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Abstract: We demonstrate the equivalence of two different conjectures in the literature for the
holographic entanglement negativity in AdS3/CFT2, modulo certain constants. These proposals
involve certain algebraic sums of bulk geodesics homologous to specific combinations of subsystems,
and the entanglement wedge cross section (EWCS) backreacted by a cosmic brane for the conical
defect geometry in the bulk gravitational path integral. It is observed that the former conjectures
reproduce the field theory replica technique results in the large central charge limit whereas the
latter involves constants related to the Markov gap. In this context, we establish an alternative
construction for the EWCS of a single interval in a CFT2 at a finite temperature to resolve an issue for
the latter proposal involving thermal entropy elimination for holographic entanglement negativity.
Our construction for the EWCS correctly reproduces the corresponding field theory results modulo
the Markov gap constant in the large central charge limit.

Keywords: conformal field theory; entanglement in field theory; gauge-gravity dualities

1. Introduction

Quantum entanglement has evolved as one of the dominant themes in diverse disci-
plines from many body condensed matter systems to black holes and quantum gravity. In
this context, the entanglement entropy (EE), defined as the von Neumann entropy of the
reduced density matrix, has been central to the characterization of pure state entanglement.
For mixed states, however, the EE fails to correctly capture the entanglement as it involves
irrelevant classical and quantum correlations (e.g., for finite temperature configurations, it
includes the thermal correlations). Hence, the characterization of mixed state entanglement
has been a significant issue in quantum information theory leading to proposals of various
entanglement and correlation measures in the recent past. In this connection, Vidal and
Werner [1] proposed a computable mixed state entanglement measure termed entanglement
(logarithmic) negativity (EN), which characterized an upper bound on the distillable en-
tanglement.1 It was defined as the logarithm of the trace norm for the partially transposed
reduced density matrix. Subsequently, Plenio [2] established that despite being non convex,
the entanglement negativity was an entanglement monotone under local operations and
classical communication (LOCC), which justified its utility for the characterization of mixed
state entanglement.

In a series of communications [3–6], the authors formulated a replica technique to
compute the entanglement entropy in two-dimensional conformal field theories (CFT2s).
The procedure was later extended to configurations with multiple disjoint intervals in [7,8],
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where it was shown that the entanglement entropy receives non-universal contributions
depending on the full operator content of the theory, which were sub-leading in the large
central charge limit. A variant of the above replica technique was developed in [9–11]
to compute the entanglement negativity of bipartite states in CFT2s. It was also shown
in [12] that for the mixed state of two disjoint intervals, the entanglement negativity was
non-universal; however, it was possible to isolate a universal contribution in the large
central charge limit. Interestingly, the entanglement negativity for this configuration was
numerically shown to exhibit a phase transition depending upon the separation of the two
intervals [12,13].

In a major development, Ryu and Takayanagi (RT) [14,15] proposed a holographic
conjecture for the EE of a subsystem in a dual CFTd involving the area of a homologous bulk
codimension-two static minimal surface (RT surface), in the context of the AdSd+1/CFTd
correspondence. This significant proposal led to the emergence of the field of holographic
quantum entanglement (for a detailed review, see [15–18]). The RT conjecture was proved
initially for the AdS3/CFT2 scenario, with later generalization to the AdSd+1/CFTd frame-
work in [19–22]. Hubeny, Rangamani and Takayanagi (HRT) extended the RT conjecture to
covariant scenarios in [23], a proof of which was established in [24].

Naturally, the above developments motivated the investigation of a corresponding
holographic characterization for the entanglement negativity. One of the first steps in this
direction was proposed in [25] for the pure vacuum state of a CFTd dual to a bulk pure
AdSd+1 geometry although a general prescription for arbitrary bipartite states remained
elusive. This significant issue was addressed in [26,27], where a holographic entanglement
negativity conjecture and its covariant extension were advanced for bipartite mixed state
configurations in the AdS3/CFT2 scenario, with the generalization to higher dimensions
reported in [28]. These proposals involved certain algebraic sums of bulk geodesics ho-
mologous to appropriate combinations of subsystems. A large central charge analysis of
the entanglement negativity through the monodromy technique for holographic CFT2s
was established in [29], which provided a strong substantiation for the proposals described
above. Subsequently, in a series of works, the above holographic conjectures and their
covariant extensions were utilized to obtain the entanglement negativity of various bipartite
states in CFT2s and their higher dimensional generalizations [30–34].

On a different note, motivated by the quantum error correcting codes, an alternate
approach involving the backreacted entanglement wedge cross section (EWCS) to compute
the holographic entanglement negativity for configurations with spherical entangling
surfaces was advanced in [35]. Furthermore, a proof for this proposal, based on the reflected
entropy [36], was established in another communication [37]. The entanglement wedge was
earlier shown to be the bulk subregion dual to the reduced density matrix of the dual CFTs
in [38–42]. Also, the EWCS has been proposed to be the bulk dual of the entanglement of
purification (EoP) [43,44] (for recent progress, see [45–55]). The connection of the EWCS
to the odd entanglement entropy (OEE) [56] and the reflected entropy [36,57–59] has also
been explored.

