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Abstract: An alternative formulation of the no-boundary initial state of the universe in the Euclidean
quantum theory of gravity is proposed. Unlike the no-boundary Hartle–Hawking wave function,
in which time appears together with macroscopic space–time in the semiclassical approximation, in
the proposed formalism, time is present from the very beginning on an equal footing with spatial
coordinates. The main element of the formalism is the wave functional, which is defined based on the
world histories of the universe. This ensures formal 4D covariance of the theory. The wave functional
is defined independently of the wave function as an eigenvector of the action operator. The shape of
the Origin region, together with the boundary conditions, is determined by the structure of the total
energy of the universe, which includes a 3D-invariant contribution of the expansion energy. The own
mass of the universe arises as a non-zero value of the expansion energy in the Origin.

Keywords: universe; time; own mass; quantum; Euclidean instanton

1. Introduction

The question of the origin of the universe has been and remains central to cosmology.
In this work, we will focus on the idea of the quantum birth of the universe from “nothing”
[1–6]. This theory was most consistently developed within the framework of the Euclidean
quantum theory of gravity (QTG) in the works of Hartle, Hawking, and Hertog [7]. The
main object in this approach is the representation of the no-boundary wave function of the
universe in the form of a functional integral

ψ =
∫

∏ Jdgdφ exp
(
−1

h̄
ĨGR

)
, (1)

where ĨGR is the action of General Relativity in Euclidean signature; see also [8]. Inte-
gration is carried out over all Euclidean 4D metrics and configurations of matter fields
with given values on a single 3D boundary, and J is the Faddeev–Popov determinant.
However, in practice, when using polar coordinates in the Origin [7], integral Equation (1)
is considered as a representation of the Green’s function for the Wheeler–De Witt (WDW)
equation with two boundary surfaces, one of which is contracted to a point—a pole. In this
case, it is not possible to completely get rid of the boundary conditions for the fundamental
dynamic variables at the pole. In particular, the initial value of the scalar field remains a
free parameter [7]. A more aggravating circumstance is the fact that integral Equation (1)
diverges and the no-boundary wave function can be given meaning only within the frame-
work of the semiclassical approximation. Therefore, in subsequent work [9], the authors
considered it reasonable to state the problem in the semiclassical approximation without
using a functional integral, directly for the WDW equation, or through the holographic
principle [10]. The reason for the divergence of integral Equation (1) is the uncertainty of
the sign of the Hilbert–Einstein action. This problem is closely related to the problem of
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the positivity of the gravitational field energy [11]. The latter was solved thanks to the
proof of the positive energy theorem for the case of asymptotically flat geometry [12,13].
A modification of this theorem for the case of a closed universe is considered in [14]. Here,
there is an irremovable negative contribution to energy, which is entirely related to the
expansion of the universe.

This paper proposes a formalism alternative to the functional integral Equation (1)
on the basis of the invariant wave functional Ψ[g(x, t), φ(x, t)], which is defined based on
the space of 4D world histories of the universe. To avoid terminological confusion, we
immediately emphasize that the wave function ψ

(
gik(x), φ(x), N, Nk, t

)
is a functional of

the functions gik(x), φ(x) on a 3D spatial section at a given time t and a functional of the
given lapse and shift functions N, Nk [15]. To determine the wave functional, the work [16]
formulated the quantum principle of least action, according to which the wave functional
is an eigenvector of the action operator.

In the new formalism, the integration over N, Nk is initially absent. In the covariant
quantum theory, based on the Batalin–Fradkin–Vilkovysky theorem [17,18], the integration
over the lapse function N is equivalent to the integration over proper time (see [19]), so
in the new formalism, time remains a free parameter. This makes it possible to formulate
a boundary value problem for the wave functional in the “subpolar” region (Euclidean
instanton), in which the pole is an internal point, without any additional conditions for the
fundamental dynamic variables in it. To fix time in an instanton, one additional parameter
will be required—the own mass of the universe.

