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Abstract: In Friedmann–Lobachevsky space-time with a radius of curvature slowly varying over
time, we study numerically the problem of motion of a particle moving in the Cornell potential. The
mass of the particle is taken to be a reduced mass of the charmonium system. In contrast to the
similar problem in flat space, in Lobachevsky space the Cornell potential has a finite depth and, as a
consequence, the number of bound states of the system is finite and motion with a continuum energy
spectrum is also possible. In this paper, we study the bound states as well as the scattering states of
the system.
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1. Introduction

The centennial anniversary of the publication of the seminal paper by A.A. Friedmann [1],
followed by related publications [2–4], motivated the present discussion on the role of
geometrical ideas in particle physics and cosmology.

During 1922–1924, A. Friedmann derived his celebrated dynamical equations for the
universe. Many details from Friedmann’s biography can be found in the book [5]. He
started from the General Relativity equations with arbitrary cosmological “constant” and
opened the way to building models of a non-stationary universe. The non-stationary
nature of the universe was brilliantly confirmed in astronomical observations by Hubble.
Following Friedmann, a large number of models of the expanding universe were suggested
(see, e.g., [6–8]).

In the beginning of the quark hypothesis of particle structure, composite models based
on non-relativistic problems for various potentials demonstrated their effectiveness. Within
the framework of that approach, the mass spectra of a number of mesons and hadrons
and some of their static characteristics were successfully described. Examples of the use of
such models are given in reviews [9–11]. In approaches in which particles are considered
as consisting of quarks, a special role belongs to the Cornell potential, which ensures
confinement of quarks (see, for example, [12]). As far as we know, the quantum-mechanical
problem of a particle moving in the Cornell potential in Lobachevsky space has not yet
been discussed in the literature, although coupled systems like the b-meson have been
studied in a number of papers [13,14].

Now, more than 100 years after the creation of General Relativity, we may ask ourselves:
what is its most unexpected and surprising prediction? There is no doubt that the answer
should be the theory of an expanding universe, created by Alexander Friedmann [1–3].
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This was also a triumph of non-Euclidean geometry, as proposed by J. Bolyai, C. F. Gauss,
N. I. Lobachevsky (BGL), developed by Bernhard Riemann, and extended by Hermann
Minkowski in a space-time manifold.

About 30 years later, George Gamow wrote in his book [15] “The Creation of the
Universe”:

. . . the Russian mathematician A. Friedmann pointed out that the static nature of
Einstein’s universe was the result of an algebraic mistake (essentially a division by
zero) made in the process of its derivation. Friedmann then went on to show that
the correct treatment of Einstein’s basic equations leads to a class of expanding
and contracting universes. . .

In 1965, Erast B. Gliner [16] assumed that the pressure in Einstein–Friedmann equa-
tions for the very early universe is proportional to the energy density with a negative sign.
This unusual relation between pressure and energy density was the first theoretical predic-
tion of dark energy, now confirmed by observations. In subsequent papers [17,18], he found
an exponentially increasing solution of these equations contributing to the development
of cosmology with a rapid expansion phase, followed by a large number of inflationary
cosmological models.

Simultaneously and independently of Gliner, a related activity preceding numerous
papers on inflation took place in Kiev. The common feature in these papers was the
exponential expansion of the universe, now called inflation, provided by negative pressure
in the equation of state p(T).

The relevant derivation is simple. In Fridmann’s homogeneous, isotropic and flat
universe the scale factor ρ obeys the equations

ρ̇ − Gρ
√

ϵ = 0, (1)

ϵ̇ + 3ρ̇/ρ(ϵ + p) = 0, (2)

where p is pressure and G =
√

8π/3/Mp. From Equations (1) and (2),

ρ̈ = −G2ρ(ϵ + 3p)/2 (3)

follows, whence 3p + ϵ < 0 for inflationary solutions. As energy density is positive, the
above inequality produces inflation only at negative pressure [19].

Historically, this was predicted in [7] from an equation of state of strongly interacting
(nuclear) matter derived [7] in the framework of the S matrix formulation of statistical
mechanics. It is interesting by itself and may have interesting consequences in nuclear and
particle physics. Inflation resulting from this minimum was a bonus [19].

Here, several comments are in order. First, the rate of this kind of inflation is modest
with respect to the popular scenarios. For this reason, it was also called [20,21] “tepid”
compared to the alternative violent expansion. Furthermore, it may have occurred later
with respect to those based on the Standard Theory. One cannot exclude a sequence of
inflations of the early universe. The above “nuclear” one was the latest in time and it may
have washed away the footprints of the earlier ones.

2. Quark–Antiquark Bound States in Lobachevsky Space

Einstein’s famous work [22], in which he introduced the cosmological constant and
obtained the first cosmological solution, was the impetus for further research in the theory
of relativity, quantum mechanics and theory for non-relativistic particles moving in curved
spaces [23–30].