As mentioned above, in [35,37], the authors proposed that for configurations involving
spherical entangling surfaces, the holographic entanglement negativity may be expressed
in terms of the EWCS backreacted by a cosmic brane for the conical defect of the replicated
bulk geometry in a gravitational path integral. Utilizing this conjecture, the authors
computed the holographic entanglement negativity for bipartite states in CFT2s dual to
bulk pure AdS3 geometries and planar BTZ black hole, through the construction described
in [43]. Their results for the holographic entanglement negativity following the above
construction reproduced the corresponding field theory replica technique results in the
large central charge limit, up to certain constants involving the Markov gap between the
reflected entropy and the mutual information [60], except for the configuration of a single
interval in a finite temperature CFT2 described in [11]. Specifically, their result for this
mixed state configuration missed the subtracted thermal entropy term in the expression
for the entanglement negativity [11]. Given that their construction exactly reproduces
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the replica technique results for all the other mixed state configurations, the mismatch
described above requires a resolution.

In this article, we demonstrate the equivalence of the two holographic proposals up to
constants involving the Markov gap. In this connection, we also address the intriguing issue
of the missing thermal entropy term for the single interval configuration at a finite temper-
ature for the second proposal based on the EWCS through an alternative construction. Our
construction is inspired by that of Calabrese et al. [11] and involves two symmetric auxiliary
intervals on either side of the single interval under consideration. In this construction,
we have utilized certain properties of the EWCS along with a specific relation valid for
the dual bulk BTZ black hole geometry. Finally, we implement the bipartite limit, where
the auxiliary intervals are allowed to be infinite and constitute the rest of the system, to
arrive at the correct minimal EWCS for the configuration in question. The holographic
entanglement negativity computed using the conjecture advanced in [35,37] through our
alternative construction for the EWCS correctly reproduces the corresponding replica result
in [11] mentioned earlier. In particular, we are able to obtain the missing thermal entropy
term in the expression for the holographic entanglement negativity described in [11]. We
further observe that the monodromy analysis employed by the authors in [37] and that
in [29] lead to identical functional forms for the relevant four point correlation function for
the twist fields, in the large central charge limit for the mixed state configuration of the
single interval at a finite temperature.

This article is organized as follows. In Section 2, we briefly review the definition and
holographic constructions involving the bulk geodesics for the entanglement negativity
in the AdS3/CFT2 scenario. In Section 3, we review the entanglement wedge construc-
tion in [43]. In Section 4, we describe the computation of the holographic entanglement
negativity based on the EWCS in [35,37] and demonstrate the equivalence of their results
with those obtained from the former proposal. Following this, in Section 5, we describe
an issue with the holographic entanglement negativity for a single interval at a finite
temperature obtained from the EWCS, involving a subtracted thermal entropy term. We
further propose an alternative construction of the EWCS for this configuration, which
resolves this issue and restores the missing thermal entropy term. Finally, we summarize
our results in Section 6 and present our conclusions. In Appendix A, we have included a
short review of the derivation for the entanglement negativity of two disjoint intervals in
a CFT2. Additionally, in Appendices B and C, we briefly describe a sketch of a plausible
proof of the holographic entanglement negativity proposal based on bulk geodesics from a
gravitational path integral perspective and the issue of the holographic Markov gap.

2. Review of Earlier Literature

In this section, we review the holographic proposals for the entanglement negativity
involving certain algebraic sums of the holographic Rényi entropies of order half described
by the lengths of backreacting cosmic branes homologous to the subsystems, as described
in [61].

2.1. Rényi Entanglement Entropy

Here, we briefly recapitulate the holographic construction for the Rényi entropy which
was proposed in [62]. The author in [62] utilized the gravitational path integral technique
developed in [22] to demonstrate that the holographic Rényi entropy of a subsystem in a
CFT is related to the area of a codimension-two cosmic brane Cn with tension Tn = n−1

4nGN
in

the replicated bulk geometry, homologous to the subsystem under consideration as

n2 ∂

∂n

(
n − 1

n
S(n)(A)

)
=

Area(Cn)

4GN
, (1)

n2 ∂

∂n

(
n − 1

n
A(n)

)
= Area(Cn), (2)
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where S(n)(A) is the Rényi entanglement entropy of order n for the subsystem A. Note that
A(n) is related to S(n) as follows:

S(n) =
A(n)

4GN
. (3)

In the replica limit n → 1, the tension vanishes and Equations (1)–(3) reduce to that of the
usual RT proposal as

SY =
AY

4GN
, (4)

where AY denotes the area of the minimal surface homologous to the subsystem Y and
GN is the d + 1 dimensional gravitational constant. However, for n ̸= 1, the backreaction
from the brane is non-zero and it is difficult to determine the area of a cosmic brane
homologous to a subsystem of an arbitrary geometry. Interestingly, for subsystems with
spherical entangling surfaces, the backreaction was explicitly computed2 in [63], where the
holographic Rényi entanglement entropy of a subsystem A in a CFTd was expressed as

S(n)(A) = X (n)
d S(A). (5)

In Equation (5), the proportionality constant has the following form:

X (n)
d =

n
2(n − 1)

(
2 − xd−2

n

(
1 + x2

n

))
, (6)

where
xn =

1
nd

(
1 +

√
1 − 2dn2 + d2n2

)
. (7)

In the AdS3/CFT2 scenario, the holographic Rényi entropy of order half is given as

S(1/2)(A) = X (1/2)
d S(A)

=
3
2

S(A)

=
3

8GN
LA, (8)

where in the second line, we have used Equations (6) and (7) to determine the constant
X2 = 3/2 and LA denotes the length of the geodesic homologous to the subsystem A.