The next section formulates the basic concepts of the canonical formalism and a new
description of the dynamics in the quantum theory of gravity. The second section gives a
representation of the energy of a closed universe using spin variables. In the third section,
the boundary value problem for the Euclidean instanton is considered in the case of a
homogeneous isotropic model of the universe, in which the concept of its own mass arises.
In the fourth section, a new canonical representation of the action of the theory of gravity is
introduced, based on the energy structure of a closed universe, in which the own mass is
realized in the form of a mass spectrum of individual 3D-invariant dynamic modes.

2. Wave Functional in the Quantum Theory of Gravity

Let us start our consideration with the classical action of general relativity

IGR = − 1
16πG

∫ √
−gd4xR + Im[g, φ]. (2)

Using 3 + 1 splitting of the metric

ds2 = (Ndt)2 − gik

(
dxi + Nidt

)(
dxk + Nkdt

)
, (3)

let us write it in the canonical form of Arnovitt, Deser, and Misner (ADM) [20]:

IADM =
∫

dt
∫

Σ
d3x
( ·

gikπik − NH−NiHi
)

, (4)

Ni = gik Nk , where

H
(

πik, gik, πφ, φ
)
= − 1

√
g

[
Trπ2 − (Trπ)2

]
+
√

gR,+Hm, (5)

Hi
(

πik, gik, πφ, φ
)
= 2πik

|k +Hi
m (6)
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are Hamiltonian and momentum constraints and the canonical momenta conjugated to the
3D metric tensor gik have the form

πik =
√

g(3)
(

gikTrK−Kik
)

, (7)

Kik =
1

2N

(
Ni|k + Nk|i −

∂gik
∂t

)
. (8)

The last terms in Equations (5) and (6) are the energy and momentum density of the matter
fields, respectively.

In order to describe the evolution of the universe in QTG in terms of world histo-
ries, we introduce the state functional Ψ. We define it as the product of wave functions
ψ
(

gik(x), φ(x), N, Nk, t
)

on spatial sections Σn for each time tn = εn, ε = T/n. We suppose
that the time dependence of the wave function is determined by the Schrödinger equation

ih̄
∂ψ

∂t
=
∫

Σ
d3x
(

NĤ+ NkĤk
)

ψ. (9)

Consequently, the wave function ψ is also a functional of N, Nk, and the WDW wave
equations

Ĥψ = Ĥiψ = 0 (10)

are not initially postulated in our approach, which means they may not be fulfilled. For the
wave functional Ψ, the normalization condition is assumed to be satisfied:

⟨Ψ|Ψ⟩ =
∫

∏ JdgdφΨΨ. (11)

It should be assumed that, being a functional of 4D geometry (including the lapse and shift
functions N, Nk), the wave functional is an invariant of general covariant transformations.
The assumption is based on the fact that the basic equation of motion—the Schrödinger
equation Equation (9)—for the wave function ψ can be equivalently replaced by the corre-
sponding equation for the wave functional Ψ. The latter is a secular equation for the action
operator, which is obtained by directly quantizing the action of ADM Equation (4) [16].
This means that we have the opportunity to calculate, for example, the average values of
expressions containing the first and second derivatives with respect to time, in particular,

⟨Ψ|Rµν|Ψ⟩, (12)

where Rµν is the 4D Ricci tensor. Based on the above, we should expect that expression
Equation (12) forms a tensor of the second rank with respect to arbitrary transformations of
space–time coordinates, as in the classical theory. This follows from the fact that it is an
eigenvector of the action operator. The action operator contains, in particular, the following
contribution: ∫

Σ
d3x

∫ T

0
Ndt

[
· · ·+ 2π̂ik 1

2N

(
∂gik
∂t

− Ni|k − Nk|i

)
+ . . .

