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Abstract: Recently, the rapidity-odd directed flow (v1) of produced hadrons (K−, ϕ, p, Λ, Ξ+, Ω−,
and Ω+) has been studied. Several combinations of these produced hadrons, with very small mass
differences but differences in the net electric charge (∆q) and net strangeness (∆S) on the two sides,
have been considered. A difference in v1 between the two sides of these combinations (∆v1) has
been proposed as a consequence of the electromagnetic field produced in relativistic heavy-ion
collisions, especially if ∆v1 increases with ∆q. Our study is performed to understand the effect of
the coalescence sum rule (CSR) on ∆v1. We point out that the CSR leads to ∆v1 = cq∆q + cS∆S,
where the coefficients cq and cS reflect the ∆v1 of produced quarks. Equivalently, one can write
∆v1 = cq∆q + cB∆B, involving the difference in the net baryon number ∆B, where the CSR gives
cB = −3cS. We then propose two methods to extract the coefficients for the ∆q and ∆S dependences
of ∆v1.

Keywords: directed flow; coalescence sum rule

1. Introduction

The properties of strongly interacting quark-gluon plasma, produced by relativistic
heavy-ion collisions, can be studied using anisotropic flows, including the directed flow
(v1) [1–3]. v1 has been found to be a sensitive probe of the equation of state of the produced
medium [4,5]. The anisotropic flows of identified hadrons are expected to follow the coales-
cence sum rule (CSR) when the produced matter is initially in parton degrees of freedom
and hadronizes via quark coalescence. The CSR states that the sum of constituent quarks’
flow equals the corresponding flow of the hadron; it leads to the number-of-constituent-
quark scaling and provides information about the particle production mechanism and
partonic collectivity [6,7]. This paper is based on our recent study [8], which was motivated
by Ref. [9].

A new method of testing the coalescence sum rule using the difference in v1 in different
combinations of produced hadrons [K−(ūs), ϕ(ss̄), p(ūūd̄), Λ(ūd̄s̄), Ξ+

(d̄s̄s̄), Ω−(sss) and
Ω+

(s̄s̄s̄)] has been previously proposed [9]. These selected hadrons are all produced,
consisting of ū, d̄, s, and s̄ quarks. In contrast to the produced hadrons, transported hadrons
such as π±, p, and Λ receive contributions from initial-state (incoming) u and d quarks,
along with the produced quarks, which complicates the interpretations of the CSR. Table 1
shows a selection of five independent hadron sets [8]. Sets 1–3 are identical, with the same
quark contents on both sides, whereas sets 4–5 are non-identical. Indeed, different choices
of five independent hadron sets can be made [8]. One can also obtain all ten sets from
Table 1 in Ref. [9]; however, they are not all independent. In a given set, the difference in v1
between the left and right sides (after including the weighting factors of each hadron as
listed in Table 1) is termed ∆v1. Similarly, the differences in the net electric charge (∆q or
∆qud) and net strangeness (∆S) are obtained.
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As v1 develops in the early stage of collisions, it is sensitive to the strong electro-
magnetic field produced by incoming protons in the two colliding nuclei. The correlation
between the difference in v1 on ∆q has been considered as breaking the coalescence sum
rule and being a consequence of the electromagnetic fields [9,10], especially when the
difference in v1 increases with ∆q. This motivated us to critically examine the consequence
of the coalescence sum rule on the difference in v1 [8]. This paper is organized as follows.
The derivation of the CSR relation is given in Section 2. Two methods for extracting the
dependence of ∆v1 on ∆q and ∆S are presented in Section 3. A summary is finally given in
Section 4.

2. The CSR Relation for the Difference in v1 of a Hadron Set

The relation between the v1 of a hadron (H) and those of its constituent quarks from
the CSR can be written as

v1,H(pT,H) = ∑
j

v1,j(pT,j), (1)

which is a sum over each constituent quark j of the hadron. The simplest case for the
coalescence of comoving equal-mass quarks gives the usual relation [7] v1,H(Ncq pT,q) =
Ncq v1,q(pT,q), where Ncq is the number of constituent quarks of the hadron.