2.2. Entanglement Negativity (EN) in a CFT2

In this subsection, we provide a brief review of the definition of the entanglement
negativity and its computation in a CFT2. In this connection, we consider a tripartite system
ABC in a pure state, comprising the subsystems A, B, and C. The reduced density matrix
ρAB for the mixed state bipartite configuration AB ≡ A∪ B may then be obtained by tracing
over the subsystem C. The relevant Hilbert space is given by HAB = HA ⊗HB, where
HA,B represents the Hilbert space for the subsystem A, B respectively. The partial transpose
of the reduced density matrix ρAB, denoted by ρTB

AB, may then be defined as follows:〈
e(A)

i e(B)
j

∣∣∣ρTB
AB

∣∣∣e(A)
k e(B)

l

〉
=

〈
e(A)

i e(B)
l

∣∣∣ρAB

∣∣∣e(A)
k e(B)

j

〉
, (9)

where |e(A,B)
i ⟩ describes the basis for HA,B, respectively. The entanglement negativity

between the subsystems A and B is then defined in terms of the trace norm3 of the partially
transposed reduced density matrix ρTB

AB as follows:

E(A : B) = log
∥∥∥ρTB

AB

∥∥∥. (10)
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In this context, we introduce below the definition of the Rényi entanglement negativity
(REN) of order k following [9,10] as

N (k)(A : B) = Tr
[(

ρTB
AB

)k
]

, (11)

where k is a positive integer. The EN as defined in Equation (10) may then be expressed in
terms of the REN as

E(A : B) = lim
ne→1

log
[
N (ne)(A : B)

]
= lim

ne→1
log

[
Tr
(

ρTB
AB

)ne]
. (12)

Note that the right-hand side of Equation (12) indicates the analytic continuation of the
REN of even orders, denoted by ne ∈ 2Z+, to ne = 1.

For a CFT2, the authors in [9–11] developed a replica technique involving ne ∈ 2Z+

replicas of the original complex manifold M with branch cuts along A and B. The trace in
Equation (12) may then be evaluated in terms of certain twist field correlators involving
the end points of A and B. For example, in a zero-temperature CFT2, when the subsystems
(intervals in a CFT2) A = [a1, a2] and B = [b1, b2] are disjoint, the entanglement negativity
is given by the following four-point twist correlator:

E(A : B) = lim
ne→1

log
〈
Tne(a1)T ne(a2)T ne(b1)Tne(b2)

〉
, (13)

where Tne and T ne are twist and anti-twist operators, respectively.

2.3. Holographic Entanglement Negativity (HEN)

As discussed earlier, a replica technique proposed in [9,10] was utilized to compute
the entanglement negativity for various pure and mixed state configurations of a CFT2.
Following this, several holographic proposals for the entanglement negativity of various
configurations were advanced in [26,30,32] in terms of appropriate algebraic sums of the
lengths of bulk geodesics in the AdS3/CFT2 framework. For example, the holographic
entanglement negativity of two disjoint intervals A and B in proximity is given by [32]

E =
3

16GN

[
LA∪C + LB∪C −LA∪B∪C −LC

]
(14)

=
3
4

[
S(A ∪ C) + S(B ∪ C)− S(A ∪ B ∪ C)− S(C)

]
, (15)

where C denotes the interval sandwiched between A and B. From the discussion in
Section 2.1, it is clear that we may re-express the conjecture given in Equation (14) as follows:

E =
X2

8GN

[
LA∪C + LB∪C −LA∪B∪C −LC

]
.

In the AdS3/CFT2 scenario, we now utilize the result given in Equation (8) to rewrite the
above expression in the following way:

E =
1

8GN

[
L(1/2)

A∪C + L(1/2)
B∪C −L(1/2)

A∪B∪C −L(1/2)
C

]
(16)

=
1
2

[
S(1/2)(A ∪ C) + S(1/2)(B ∪ C)− S(1/2)(A ∪ B ∪ C)− S(1/2)(C)

]
. (17)

Following the same procedure as above, we may re-express the holographic conjecture for
the entanglement negativity of two adjacent intervals in [30] as

E =
1
2

[
S(1/2)(A) + S(1/2)(B)− S(1/2)(A ∪ B)

]
. (18)
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Similarly, the holographic conjecture for the entanglement negativity of a single interval
described in [26] may be expressed as follows:

E = lim
B1∪B2→Ac

1
2

[
2S(1/2)(A) + S(1/2)(B1) + S(1/2)(B2)− S(1/2)(A ∪ B1)− S(1/2)(A ∪ B2)

]
. (19)

A plausible derivation of these proposals as expressed in Equations (17)–(19), based on the
replica symmetry breaking saddles for a gravitational path integral for spherical entangling
surfaces, is described briefly in Appendix B.4

As mentioned earlier in Section 1, the above holographic proposals for the entangle-
ment negativity were further generalized to covariant scenarios in [27,31,33]. Additionally,
these holographic proposals were extended to the general AdSd+1/CFTd framework in
terms of similar algebraic sums of the areas of bulk RT surfaces for certain combinations of
the subsystems [28,34].