]
, (13)

where π̂ik is the momentum operator, i.e., derivatives with respect to coordinate time and
spatial coordinates (together with the lapse and shift functions N and Nm) “gathered”
into an expression equal to the tensor of the external curvature of the hypersurface Σ,
as was the case in classical general relativity. Since the quantum principle of least action
formulated in previous works is equivalent to the Schrödinger equation, we conclude
that the latter is also fine with respect to covariance. Formally, this means that arbitrary
transformations of time and spatial coordinates, with corresponding transformations of the
lapse and shift functions N and Nm, provide the necessary transformation properties of all
observables. The quantum principle of least action will allow us to determine the structure
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of space–time at the beginning of the universe without a priori conditions in the form of
the WDW equations. Let us also pay attention to another formulation of dynamics in terms
of Heisenberg’s operator formalism [21].

3. The Energy of a Closed Universe

The lapse and shift functions N, Nk in the new formalism remain arbitrary. Their
integration is carried out only under the normalization condition Equation (11). Next,
we will introduce a special spin parametrization of these functions, and at the same time,
the Ashtekar [22] complex representation of canonical variables of the gravitational field
(σ̃k

AB, AKAB, A, B = 0, 1—spin indices). We immediately take into account the so-called
reality condition for the Ashtekar connection, setting

AkAB = ΓkAB(σ) +
i√
2

MkAB, (14)

where ΓkAB(σ) are components of the real spin-connection, and MkAB are the canonical
momenta conjugated to the spin variables σ̃k

AB in the real representation, in which we can
also immediately put

MkAB =
πklσ

l
AB√

g(3)
(15)

(Gaussian constraint PAB of Ashtekar). Let us introduce the 3D Dirac operator on a spatial
section Σ:

Dη ≡ i
√

2
(

nA
A′σ

kA′
B′ ▽kµB′

nA′
A σkA

B ▽kλB

)
, (16)

where η is the bispinor Dirac field on the spatial section Σ,

η =

(
λA

µA′

)
, (17)

and nA
A′ is an arbitrary unitary matrix (spin-tensor) in the spin space. The complex covariant

derivative of a spinor field is defined as follows:

▽kλA ≡ ∂kλA + AB
kAλB. (18)

Let us introduce anti-involution in the spin space,

λ+
A ≡

√
2nA

A′λ
A′

,
(
λ++

A = −λA
)
. (19)

We assume that σk+
AB = σk

AB. Let us also introduce the Hermitian scalar product in the spin
space:

(η1, η2) ≡
∫

Σ

√
g(3)d3xnAA′

(
λA

1 λ
A′

2 + µA′
1 µA

2

)
. (20)

It is easy to verify that the Dirac operator Equation (16) is Hermitian with respect to
this scalar product. Our constructions are based on the Witten identity, which relates
the difference of two positive definite quadratic forms of the bispinor η with a linear
combination of gravitational constraints in the Ashtekar representation (see [16]),

(η, Wη) ≡ −11
9

(
η,D2η

)
+ (η, (−∆ + T )η)

≡ L
(

C̃, C̃k, P̃AB
)

, (21)
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The coefficients of the linear combination are the lapse and shift functions, as well as the
zero components of the Ashtekar connection of the form [23]:

N =
1
8

nAA′

(
λAλ

A′
+ µA′

µA
)

, (22)

Nk = − i
4

σk
AB

(
λAλ+B + µ+AµB

)
, (23)

A0AB = − 1
16
√

2
σm
(A|C|

(
▽mλ B)λ

+C +▽mµ B)µ
+C
)

. (24)

The second term in Equation (21) has the form

(η, (−∆ + T )η)

=
1
2

∫
Σ

√
g(3)d3xnAA′nMM′nNN′

(
ξAMNξ

A′M′N′

+χAMNχA′M′N′)
+ (η, T η), (25)

where
χMNA ≡ σmMN▽mµA +

2
3

ϵA(M σ
m N)
P ▽mµP, (26)

ξMNA ≡ σmMN▽mλA +
2
3

ϵA(M σ
m N)
P ▽mλµP, (27)

where ϵAB is a completely antisymmetric unit spin tensor. Spin tensors Equations (26) and
(27) are completely symmetric. The last term on the right side of Equation (25) is a positive
definite form of the energy–momentum tensor of matter fields. Thus, identity Equation (21)
gives a representation of the Hamilton function of the theory of gravity (right-hand side
of Equation (21)) as the difference of two positive definite quadratic forms of the bispinor
η. The fact that we thus obtain the Hamilton function in an arbitrary gauge follows from
counting the number of real constraints of the theory of gravity (seven pieces) and the
number of independent real parameters of the bispinor η (eight pieces). The presence of a
redundant parameter leads to the degeneracy of the quadratic form of the operator