We will consider Friedmann-Lobachevsky space-time based on the assumption that
the curvature radius ρ(t) changes very slowly in time, and is considered as being constant,
in particular, as it is in Einstein’s solution [22]. Taking into account the uncertainty of the
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right side of Equation (3), we accept the assumption for a period of time δt satisfying the
inequality ρ′(t0)δt ≪ ρ(t0) or δt ≪ H−1, where H is Hubble constant [31].

The Schrödinger equation for stationary states in Lobachevsky space with curvature
radius ρ in spherical coordinates,

x0 = ρ cosh β; x1 = ρ sinh β sin θ cos ϕ;

x2 = ρ sinh β sin θ sin ϕ; x3 = ρ sinh β cos θ;

0 ≤ β < ∞; 0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π, (4)

has the form

− ℏ
2m

( 1
ρ2 sinh2 β

∂

∂β

(
sinh2 β

∂

∂β

)
+

1
ρ2 sinh2 β

∆θ,ϕ

)
ψ + Vψ = Eψ, (5)

where β = r/ρ.
Here, we use the embedding of Lobachevsky space into a four-dimensional pseudo-

Euclidean space, in which the rectangular coordinates xµ, µ = 1, 2, 3, 4 are introduced, and
for points in Lobachevsky space the equality

xµxµ = x2 + x2
4 = x2 − x2

0 = −ρ2, x = (x1, x2, x3), x4 = ix0 (6)

is valid.
In the case of a central symmetric potential V = V(r), Equation (5) can be reduced to

−1
2

d2u
dr2 + Ve f f (r)u = ϵu, (7)

where the effective potential is

Ve f f (r) = mV(r) +
l(l + 1)

2ρ2 sinh2 (r/ρ)
+

1
2ρ2 , (8)

and ϵ = mE.
In this case, the wavefunction is written in terms of u(r) and the spherical harmonics as

ψ(r, θ, ϕ) =
u(r)

sinh (r/ρ)
Ylm(θ, ϕ). (9)

Here, a rational system of units has been chosen, in which c = ℏ = 1 and all physi-
cal quantities have units of measurement of powers of mass—namely, (GeV)a, wherein
[r] = [ρ] = GeV−1, [m] = GeV, [V(r)] = [E] = GeV, [ϵ] = [Ve f f ] = GeV2.

Let us consider the motion of a particle whose mass is equal to the reduced mass of
two c quarks (a system of a c quark and its anti-quark is called charmonium)—that is, let
us take m = 0.635GeV. Assume that such a particle moves in a field in which its potential
energy is described by the Cornell potential, the expression for which in Lobachevsky space
has the form

V(r) =
a
ρ

coth
r
ρ
+ bρ tanh

r
ρ

. (10)

Note that the choice of the Cornell potential is generally ambiguous. We proceeded
from the fact that the first term is a fundamental solution of the Laplace–Beltrami equation
in three-dimensional Lobachevsky space, and we sought to preserve the symmetry inherent
in the flat limit of this potential. In Formula (10), the first term corresponds to the Coulomb
attraction and the second to the linearly increasing potential in flat space.

For parameters a and b we take the following values [11]:

a = −0.52; b = 0.18GeV2.
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In Lobachevsky space, the depth of the well of the effective potential is finite and it
depends on the orbital quantum number l and the radius of curvature ρ. As l increases
(keeping ρ constant) the well becomes more and more shallow, and at some high-enough
value of l it disappears: no bound states are possible. On the contrary, as we increase ρ and
keep l unchanged, the well becomes deeper and we can have more bound states. In the
limit when ρ −→ ∞ we are back to the flat space with an infinite number of bound states.
The Cornell potential formula in Lobachevsky space also leads to that of the flat space in
this limit. When ρ is small enough (which corresponds to the high curvature of the space,
as it is supposed to take place in the early universe) the well again disappears and we do
not have bound states. As the curvature radius increases in time (Friedmann’s solution for
the open-universe model) a particle moving in the Cornell potential at first has no bound
states; then, it has a larger and larger finite number of bound states and, as ρ approaches
infinity (flat space), all states become bound.

When r −→ 0 the asymptotic behavior of the solution to Equation (7) is

u ∼ (tanh (r/ρ))l+1. (11)

Indeed, at r −→ 0 centrifugal energy makes the greatest contribution to the equation
and the approximate equation has the form

− d2u
dβ2 +

l(l + 1)
sinh2 (β)

u = 0.

The last equation has the following solution that is regular at zero:

u = (tanh β)l+1
2F1

(
1 +

l
2

,
1
2
+

l
2

,
3
2
+ l, tanh2 β

)
≈ (tanh β)l+1.

We will study Equation (7) using numerical methods: namely, we will find the energies
of bound states. To do so, we apply the shooting method, at each step of which the
differential Equation (7) is numerically solved under initial conditions specified by the
asymptotic expressions

u(r0) = [tanh (r0/ρ)]l+1; u′(r0) =
(l + 1)[tanh (r0/ρ)]l

ρ cosh2 (r0/ρ)
, (12)

where r0 = 0.001GeV−1—variable value close to zero.
Figure 1 shows a plot of the effective interaction potential at ρ = 8GeV−1, l = 1.