3. Entanglement Wedge Cross Section (EWCS)

We begin this section by reviewing the construction for the bulk entanglement wedge
cross section (EWCS) in AdS/CFT described in [43,44]. To this end, spatial subsystems
A and B need to be considered in a CFTd dual to static bulk AdSd+1 geometry. Let Ξ
be a constant time slice in the bulk and ΓAB be an RT surface for the subsystem A ∪ B.
Then, the codimension-one spatial region in Ξ bounded by A ∪ B ∪ ΓAB is described as
the entanglement wedge for subsystems A and B. Finally, we consider the minimal area
surface Σmin

AB which terminates on the boundary of the entanglement wedge, dividing the
total entanglement wedge into two parts, as illustrated in Figure 1.

Figure 1. (Left): The colored region represents the entanglement wedge for subsystem A ∪ B in
Poincaré AdS3. The dotted line shows the entanglement wedge cross section. (Right): If A and B are
sufficiently far away, the entanglement wedge becomes disconnected and EW(A : B) = 0.

The entanglement wedge cross section (EWCS), denoted by EW , may then be de-
fined as5

EW(A : B) =
Area(Σmin

AB )

4GN
, (20)

where GN is the Newton constant. The reduced density matrix ρAB is dual to the cor-
responding entanglement wedge [38–40]. Note that the entanglement wedge includes
the bulk region, which is defined as the domain of dependence for the space-like homology
surface RA bounded by subsystem A and its RT surface ΓA. Some of the properties of the
EWCS are listed below [43,44].

1. For a pure state ρAB, EW is equal to the entanglement entropy:

EW(A : B) = S(A) = S(B). (21)

2. For a mixed state ρAB, EW is bounded above by the entanglement entropy:

EW(A : B) ≤ min[S(A), S(B)]. (22)



Universe 2024, 10, 125 7 of 25

3. For a mixed state ρAB, EW is bounded below by half the mutual information:

EW(A : B) ≥ I(A : B)
2

. (23)

4. EW is monotonic, i.e., it never increases upon discarding a subsystem:

EW(A : BC) ≥ EW(A : B). (24)

5. For a tripartite system, EW has the following bound:

EW(A : BC) ≥ I(A : B)
2

+
I(A : C)

2
. (25)

6. In a bipartite state that saturates the Araki–Lieb inequality, S(AB) = |S(A)− S(B)|,
we have EW(A : B) = min[S(A), S(B)].

7. For a tripartite pure state, the EW is polygamous:

EW(A : BC) ≤ EW(A : B) + EW(A : C). (26)

Note that these properties conform to the properties of the entanglement of purification
(EoP) described in quantum information theory [64].

3.1. Computation of the EWCS

We now proceed to review the computation of the EWCS in the AdS3/CFT2 scenario.
For this purpose, a configuration of two subsystems A and B at zero temperature needs
to be considered in the dual CFT2 vacuum. These subsystems are described by spatial
intervals A = [a1, a2] and B = [b1, b2] with lengths l1 and l2, respectively, and are separated
by distance d. The bulk dual for this case is a pure AdS3 geometry in Poincaré coordinates
whose metric on a constant time slice is given by

ds2 =
dx2 + dz2

z2 , (27)

where we have set the AdS3 radius R = 1. When the mutual information I(A : B) > 0, the
entanglement wedge remains connected; otherwise, it is disconnected. The EWCS for this
configuration may be expressed as [43]

EW(A : B) =


c
6

ln
(

1 + 2z + 2
√

z(z + 1)
)

, z > 1,

0, 0 < z < 1,

(28)

where the conformal cross ratio z is given by

z =
(a2 − a1)(b2 − b1)

(b1 − a2)(b2 − a1)
=

l1l2
d(l1 + l2 + d)

. (29)

Note that Equation (28) may be rewritten in the following form [35,65]:

EW =


c
6

ln
1 +

√
x

1 −
√

x
, 1/2 < x < 1,

0, 0 < x < 1/2,

(30)
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where the cross ratio

x =
(a2 − a1)(b2 − b1)

(b1 − a1)(b2 − a2)
=

l1l2
(l1 + d)(l2 + d)

(31)

is related to z through z = x/(1 − x).
For a finite temperature state in a CFT2 defined on an infinite line, the bulk dual is a

planar BTZ black hole (black string) whose metric is given as

ds2 =
1
z2

(
− f (z)dt2 +

dz2

f (z)
+ dx2

)
, f (z) ≡ 1 − z2/z2

H , (32)

where the event horizon is located at z = zH and zH is related to the inverse temperature β
as β = 2πzH . The EWCS corresponding to the intervals A = [a1, a2] and B = [b1, b2] in a
dual CFT2 is given as follows [43]:

EW(A : B) =
c
6

ln
(

1 + 2ζ + 2
√

ζ(ζ + 1)
)

, (33)

with ζ given as

ζ ≡
sinh

(
π(a2−a1)

β

)
sinh

(
π(b2−b1)

β

)
sinh

(
π(b1−a2)

β

)
sinh

(
π(b2−a1)