W = −11
9
D2 + (−∆ + T ), (28)

i.e., the existence of a zero eigenvalue for this operator.
In the representation of the Hamilton function of a closed universe Equation (21), sep-

aration of the contributions of energy components with different signs has been achieved.
The quadratic form

(
η,D2η

)
contains the kinetic energy (Trπ)2 (together with the corre-

sponding potential energy), it describes the dynamics of the 3D geometry scale factor
√

g(3).
Therefore, we will call it the energy of space. The quadratic form (η, ∆η) does not contain
(Trπ)2, and describes the dynamics of the “transverse” components of the gravitational
field that describe gravitational waves. We will call this, together with (η, T η), the energy
of matter. The explicit separation of these two components in Equation (21) is a version of
the positive energy (of matter) theorem for the case of a closed universe. The combination
of signs in Equation (21) also determines the signature of the configuration space of the
theory of gravity (superspace).

We can now discuss the issue of regularizing the convergence of the functional inte-
gral representation of the kernel of the evolution operator for the Schrödinger equation
Equation (9). For the functional integral to converge, it is necessary that the total energy of
the universe have a certain sign. This can be achieved by introducing a variable value e
instead of the minus sign in Equation (21), which is equal to +1 at the calculation stage.
In the previously identified wave function, along with the return to real time, the sign of
e should also be changed. At the same time, a natural gauge condition would be to take
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the eigenvector of the 3D Dirac operator as the bispinor η. In this case, one can use the
Heisenberg formalism [21] in the case of a closed universe.

4. Euclidean Beginning of a Homogeneous Isotropic Model of the Universe

The transition to describing the quantum evolution of the universe in terms of world
histories and the wave functional allows us to take a fresh look at the problem of initial
data for this evolution. In the classical theory of gravity, the timelines of the universe
begin at one point, which is the Big Bang singularity. In Euclidean QTG, these lines simply
serve as meridians of the “polar” coordinate system [7]. The pole itself has no features
other than a coordinate singularity. Therefore, in [24], the state of the universe in the
“subpolar” region (with one boundary along the “polar” circle) was proposed to be sought
in a non-singular coordinate system using the generalized canonical De Donder-Weyl
formalism. And although to introduce time, we return to the usual 3 + 1 ADM splitting of
the metric in polar coordinates, at the pole itself, as an equal point, we place not the initial
data for the fundamental dynamic variables (g, φ), but their distribution in terms of the
wave functional Ψ[g, φ]. In this sense, we refer to the wave functional of the universe as
no-boundary.

Let us consider in more detail the initial stage of evolution of the homogeneous
isotropic Friedmann–Lemaitre universe with the metric

ds2 = N2(t)dt2 − a2(t)dΩ2
3, (29)

where dΩ2
3 is an element of length on a 3D sphere of unit radius, with a real scalar field and

zero cosmological constant. Its dynamics are described by the action (Lorentzian signature)

IFL[a, ϕ] =
1
2

∫ T

0
dt

− a
γ

 ·
a

2

N
− N


+2π2a3

 ·
ϕ

2

N
− V(ϕ)N

, (30)

where γ = 2G/3π. The Hamilton function and the corresponding Schrödinger equation
for this model are

hFL = NHFL = N
1
2

[
−
(

γp2
a

a
+ a
)

+

(
p2

ϕ

2π2a3 + 2π2a3V(ϕ)