Figure 1. Effective potential plot.
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It can be seen that in Lobachevsky space the effective interaction potential has the
form of a potential well of finite depth, whereas in flat space for the Cornell potential we
have an infinitely deep potential well. Let us denote

ϵmax = lim
r→∞

Ve f f (r) = m
( a

ρ
+ bρ

)
+

1
2ρ2 . (13)

While scattering prevails at energies higher than ϵmax/m, bound states are possible at
lower energies.

Figure 2 shows numerical solutions for bound states and their corresponding energy
levels for ρ = 8GeV−1, l = 1. In this case, there are only four bound states.

Figure 2. Numerical solutions for the bound states and corresponding energy levels.

As the depth of the well increases with increasing ρ and decreases with increasing l,
we can expect that the number of bound states will be greater for the larger values of ρ
and the smaller values of l. Figure 3 shows the results of the numerical calculation of the
number of bound states for different values of ρ and l.

Figure 3. Number of bound states.

Using the numerically calculated values of energy levels at different l, Regge trajec-
tories are constructed at ρ = 10GeV−1 (see Figure 4). Here, we use the same approach
as in [32,33]. It can be seen from the figure that as l increases the number of bound
states decreases.

It should be noted that the above Regge trajectories differ from those resulting from
analyticity and duality [34]. While the above are convex up and infinitely rising, those based
on analyticity, unitarity and duality are concave down, with limited real parts, predicting a
finite number of resonances (see [34]).
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Figure 4. Regge trajectories.

3. Scattering in the Cornell Potential

Now, we consider the case when the particle energy exceeds the value ϵmax/m (the
case of scattering) and we determine the phase shifts δl(E) for given values of energy E
and orbital quantum number l.

To do this, it is necessary to compare the numerical solution of Equation (7) at the end
of the calculation segment with the solution of the approximate equation for r −→ ∞. The
approximate equation is

d2u
dr2 + 2(ϵ − ϵmax)u = 0,

where ϵmax is given by the Formula (13). In the case of scattering ϵ > ϵmax and under initial
conditions (12), it has a solution of the form

u ∼ sin(
√

2(ϵ − ϵmax)r).

For the numerical solution of Equation (7), we will choose an interval from
r0 = 0.001GeV−1 to rk, which is several times larger than rc, where rc is the distance from the
origin at which Ve f f (x) ≈ ϵmax with a given accuracy (we took ∆ = |V − ϵmax| = 10−6GeV2).
Then, the numerical solution of Equation (7) under the same initial conditions (12) at the
end of the computational segment will have the form

u ∼ sin(
√

2(ϵ − ϵmax)r + δl(ϵ)).

The phase shift can be determined from the numerical solutions as

δl(ϵ) =
√

2(ϵ − ϵmax)(r1max − r2max),

where r1max and r2max are the positions of the maxima in the last period of the first and
second solutions, respectively. The integral partial cross-section is then determined by
the formula

σl =
4π

(2ϵ)
(2l + 1) sin2(δl(ϵ)), (14)

Because in the selected units of measurement, k2 = 2ϵ. Figures 5 and 6 show the
dependence of partial cross-sections on energy at ρ = 10GeV−1 for l = 0 and l = 1.
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Figure 5. Partial cross-section σ0(E).

Figure 6. Partial cross-section σ1(E).

Let us also consider the case of low-energy scattering at l = 0. Let us study the
dependence of the scattering length on the radius of curvature of Lobachevsky space. For
each value of the radius of curvature, we will take an energy only slightly exceeding ϵ/m
(we took E = ϵ/m + 0.01GeV), which meets the condition E −→ ϵ/m. These values are
different for different ρ (the energy that can be considered as “low” depends on the radius
of curvature, i.e., it depends on the shape of the potential). Then, having determined the
cross-section, using Formula (14), we find the scattering length as L =

√
σ0/(4π) and we

study the dependence L(ρ) (see Figure 7).
We see that the length of scattering varies significantly with the varying radius of

curvature. For example, at ρ ≈ 2GeV−1 the low-energy scattering cross-section reaches its
maximum, while at ρ ≈ 3.5GeV−1 it is zero (no scattering).
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Figure 7. Scattering length.

4. Conclusions

This paper shows that the Cornell potential in Lobachevsky space, contrary to the
case of flat space, is a potential well of finite depth. Therefore, for particles moving in
such a potential, both bound states and scattering states are possible. In this case, the
greater the radius of curvature of Lobachevsky space and the smaller the quantum number
of the orbital momentum, the greater the depth of the potential well. For values of the
potential parameters typical of charmonium and an arbitrarily chosen radius of curvature,
numerical solutions corresponding to bound states and their corresponding energy levels
were found. It was shown that the number of bound states of the system increases with
an increasing radius of curvature and decreases with increasing orbital quantum numbers.
For the scattering problem, energy dependences were obtained for the first few partial
cross-sections, as well as the dependence of the scattering length on the radius of curvature
of the space. It is interesting to note that for some values of ρ we had σ0 = 0, which means
that in Lobachevsky space with the particular radius of curvature a particle with zero
angular momentum and with low energy is not scattered.
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