within the quark model. As is known, the singlet
R R̄ + G Ḡ + BB̄, where R, G, B stand for colors of quarks, is colorless, which means it does
not interact with quarks, and such a superposition of states must be zero: that is, such a
gluon does not exist.

The algebraic aspect of the ternary generalization of skew symmetry was studied in a
number of scientific papers [6–10,12,14], wherein this generalization was used to construct
ternary algebras with generators. Then, these algebras were used to construct a generaliza-
tion of the Dirac operator [3,4,12,15,16]. In this article, we study a ternary generalization of
the notion of skew symmetry from the point of view of geometric structures. We consider
the space of third-order covariant tensors, which are Z3-skew-symmetric: that is, the sum
of the tensor components obtained by cyclic permutations of subscripts is equal to zero.
Moreover, the trace of a tensor over any pair of subscripts must be equal to zero. We think
that this requirement is a ternary analogue of the fact that in the case of a second-order
skew symmetric (in the classical sense) covariant tensor, all diagonal elements (with equal
subscripts) are equal to zero (and hence, the sum—that is, the trace—will be also equal
to zero).

Tensors of the third-order with the properties described above are known in the repre-
sentation theory of the rotation group. They form a complex ten-dimensional space, and in
this space, there is a twofold irreducible representation of the rotation group. In order to
split this twofold representation into two irreducible representations, we decompose this
ten-dimensional space into a direct sum of two five-dimensional spaces with the help of the
primitive cubic roots of unity q = exp(2πi/3), q̄ = exp(4πi/3). This decomposition can
be considered as some kind of duality, which is possibly related to the duality quark–anti-
quark. We construct the five-dimensional complex Hermitian space for which the points
are identified with Z3-skew-symmetric covariant third-order tensors. If we consider a third-
order tensor as a three-dimensional matrix, then we have a five-dimensional complex space
the points of which can be identified with three-dimensional matrices. Figuratively speak-
ing, we have a five-dimensional complex space, the points of which are three-dimensional
lattices, and the components of third-order ternary skew-symmetric covariant tensors are
located at the nodes of these lattices. It is possible that a geometry of this five-dimensional
complex Hermitian space is an appropriate geometric model for a space of our Universe at
the Planck scale.

Author Contributions: Conceptualization, V.A. and O.L.; methodology, V.A.; software and computa-
tion, O.L.; writing—original draft preparation, V.A.; writing—review and editing, O.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank Stefan Groote for his valuable comments on the
text of this article and the discussion of the physical structures considered in this article. The authors
also thank the reviewers for their useful comments that improved the text of the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kerner, R. Spacetime Symmetries and Z3-Graded Quark Algebra. J. Phys. Conf. Ser. 2012, 343, 012056. [CrossRef]
2. Kerner, R. A Z3 generalization of Pauli’s principle, quark algebra and the Lorentz invariance. AIP Conf. Proc. 2012, 1483, 144–168.
3. Kerner, R. Ternary Generalization of Pauli’s Principle and the Z6-Graded Algebras. Phys. At. Nucl. 2017, 80, 522–534. [CrossRef]
4. Kerner, R. The Quantum Nature of Lorentz Invariance. Universe 2019, 5, 1. [CrossRef]

http://doi.org/10.1088/1742-6596/343/1/012056
http://dx.doi.org/10.1134/S1063778817030115
http://dx.doi.org/10.3390/universe5010001


Universe 2024, 10, 2 17 of 17

5. Abłamovicz, R. On the Structure of Ternary Clifford Algebras and Their Irreducible Representations. Adv. Appl. Clifford Algebras
2022, 32, 11. [CrossRef]

6. Abramov, V.; Kerner, R.; Le Roy, B. Hypersymmetry: A Z3-generalization of supersymmetry. J. Math. Phys. 1997, 38, 1650–1669.
[CrossRef]

7. Abramov, V.; Kerner, R.; Liivapuu, O. Algebras with Ternary Composition Law Combining Z2 and Z3 Gradings. In Algebraic
Structures and Applications, Springer Proceedings in Mathematics & Statistics; Springer Nature: Cham , Switzerland, 2020.