β

) =
sinh

(
πl1
β

)
sinh

(
πl2
β

)
sinh

(
πd
β

)
sinh

(
π(l1+l2+d)

β

) . (34)

3.1.1. EWCS for Two Disjoint Intervals

For this configuration, we will only describe the scenario where the two disjoint
intervals are in proximity, which corresponds to the regime x ≈ 1 following [10,12]. It was
shown there that the entanglement negativity obtained through a replica technique in a
CFT2 was non-universal, and a dominant universal form could be obtained only for the
above proximity regime in the large central charge limit. Note that, as explained in [10,12],
the regime x ≈ 1 involves l1, l2 >> d.6 In this regime, the EWCS for the two disjoint
intervals in proximity is then obtained from Equation (30) as follows:

EW(A : B) =
c
6

ln
(

1
1 − x

)
+

c
6

ln 4. (35)

The EWCS for two disjoint intervals in proximity at zero temperature in a dual CFT2
may be derived by substituting Equation (31) into Equation (35) as follows:

EW(A : B) =
c
6

ln
[
(l1 + d)(l2 + d)
d(l1 + l2 + d)

]
+

c
6

ln 4. (36)

For the intervals A and B in a finite size system of length L at zero temperature,
the EWCS may be obtained via the conformal map from the plane to cylinder z → w =
(iL/2π) ln z from Equation (35) as

EW(A : B) =
c
6

ln

 sin
(

π(l1+d)
L

)
sin

(
π(l2+d)

L

)
sin

(
πd
L

)
sin

(
π(l1+l2+d)

L

)
+

c
6

ln 4. (37)

The EWCS for two disjoint intervals in proximity at a finite temperature may be ob-
tained from Equation (35) by employing the conformal transformation z → w = (β/2π) ln z
from the plane to the cylinder. It is then given by
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EW(A : B) =
c
6

ln

 sinh
(

π(l1+d)
β

)
sinh

(
π(l2+d)

β

)
sinh

(
πd
β

)
sinh

(
π(l1+l2+d)

β

)
+

c
6

ln 4. (38)

3.1.2. EWCS for Two Adjacent Intervals

The mixed state configuration of two adjacent intervals may be constructed from the
corresponding disjoint setup by taking the adjacent limit d → ϵ, where ϵ is the UV cutoff of
the CFT2 in the boundary. The EWCS for this configuration may now be obtained from
Equation (36) as follows:

EW(A : B) =
c
6

ln
(

l1l2
ϵ(l1 + l2)

)
+

c
6

ln 4. (39)

By taking the adjacent limit d → ϵ in Equation (37), the EWCS for two adjacent
intervals in a finite size system of length L may expressed as

EW(A : B) =
c
6

ln

( L
πϵ

) sin
(

πl1
L

)
sin

(
πl2
L

)
sin

(
π(l1+l2)

L

)
+

c
6

ln 4. (40)

The EWCS for two adjacent intervals at a finite temperature may be computed from
Equation (38) by taking the adjacent limit d → ϵ as follows:

EW(A : B) =
c
6

ln

( β

πϵ

) sinh
(

πl1
β

)
sinh

(
πl2
β

)
sinh

(
π(l1+l2)

β

)
+

c
6

ln 4. (41)

3.1.3. EWCS for a Single Interval

The EWCS for a pure state configuration of a single interval A of length l at zero
temperature may be obtained from the property of the EWCS for a pure state, as described
in Equation (21). It is given as

EW(A : B) = S(A) =
c
3

ln
(

l
ϵ

)
. (42)

Similarly, the EWCS for a pure state configuration of a single interval A in a finite size
system of length L may be computed using Equation (21) and given by

EW(A : B) =
c
3

ln
(

L
πϵ

sin
πl
L

)
. (43)

Subsequently, the authors in [43] proposed the EWCS for a mixed state configuration
of a single interval A of length l at finite temperature as the minimum of two possible
candidates, as expressed below:

EW(A : B) =
c
3

min
[

ln
(

β

πϵ

)
, ln

(
β

πϵ
sinh

πl
β

)]
. (44)

The EWCS construction for this configuration will be described in detail in Section 4.3.3.

4. HEN from EWCS in AdS3/CFT2

In this section, we describe the construction in [35,37], which proposed the entangle-
ment wedge cross section as the holographic dual of entanglement negativity. The authors
in [43,44] had demonstrated that the EWCS was dual to the entanglement of purification
(EoP) and followed all the properties of the EoP in quantum in formation theory [64].
Motivated by these developments and results from quantum error correcting codes, the
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authors in [35,37] conjectured that the EWCS backreacted by a bulk cosmic brane for the
conical defect geometry is also dual to the entanglement negativity for configurations
involving spherical entangling surfaces. The holographic entanglement negativity for the
corresponding dual CFTs was then expressed in terms of the bulk EWCS as follows [35,37]:

E = XdEW , (45)

where Xd is the same dimension-dependent constant described in Section 2.1. The above
conjecture was substantiated more concisely for holographic CFTs as [37]

E =
S(1/2)

R
2

, (46)

where SR is a correlation measure termed as the reflected entropy and S(1/2)
R is the Rényi

reflected entropy of order half. In the next few subsections, we briefly review the compu-
tation of the holographic entanglement negativity from the EWCS for various bipartite
states described by two disjoint intervals, two adjacent intervals, and a single interval in
the context of the AdS3/CFT2 scenario.