)]
, (31)

ih̄
∂ψ

∂s
= ĤFLψ, s =

∫ t

0
N(t)dt. (32)

We will further restrict ourselves to the semiclassical approximation; therefore, we do not
consider the problem of ordering noncommuting factors in ĤFL here. We also do not
consider the problem of convergence of the Euclidean functional integral, which represents
the kernel of the evolution operator for equation Equation (32). The extremum conditions
for the Euclidean action, which is obtained from Equation (30) after the transition to
imaginary time s = −iτ, have the form

a
··
a +

1
2

(
·
a

2
− 1
)
− 3π2a2γ

(
·
ϕ

2
+ V

)
= 0 (33)
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is the extremum condition in a and

··
ϕ + 3

·
a
a
·
ϕ − 1

2
V′(ϕ) = 0 (34)

is the extremum condition with respect to ϕ, where the dot denotes the derivative with
respect to τ, τ ∈ [0, T]. Let us immediately note that the constraint equation HFL = 0 is not
among the extremum conditions, since the lapse function N is not considered as a dynamic
variable, and the integral of it is the proper time s.

Now, let us consider the problem of boundary conditions for differential Equations (33)
and (34). In [7], the Euclidean functional integral of the form Equation (1) is observed in a
compact region of 4D Riemannian space with a single boundary on which the values of
the scale factor a(T) = b and the scalar field ϕ(T) = χ are given. At the “pole,” “natural”
initial conditions are chosen

a(0) = 0,
·
ϕ(0) = 0. (35)

However, the composition of the equations–extremum conditions in the work [7] differs
from that of Equations (33) and (34). Since integral Equation (1) contains additional
integration over proper time, the constraint equation also arises under extremum conditions.
And since the constraint is also the first integral of the equations of motion Equations (33)
and (34), one of them, namely equation Equation (34), can be considered redundant. With
this formulation of the boundary value problem, the free parameter turns out to be the value
of the scalar field at the pole ϕ(0) = ϕ0. But this contradicts the very idea of constructing a
no-boundary wave function, which assumes the absence of any initial data for fundamental
dynamic variables in the polar region. This does not apply to conditions Equation (35),
which arise precisely as a result of the choice of a polar coordinate system in a homogeneous
isotropic model of the universe.

Let us see how the second of the “natural” conditions, Equation (35), arises if we con-
sider it as the primary representation of the evolution operator in non-singular coordinates
in the subpolar region. Moving along the meridian to the pole (one of the timelines in
polar coordinates), beyond the pole, we will smoothly continue this movement along the
opposite (at an angle 1800) meridian, connecting them into one timeline of a non-singular
coordinate grid. Let us divide this time axis into small sections of length ε and write the
contribution of the scalar field to the functional integral for the evolution operator of the
pole and neighboring points located symmetrically:∫

. . .dϕ0. . . exp
{
−1

h̄
π2
[( a−1

2

)3

×
(
(ϕ0 − ϕ−1)

2

ε
+ V

(
ϕ0 + ϕ−1

2

)
ε

)

+
( a1

2

)3
(
(ϕ0 − ϕ1)

2

ε
+ V

(
ϕ0 + ϕ1

2

)
ε

)]}
(36)

To calculate this integral using the steepest descent method, we find the extremum of the
exponent in ϕ0, which (in the limit ε → 0) gives: ϕ0 = ϕ1. Here, we also take into account
the symmetry of the model under consideration, ϕ1 = ϕ−1, a1 = a−1. Thus, the second
condition in Equation (35) arises as a consequence of estimating the integral over ϕ0 in
the functional integral representation of the propagator. The presence of this integral also
means that the initial condition for the wave function at the pole (at τ = 0) should be taken

ψ0 = Aδ(a). (37)

Thus, natural initial conditions mean that initially, a = 0, and the field ϕ can take on any
value with equal probability.