For each of the five hadron sets in Table 1, the number of quarks of flavor i (Ni) for
each side (L: left; R: right) is calculated as the sum of the number of quarks of flavor i in
each hadron, multiplied by the weighting factor. With ∆Ni = NL

i − NR
i , each set satisfies

the following relations:
∆Nū + ∆Nd̄ = 0, ∆Ns + ∆Ns̄ = 0. (2)

In other words, the two sides have the same number of ū + d̄ quarks and the same number
of s + s̄ quarks. However, they may have different Nū and/or Ns. Therefore, they can
have a different total net electric charge (q), total net strangeness (S), or total net electric
charge in light quarks (qud), defined as ∆q = qL − qR, ∆S = SL − SR, and ∆qud = qL

ud − qR
ud,

respectively. For the hadron sets in Table 1, Equation (2) leads to

∆qud = ∆Nd̄, ∆S = 2∆Ns̄, ∆q = ∆qud + ∆S/3. (3)

Table 1. List of five independent hadron sets, including identical (∆q = 0 and ∆S = 0) and non-
identical (∆q ̸= 0 and/or ∆S ̸= 0) constituent quark combinations with similar mass.

Set ∆q ∆qud ∆S ∆B Left Side (L) Right Side (R)

1 0 0 0 0 v1[K−(ūs)] + v1[Λ(ūd̄s̄)] v1[ p̄(ūūd̄)] + v1[ϕ(ss̄)]
2 0 0 0 0 v1

[
Λ(ūd̄s̄)

] v1
2 [Ξ+

(ds̄s̄)] + v1
2 [ p̄(ūūd̄)]

3 0 0 0 0 v1
3 [Ω−(sss)] + v1

3 [Ω+
(s̄s̄s̄)] v1[ϕ(ss̄)]

4 1/3 0 1 −1/3 v1
2 [ϕ(ss̄)] v1

3 [Ω−(sss)]
5 2/3 1/3 1 −1/3 v1

2 [ϕ(ss̄)] + v1
3 [ p̄(ūūd̄)] v1

[
K−(ūs)

]
The total v1 from each side of a hadron set can be written as vL,R

1 = ∑i NL,R
i v1,i. It is

important to note that we neglect the effect of different constituent quark masses in this
study. Therefore, the above relation applies to light and strange (anti)quarks at the same pT
value or pT range, and consequently, it also applies to baryons at a pT value or range that is
3/2 times that of the meson’s. The difference in v1 between the two sides is then given by

∆v1 = vL
1 − vR

1 = ∑
i

∆Ni v1,i

= (v1,d̄ − v1,ū)∆qud +
(v1,s̄ − v1,s

2

)
∆S (4)

=
(

v1,d̄ − v1,ū

)
∆q +

(
v1,s̄ − v1,s

2
−

v1,d̄ − v1,ū

3

)
∆S. (5)
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Equations (4) and (5) show the linear dependence of ∆v1 of a hadron set on both ∆q and
∆S, where the coefficients are simply determined by the quark-level differences in v1. We
can also see that the coefficient for the ∆S dependence in Equation (5) is not as clean as the
corresponding coefficient in Equation (4).

The difference in v1 in the hadron sets also depends on ∆B, which represents the
difference in the net baryon number between the two sides of a hadron set. Under the
condition from Equation (2), we have

∆B = −2∆Ns̄/3 = −∆S/3. (6)

Therefore, ∆v1 depends linearly on both ∆q and ∆B as follows:

∆v1 = (v1,d̄ − v1,ū)∆qud − 3
(v1,s̄ − v1,s

2

)
∆B (7)

=
(

v1,d̄ − v1,ū

)
∆q − 3

(
v1,s̄ − v1,s

2
−

v1,d̄ − v1,ū

3

)
∆B. (8)

Assuming that the rapidity of a hadron formed by quark coalescence is the same as
that of the coalescing quarks, the v1 slope at y = 0, denoted as v′1 = dv1/dy(y = 0), satisfies
exactly the same relations as Equations (4), (5), (7) and (8), where one just needs to replace
v1 with v′1 [8].