4.1. Negativity for Two Disjoint Intervals
4.1.1. Zero Temperature

The computation of the entanglement negativity for two disjoint intervals involves
the four-point twist correlator whose explicit form contains an arbitrary non-universal
function of the cross ratio and depends on the full operator content of the corresponding
CFT2. Using Zamolodchikov recursion relations, the authors in [37] have numerically
shown that the entanglement negativity for disjoint intervals is proportional to the EWCS.
However, a recent development indicates the presence of an extra additive constant in the
EWCS for two disjoint intervals in a CFT2, which may be determined through careful bulk
computation [60]. As described earlier in Section 3.1.1, the entanglement negativity for
two disjoint intervals in a CFT2 is non-universal for general values of the cross ratio x and
a universal divergent behavior in the large central charge limit may be obtained for the
regime x ≈ 1, where the intervals are in proximity (l1, l2 >> d).7 For this regime on using
Equations (35) and (45), the holographic entanglement negativity for the mixed state of two
disjoint intervals in proximity at zero temperature may be expressed as

E =
c
4

ln
[
(l1 + d)(l2 + d)
d(l1 + l2 + d)

]
+

c
4

ln 4, (47)

where l1, l2 are lengths of the intervals, and d is the length of the separation between
intervals A and B. Note that the above result is cutoff-independent. The above result
matches with the corresponding CFT2 replica result [9,10,12] obtained with the monodromy
technique for the t channel in the regime x ≈ 1 modulo the second constant term. As
discussed in Section 1, the constant second term in Equation (47) arises from the Markov
gap.8 However, the result of holographic entanglement negativity for the two disjoint
intervals obtained in [32] matches exactly with the corresponding field theory replica
technique results. This illustrates the equivalence of the two holographic proposals for the
entanglement negativity expressed in Equations (17) and (45) up to an additive constant.

4.1.2. Finite Size

The holographic entanglement negativity for the configuration of two disjoint intervals
in a finite size CFT2 may be obtained using Equations (37) and (45) as

E =
c
4

ln

 sin
(

π(l1+d)
L

)
sin

(
π(l2+d)

L

)
sin

(
πd
L

)
sin

(
π(l1+l2+d)

L

)
+

c
4

ln 4. (48)
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Note again that the result in Equation (48) is cutoff-independent. We observe again that
apart from the constant term, the holographic entanglement negativity for two disjoint
intervals in Equation (48) matches with the corresponding result from an earlier alternative
proposal described in Equation (17) [32], demonstrating their equivalence.

4.1.3. Finite Temperature

For the mixed state configuration of two disjoint intervals at a finite temperature, the
holographic entanglement negativity may be computed using Equations (38) and (45) as

E =
c
4

ln

 sinh
(

π(l1+d)
β

)
sinh

(
π(l2+d)

β

)
sinh

(
πd
β

)
sinh

(
π(l1+l2+d)

β

)
+

c
4

ln 4. (49)

Note that the expression in Equation (49) is once again cutoff-independent. The above
equation matches with the entanglement negativity obtained by the field theory replica
technique in CFT2s [10], modulo the additive constant in the large central charge limit.
Once again, we observe that the holographic entanglement negativity in Equation (49)
matches with that obtained from the alternative proposal described in Equation (17) [32]
modulo the constant term, establishing their equivalence.

4.2. Negativity for Two Adjacent Intervals
4.2.1. Zero Temperature

The holographic entanglement negativity for the bipartite mixed state configuration
described by two adjacent intervals at zero temperature in a CFT2 may be obtained from
the backreacted EWCS using Equations (39) and (45) as follows:

E =
c
4

ln
(

l1l2
ϵ(l1 + l2)

)
+

c
4

ln 4, (50)

where ϵ is the UV cutoff. We observe that the above result matches with the entanglement
negativity obtained by the field theory replica technique in the large central charge limit [10]
modulo the constant term related to the holographic Markov gap (see Appendix C). Note,
however, that the holographic entanglement negativity for this mixed state configuration
obtained through the alternate conjecture involving an algebraic sum of lengths of bulk
geodesics in [30] matches exactly with the field theory results in the large c limit. This
demonstrates the equivalence of the two holographic proposals for the entanglement
negativity modulo the constant from the Markov gap.

4.2.2. Finite Size

The holographic entanglement negativity for the configuration of two adjacent inter-
vals for a finite size CFT2 may be obtained using Equations (40) and (45) as

E =
c
4

ln

( L
πϵ

) sin
(

πl1
L

)
sin

(
πl2
L

)
sin

(
π(l1+l2)

L

)
+

c
4

ln 4, (51)

where ϵ is the UV cutoff. The above result also matches with the corresponding replica
technique results [10] in the large central charge limit up to the Markov gap constant. Note
that the above result in Equation (51) modulo the constant may also be obtained using the
alternative proposal described in Equation (18) [30] which involves an algebraic sum of
lengths of the bulk geodesics homologous to appropriate combinations of the intervals and
illustrates their equivalence.
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4.2.3. Finite Temperature

The EWCS for two adjacent intervals at a finite temperature may be computed from
Equation (33) by taking the adjacent limit d → ϵ. Now, using Equation (45), the holographic
entanglement negativity for the finite temperature mixed state configuration of two adjacent
intervals in a CFT2 may be expressed as

E =
c
4

ln

( β

πϵ

) sinh
(

πl1
β

)
sinh

(
πl2
β

)
sinh

(
π(l1+l2)

β

)
+

c
4

ln 4, (52)

where ϵ is the UV cutoff. As discussed earlier, the constant second term in the above
equation may be related to the holographic Markov gap. The first term in Equation (52)
matches with the corresponding result for holographic entanglement negativity in [30]
using the alternate construction given in Equation (18) and the CFT2 replica technique
result [10] in the large central charge limit. This once again demonstrates the equivalence of
the two holographic entanglement negativity proposals modulo the Markov gap constant.