8. Abramov, V. Ternary algebras associated with irreducible tensor representations of SO(3) and the quark model. Int. J. Geom.
Methods Mod. Phys. 2023, 20, 2350076. [CrossRef]

9. Abramov, V.; Groote, S.; Lätt, P. Algebra with ternary cyclic relations, representations and quark model. Proc. Est. Acad. Sci. 2023,
72, 61–67. [CrossRef]

10. Bazunova, N.; Borowiec, A.; Kerner, R. Universal Differential Calculus on Ternary Algebras. Lett. Math. Phys. 2004, 67, 195–206.
[CrossRef]

11. Groote, S.; Saar, R. Group theory aspects of chaotic strings. In Proceedings of the Conference QQQ 12—3Quantum: Algebra,
Geometry and Information, Tallinn, Estonia, 10–13 July 2012 .

12. Kerner, R. Z3 graded algebras and the cubic root of the supersymmetry translations. J. Math. Phys. 1992, 33, 403–411. [CrossRef]
13. Trovon, A.; Suzuki, O. Noncommutative Galois Extensions and Ternary Clifford Analysis. Adv. Appl. Clifford Algebr. 2015, 1,

59–70. [CrossRef]
14. Vainerman, L.; Kerner, R. On special classes of n-algebras. J. Math. Phys. 1996, 37, 2553–2565. [CrossRef]
15. Kerner, R. Graduation Z3 et la racine cubique de l’opérateur de Dirac. C. R. Acad. Sci. Paris 1991, 312, 191–196.
16. Kerner, R.; Lukierski, J. Z3-graded colour Dirac equations for quarks, confinement and generalized Lorentz symmetries. Phys.

Lett. B 2019, 792, 233–237. [CrossRef]
17. Gelfand, I.M.; Minlos, R.A.; Shapiro, Z.Y. Representations of the Rotation and Lorentz Groups and Their Applications; Dover Publications,

Inc.: Mineola, NY, USA, 2018.
18. Friedrich, T. On Types of Non-Integrable Geometries; Circolo Matematico di Palermo: Palermo, Italy, 2003; pp. 99–113 .
19. Bobienski, M.; Nurowski, P. Irreducible SO(3) geometry in dimension five. J. Reine Angew. Math. 2007, 605, 51–93. [CrossRef]
20. Ahmad, F. Invariants of a Cartesian tensor of rank 3. Arch. Mech. 2011, 63, 383–392 .
21. Croon, D.; Gonzalo, T.E.; Graf, L.; Košnik, N.; White, G. GUT Physics in the Era of the LHC. Front. Phys. 2019, 7, 76. [CrossRef]
22. Gantmacher, F.R. The Theory of Matrices, 3rd ed.; Chelsea Publishing Company: New York, NY, USA, 1984.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00006-021-01190-z
http://dx.doi.org/10.1063/1.531821
http://dx.doi.org/10.1142/S0219887823500767
http://dx.doi.org/10.3176/proc.2023.1.07
http://dx.doi.org/10.1023/B:MATH.0000035030.12929.cc
http://dx.doi.org/10.1063/1.529922
http://dx.doi.org/10.1007/s00006-015-0565-6
http://dx.doi.org/10.1063/1.531526
http://dx.doi.org/10.1016/j.physletb.2019.03.049
http://dx.doi.org/10.1515/CRELLE.2007.027
http://dx.doi.org/10.3389/fphy.2019.00076

	Introduction
	Five-Dimensional Complex Space of the bold0mu mumu SO(3)SO(3)sectionSO(3)SO(3)SO(3)SO(3)-Irreducible Representation
	SObold0mu mumu (3)(3)section(3)(3)(3)(3)-Irreducible Geometric Structure on a Five-Dimensional Hermitian Manifold
	Discussion
	References