Universe 2024, 10, 101 8 of 11

To complete the formulation of the boundary problem, we define the boundary con-
ditions at τ = T. Equations (33) and (34) determine the initial instanton in the Euclidean
region if its right boundary point on the a-axis is a cusp point, i.e.,

·
a(T) = 0. (38)

Thus, the history of the scale factor a(τ) in the instanton is completely determined. For a
given T, the history of the scalar field ϕ(τ), including its initial ϕ0 (as well as final ϕ(T))
value, also becomes completely determined, since the shape of the potential well for the
instanton a(τ) is determined by the function ϕ(τ). There remains one undefined parameter
T, fixed by us. We can still calculate the first integral of the equations of motion, which in
the general case is constant, but not equal to zero:

HFL(τ) = −M2 ̸= 0. (39)

As we remember, the constraint equation HFL = 0 serves to precisely determine the time of
movement T in the generally accepted approach. However, here, this constraint equation,
in the presence of a free time parameter, does not follow from anywhere, and we are forced
to accept as an additional possibility the presence of a non-zero own mass of the universe
M2 in Equation (39). The result can be formulated differently: if the own mass of the
universe is given, the shape of the initial instanton in the Euclidean QTG with its own time
is completely determined. The minus sign in Equation (39) follows from the analysis of the
asymptotic behavior of the scale factor at the pole. It is easy to check that

a ∼
(

9
2

)1/3
M2/3τ2/3

+
9

20M2/3

(
2
9

)1/3
τ4/3 + ... (40)

at τ → 0. Thus, the spatial part of the energy of the universe dominates in the beginning,
and this serves as a source of its expansion. The simple asymptotic behavior demonstrated
in Equation (40) and the entire expansion picture will change if we also take into account
the dynamics of anisotropy near the beginning [15]. However, the main term in asymptotics
Equation (40) will be preserved, as well as the meaning of the constant M. The proper mass
remains constant only in a homogeneous isotropic model of the universe. In general, this is
not the case, and the dynamics of one’s own mass can be directly related to the universe’s
own time.

5. Own Mass and Proper Time in an Inhomogeneous Universe

To establish the connection between proper mass and proper time in the general case,
let us consider the new canonical representation of the theory of gravity, which is naturally
induced by the representation of the Hamilton function Equation (21). If we consider the
bispinor η as an independent dynamic variable, then the corresponding Euler–Lagrange
equation has the form:

Wη = 0. (41)

Taking into account that η is initially considered as an arbitrary bi-spinor, we obtain
a representation of the system of gravitational connections in the form of an operator
equation

W = 0. (42)

The operator W is Hermitian on the space of bispinors and its spectrum is real. The operator
itself is equal to zero if and only if all its eigenvalues wn are equal to zero. The eigenval-
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ues, as well as the eigenvectors ηn, are functions of the fundamental canonical variables.
The eigenvalues wn form a closed algebra with respect to Poisson brackets:

{wn, wm} = Cp
nmwp, (43)

in which the structural “constants” Cp
nm are determined by the eigenvectors ηn, i.e., are

also functions of canonical variables. Going forward, we will refer to eigenvalues wn as
dynamic modes. Expanding an arbitrary bispinor η over a complete (orthonormal) set of
eigenfunctions,

η = ∑
n

ζnηn, (44)

we can represent the Hamilton function of gravity theory as a linear combination of a new
set of constraints:

(η, Wη) = ∑
n

Lnwn, Ln = |ζn|2. (45)

Arbitrary Lagrange multipliers Ln under infinitesimal general covariant transformations
generated by wn constraints,

δA = δsm{A, wm}, (46)

where A is an arbitrary function of canonical variables, must be transformed as follows

δLn = δ
·
s

n
− Cn

mpLmδsp (47)

to ensure action invariance. These infinitesimal transformations are generated by infinites-
imal shifts of the proper time parameters sn, and the generators of these shifts are the
eigenvalues wn. To determine the Lagrange multipliers corresponding to finite values
of the proper time parameters, equation Equation (47) can be solved iteratively, and the
solution can be represented as a power series:

Lm = Λm
n (s)

·
s

n
, (48)

Λm
n (s) = δm

n − Cm
npsp

+
1
2!