4.3. Negativity for a Single Interval

In this section, we consider the bipartite configuration of a single interval in a dual
CFT2. To this end, the system A ∪ B, which includes the interval A of length l, with the rest
of the system denoted as B, needs to be considered.

4.3.1. Zero Temperature

The holographic entanglement negativity for the pure state of a single interval A in
a CFT2 at zero temperature may be obtained by considering the property of the EWCS
described in Equation (21). Utilizing the holographic prescription from Equation (45) and
the expression for the corresponding EWCS in Equation (42), the entanglement negativity
for this pure state is given as

E =
c
2

ln
(

l
ϵ

)
. (53)

The above result matches exactly with the corresponding CFT2 replica technique result,
as described in [9,10], in the large central charge limit. Interestingly, here, we observe the
absence of any contribution related to the holographic Markov gap as the configuration
of a single interval in zero temperature CFT2 is in a pure state. Thus, the holographic
entanglement negativity in Equation (53) matches with that obtained from the alternative
proposal in Equation (19) [26], once again illustrating their equivalence.

4.3.2. Finite Size

The holographic entanglement negativity for the pure state configuration of a single
interval in a finite size system may be computed using Equations (43) and (45) as follows:

E =
c
3

ln
(

L
πϵ

sin
πl
L

)
. (54)

Note that the above result may also be obtained using the alternative holographic proposal,
as described in Equation (19).

4.3.3. Finite Temperature

We begin with a brief review of the entanglement wedge construction in the context of
a single interval in a CFT2 at a finite temperature, dual to a bulk planar BTZ black hole, as
described in [43]. The authors in [43] considered the bipartition (Figure 2) comprising a
single interval (of length l), denoted by A, with the rest of the system denoted by B. Note
that in [43], Σmin

AB , the minimal cross section of the entanglement wedge for the intervals A

and B, has two possible candidates. The first one, denoted by Σ(1)
AB, is the union of the two
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dotted lines depicted in Figure 2, while the other one, Σ(2)
AB, is given by the RT surface ΓA.

Then, the EWCS is given as [43]

EW(A : B) =
c
3

min
[
Area

(
Σ(1)

AB

)
, Area

(
Σ(2)

AB

)]
(55)

=
c
3

min
[

ln
(

β

πϵ

)
, ln

(
β

πϵ
sinh

πl
β

)]
, (56)

where ϵ is the UV cutoff and β is the inverse temperature.

AB B

ΣAB

(1)
ΣAB

(1)

ΣAB

(2)

Figure 2. EWCS for a single interval A (with rest of the system B) in a thermal CFT2 on the boundary,
dual to a bulk planar BTZ black hole geometry.

Using the result of Equation (56), the authors in [35,37] described the holographic
entanglement negativity of the single interval in a CFT2 at a finite temperature as

E =
c
2

min
[

ln
(

β

πϵ
sinh

πl
β

)
, ln

(
β

πϵ

)]
. (57)

The authors substantiated their results utilizing the monodromy technique to extract the
dominant contribution in the s and t channels for the relevant four-point twist correlator.
However, the above results do not exactly reproduce the corresponding replica technique
results for the mixed state configuration in question described in [11] except in the low-
and high-temperature limits. Specifically, the subtracted thermal entropy term is missing
from the holographic entanglement negativity and this issue requires further analysis. In
Section 5, we will carefully investigate the above issue for the computation of the holo-
graphic entanglement negativity from the EWCS in [35,37] for the configuration in question.

5. Issue with the Thermal Entropy Term

Calabrese, Cardy, and Tonni in a significant communication [11] computed the entan-
glement negativity of a single interval (of length l) for a CFT2 at a finite temperature, which
is given by

E =
c
2

ln
(

β

πϵ
sinh

πl
β

)
− πcl

2β
+ f

(
e−2πl/β

)
+ 2 ln c1/2, (58)

where ϵ is the UV cutoff. Here, f is an arbitrary function and c1/2 is a constant, which are
non-universal and depend on the full operator content of the theory.

Comparing Equation (57) with Equation (58), we note that the holographic entan-
glement negativity, as computed from Equation (45), does not match exactly9 with the
corresponding replica technique result reported in [11], in the large central charge limit.
Specifically, the subtracted thermal entropy term in the large c replica technique result is
missing in the expression for the holographic entanglement negativity of a single interval
at a finite temperature described in [35,37]. One may further observe that the entanglement
negativity in Equation (58) reduces to that in Equation (57) only in the specific limits of
low temperature (β → ∞) and high temperature (β → 0). In the next subsection, we
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briefly describe the monodromy analysis of the four-point twist correlator relevant for this
configuration towards a resolution of the above issue with the subtracted thermal entropy
term for the entanglement negativity.