3. Extracting the ∆q and ∆S Dependences of the Coefficients

The coalescence sum rule may not be satisfied for certain collision energies and/or sys-
tems, e.g., in cases where v1 is not dominated by parton dynamics. Since Equations (4) and (5)
from the coalescence sum rule predict ∆v1 = 0 for hadron sets with ∆S = ∆qud = 0 or
∆S = ∆q = 0, we propose that the following modified equations are used to fit the ∆v1 data
from the five independent sets:

∆v1 = c0 + cq ∆qud + cS ∆S, (9)

∆v1 = c∗0 + c∗q ∆q + c∗S ∆S. (10)

This way, a non-zero value of the intercept parameter, denoted as c0 or c∗0 , would mean
breaking the coalescence sum rule. Note that even for a given collision system, the coales-
cence sum rule may be satisfied around midrapidity but not satisfied at large rapidities;
therefore, these coefficients are rapidity-dependent.

To extract the coefficients of the ∆q and ∆S dependences of ∆v1 for a given collision
system, one can utilize the five-set method by simply fitting the 5 data points using
Equation (9) or Equation (10). It should be noted that the fit function represents a two-
dimensional plane over the ∆q − ∆S space. Therefore, one should not simply fit the ∆v1
data with a one-dimensional function of ∆q without taking into account the different ∆S
values of different hadron sets.

Alternatively, we can use the three-set method [8], where we take the average of sets
1–3, because they have the same ∆q and ∆S values, and denote the average as set A. Let us
also denote set 4 and set 5 as set B and set C, respectively. Equation (9) then leads to (∆v1)A
= c0, (∆v1)B = c0 + cS, and (∆v1)C = c0 + cq/3 + cS. Thus, we obtain

c0 = (∆v1)A; cq = 3[(∆v1)C − (∆v1)B]; cS = (∆v1)B − (∆v1)A. (11)

Similarly, the three-set method yields the coefficients in Equation (10) as

c⋆0 = (∆v1)A = c0; c⋆q = 3[(∆v1)C − (∆v1)B] = cq;

c⋆S = 2(∆v1)B − (∆v1)A − (∆v1)C = cS − cq/3.
(12)
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We see that the three-set method has an advantage over the five-set method in that we can
extract the ∆q and ∆S coefficients analytically instead of performing a two-dimensional fit.
It should be noted that the CSR predicts the following coefficients [8]:

c0 = c∗0 = 0; cq = c⋆q = v1,d̄ − v1,ū; (13)

cS = (v1,s̄ − v1,s)/2, c⋆S = (v1,s̄ − v1,s)/2 − (v1,d̄ − v1,ū)/3. (14)

When the difference in v1 of the hadron sets is expressed in terms of ∆B, we can use
the following modified equations, which are similar to Equations (9) and (10):

∆v1 = c0 + cq ∆qud + cB ∆B, (15)

∆v1 = c∗0 + c∗q ∆q + c∗B ∆B. (16)

Here, the CSR predicts the following ∆B coefficients:

cB = −3(v1,s̄ − v1,s)/2 = −3 cS, c⋆B = −3(v1,s̄ − v1,s)/2 + (v1,d̄ − v1,ū) = −3 c⋆S. (17)

Obviously, the CSR relates the ∆q and ∆S (or ∆B) coefficients to the quark-level differ-
ences in v1. It should be noted that the quark v1 in Equations (13), (14) and (17) refers to its
value after the partonic evolution just before the quark coalescence. Therefore, these coeffi-
cients could be non-zero due to the flavor dependence of the strong interaction or the effect
of the electromagnetic field on the produced quarks. Additionally, the extraction methods
outlined in this section apply to the v′1 data in exactly the same way. Furthermore, in the
full study [8], we demonstrated these extraction methods for the ∆q and ∆S coefficients
using results from the AMPT model for Au+Au collisions at different energies.