Cm
rpCr

nqspsq + . . .. (49)

The proper time parameters introduced in this way are integrals of the Lagrange multipliers:

∫ T

0
dtLm(t) =

∫ Sn

0
Λm

n (s, C)dsn. (50)

The values of the canonical variables in the structure functions Cm
np are taken at the same

moment of coordinate time t as the proper time parameters sp. The time evolution of the
eigenvalues wn is determined by the equations

dwn

dt
=

∂wn

∂sp
·
s

p
= {wn, Lmwm}

=
{

wn, Λm
p

} ·
s

p
+ Λm

p Cq
nmwq

·
s

p
, (51)

i.e.,
∂wn

∂sp =
{

wn, Λm
p

}
+ Λm

p Cq
nmwq. (52)

In quantum theory, all these relations should be considered in the form of average values
in the state described by the wave functional Ψ. It follows that if the eigenvalues wn are
zero at the beginning (classical constraints), they always remain so. In this case, we can
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talk about preserving the 4D covariance of the theory. If at first there is a non-zero intrinsic
mass in some dynamic mode,

wn = −m2
n ̸= 0, (53)

the distribution of own masses over modes will change over time, and this change itself
can be considered as a measure of proper time.

Thus, the Euclidean instanton in the general case has the following structure in
polar coordinates (radial coordinate—time axis). At the pole (approaching the pole),
the approximation of a homogeneous, isotropic model of the universe with a single dynamic
mode described by the Hamilton function HFL is valid. This will happen when choosing
polar coordinates in a small neighborhood of any interior point of a smooth manifold.
Accordingly, this dynamic mode can be associated with its own mass M as the only
parameter of the universe model. The Euclidean “evolution” of the instanton along the
radial axes is given by the equation

d
dt

√
g(3) =

{√
g(3), Lmwm

}
. (54)

We actually have an infinite set of equations (one for each point of the spatial section).
The spatial boundary of the Euclidean instanton is determined by the condition that the

derivative of
√

g(3) with respect to time is equal to zero at all spatial points. This provides
a system of equations for determining the complete set of proper time parameters at
the boundary, and the system of equations Equation (52) allows us to find the resulting
distribution of proper mass over modes.

6. Conclusions

The generally accepted formulation of the covariant quantum theory of gravity, based
on the WDW equations, as well as using the formalism of the invariant functional integral,
gives rise to the problem of time (more precisely, its absence). Along with time, the possibil-
ity of introducing any additional quantities, in addition to the set of fundamental dynamic
variables and associated parameters of the original Lagrangian, is excluded. However,
the observed evolution of the universe (or the generally accepted interpretation of obser-
vational data) and the idea of the Big Bang as the beginning of this evolution, one way
or another, require the introduction of time. This can be achieved by identifying the time
parameter with a suitable fundamental dynamic variable [25]. In this case, time acquires
a material character in the literal sense of the word, if one of the fields of matter is taken
as such a variable. In this paper, an alternative option is proposed—the preservation of
the coordinate time parameter of the classical theory of gravity in quantum theory. This is
achieved by transition from the description of the quantum state of the universe from a
3D distribution on a spatial section Σ to a description in terms of the wave functional on
4D world histories. With this modification, the formal covariance of quantum theory is
preserved in the same form as in the classical one, when time and spatial coordinates were
equal. However, this equality is actually violated in the case of a closed universe by the
signature of the configuration space: the negative contribution in it is clearly highlighted
by the 3D-invariant quadratic form of the expansion energy, corresponding to the degrees

of freedom of the scale factor
√

g(3). This energy structure of the universe determines
the shape of the initial Euclidean instanton in the semiclassical approximation. This 3D-
invariant energy structure is also associated with the spectrum of parameters of the proper
time and the canonically conjugate spectrum of parameters of the own mass of the universe.
If the proper mass, the distribution and motion in space can be associated with a selected
reference frame, which is assumed to be equal to zero, there is no physical reason for the
violation of the 4D covariance of the theory. General covariance can be preserved even with
a non-zero own mass if it is a constant of motion. But this is possible when the structure
constants in Equation (43) are equal to zero, i.e., the dynamic modes in the theory of gravity
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are completely independent. This possibility is not excluded, but a detailed analysis of the
new canonical representation of the theory is required.
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