4. Summary

In this study, we derived the relations for ∆v1, representing the difference in v1 between
the two sides of a hadron set, using the coalescence sum rule. In earlier studies, seven
produced hadron species (K−, ϕ, p, Λ, Ξ+, Ω−, and Ω+) were considered, and a non-zero
∆v1 dependence on the difference in the net electric charge (∆q) was considered as breaking
the coalescence sum rule and being a consequence of the electromagnetic fields. Our study
showed that the coalescence sum rule only leads to a zero ∆v1 for a hadron set if its two
sides have identical constituent quark contents (i.e., ∆q = ∆S = 0). In general, ∆v1 depends
linearly on both ∆q and ∆S, or on both ∆qud and ∆S, and the same applies to the difference
in the v1 slopes at midrapidity (∆v′1). Since there are only five such independent hadron
sets, there will be five independent data points from the measurement of a given collision
system. We propose using a two-dimensional function such as c0 + cq∆qud + cS∆S to extract
the coefficients of the ∆qud and ∆S dependences, where a non-zero value of the coefficient
c0 indicates the breaking of the coalescence sum rule. In the five-set method, one fits the
five data points using this function. On the other hand, in the three-set method, the three
data points with the same ∆q and ∆S values are combined into one set, allowing us to
obtain the coefficients analytically. The coalescence sum rule relates these coefficients to the
quark-level differences in v1 just before quark coalescence. Therefore, the coefficients can
be affected by both the strong interaction and the electromagnetic fields. Equivalently, one
can also express ∆v1 or ∆v′1 in terms of the net baryon difference ∆B, where the function
c0 + cq∆qud + cB∆B can be used to extract the coefficients, and the coalescence sum rule
yields cB = −3cS.
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3. Nara, Y.; Niemi, H.; Ohnishi, A.; Stöcker, H. Examination of directed flow as a signature of the softest point of the equation of

state in QCD matter. Phys. Rev. C 2016, 94, 034906. [CrossRef]
4. Luo, X.; Shi, S.; Xu, N.; Zhang, Y. A Study of the Properties of the QCD Phase Diagram in High-Energy Nuclear Collisions. Particle

2020, 3, 278. [CrossRef]
5. Sorge, H. Elliptical Flow: A Signature for Early Pressure in Ultrarelativistic Nucleus-Nucleus Collisions. Phys. Rev. Lett. 1997,

78, 2309. [CrossRef]
6. Das, S.K.; Plumari, S.; Chatterjee, S.; Alam, J.; Scardina, F.; Greco, V. Directed flow of charm quarks as a witness of the initial

strong magnetic field in ultra-relativistic heavy ion collisions. Phys. Lett. B 2017, 768, 260–264. [CrossRef]
7. Molnar, D.; Voloshin, S.A. Elliptic Flow at Large Transverse Momenta from Quark Coalescence. Phys. Rev. Lett. 2003, 91, 092301.

[CrossRef]
8. Nayak, K.; Shi, S.; Lin, Z.-W. Coalescence sum rule and the electric charge- and strangeness-dependences of directed flow in

heavy ion collisions. Phys. Lett. B 2024, 849, 138479. [CrossRef]
9. Sheikh, A.I.; Keane, D.; Tribedy, P. Testing the impact of electromagnetic fields on the directed flow of constituent quarks in

heavy-ion collisions. Phys. Rev. C 2022, 105, 014912. [CrossRef]
10. Adamczyk, L. et al. [STAR Collaboration] Beam-Energy Dependence of Directed Flow of Λ, Λ̄, K±, K0

s and ϕ in Au+Au Collisions.
Phys. Rev. Lett. 2018, 120, 062301. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1103/PhysRevC.58.R1382
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.074
http://dx.doi.org/10.1103/PhysRevC.94.034906
http://dx.doi.org/10.3390/particles3020022
http://dx.doi.org/10.1103/PhysRevLett.78.2309
http://dx.doi.org/10.1016/j.physletb.2017.02.046
http://dx.doi.org/10.1103/PhysRevLett.91.092301
http://dx.doi.org/10.1016/j.physletb.2024.138479
http://dx.doi.org/10.1103/PhysRevC.105.014912
http://dx.doi.org/10.1103/PhysRevLett.120.062301
http://www.ncbi.nlm.nih.gov/pubmed/29481217

	Introduction
	The CSR Relation for the Difference in v1 of a Hadron Set
	Extracting the q and S Dependences of the Coefficients
	Summary
	References