5.1. Large Central Charge Limit

We begin by reviewing the results obtained through the monodromy technique em-
ployed in [37] to compute the entanglement negativity of a single interval, as given in
Equation (57). To this end, two auxiliary intervals B1 = [−L, 0] and B2 = [l, L] on either
side of the single interval A = [0, l] (see [11] for details) need to be considered. The rest of
the system is denoted by B ≡ B1 ∪ B2. Finally, we implement the bipartite limit B → Ac

through L → ∞ to arrive at the required configuration for the single interval A and the rest
of the system B = Ac. The entanglement negativity of a single interval at zero temperature
in a CFT2 may then be described by the following four-point twist correlator on the complex
plane [11]

E = lim
L→∞

lim
ne→1

ln
〈
Tne(−L)T 2

ne(0)T
2
ne(l)Tne(L)

〉
C

. (59)

Through a suitable conformal transformation (see [32] for a detailed review), Equation (59)
may be recast as [37]

E = lim
L→∞

lim
ne→1

ln
〈
Tne(0)T

2
ne(x)T 2

ne(1)Tne(∞)
〉
C

. (60)

For a CFT2 at a finite temperature 1/β, the entanglement negativity for a single interval
may be computed from Equation (59) or Equation (60) through the conformal transfor-
mation z → w = (β/2π) ln z from the complex plane to the cylinder. The entanglement
negativity for a single interval in a thermal CFT2 may then be obtained as follows [11,37]:

E = lim
L→∞

lim
ne→1

ln
〈
Tne(−L)T 2

ne(0)T
2
ne(l)Tne(L)

〉
cyl(β)

= lim
L→∞

lim
ne→1

ln
〈
Tne(0)T

2
ne(x)T 2

ne(1)Tne(∞)
〉
C
+

c
2

ln
(

β

2πϵ
e

πl
β

)
, (61)

where the cross ratio x is specified by lim
L→∞

x = e−2πl/β.

In the large central charge limit, the four-point twist correlator in Equation (61) may be
expressed in terms of a dominant single conformal block in the s and t channels depending
on the cross ratio x, as described in [29].

For the s channel (described by x ≈ 0), the authors in [37] have computed the four
point function on the complex plane as

lim
L→∞

lim
ne→1

ln
〈
Tne(0)T

2
ne(x)T 2

ne(1)Tne(∞)
〉
C
=

c
4

ln x. (62)

Utilizing the above four-point twist correlator, the entanglement negativity may be com-
puted from Equation (61) as10

E =
c
2

ln
(

β

πϵ

)
. (63)

For the t channel (given by x ≈ 1), the authors in [37] have obtained the following
four-point function:

lim
L→∞

lim
ne→1

ln
〈
Tne(0)T

2
ne(x)T 2

ne(1)Tne(∞)
〉
C
=

c
2

ln(1 − x), (64)

from which the entanglement negativity may be obtained Equation (61):

E =
c
2

ln
(

β

πϵ
sinh

πl
β

)
. (65)
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We note that the four-point functions on the complex plane given in Equations (62)
and (64), utilized to compute the entanglement negativity for both the channels, match
those obtained in [29]. We further observe that the monodromy technique employed
in [26,29] and the monodromy method utilized by the authors in [37] all produce identical
large central charge limits for the four-point function.

However, we would like to emphasize here that the authors in [37], motivated by the
large c computations for the entanglement entropy in [7,8], assumed that the s and t channel
results are valid beyond their usual regimes x ≈ 0 and x ≈ 1, that is, for 0 < x < 1/2 and
1/2 < x < 1, respectively. In other words, their computation involves an assumption that
there is a phase transition for the large central charge limit for the entanglement negativity
of a single interval at x = 1/2. Although this is true for the entanglement entropy [7,8], for
this specific case of the entanglement negativity for a single interval, this assumption is
not valid, as the required four-point twist correlator is obtained from a specific channel for
the corresponding six-point correlator, as described in [29]. The above conclusion is also
supported by an alternate EWCS construction for this configuration proposed in Section 5.2
to resolve the issue with the missing thermal term for the holographic entanglement
negativity in [35,37].

5.2. Alternate EWCS Construction

In this subsection, we propose an alternative construction to that described in [43] for
the mixed state configuration of a single interval at a finite temperature in AdS3/CFT2.
To this end, we consider the following properties [refer to Equation (26)] of the EWCS
for tripartite pure state configurations comprising subsystems A, B, and C (see [43,44] for
a review):

EW(A : BC) ≤ EW(A : B) + EW(A : C), (66)

1
2

I(A : B) +
1
2

I(A : C) ≤ EW(A : BC), (67)

where I(A : B) is the mutual information between A and B. For two adjacent intervals A
and B at a finite temperature in a CFT2 dual to a bulk planar BTZ black hole, the EWCS may
be explicitly computed through the adjacent limit in the corresponding disjoint interval
result derived in [43]. The holographic mutual information for these adjacent intervals may
also be explicitly calculated from the corresponding entanglement entropies. Comparing
these results, we obtain the following relation for this specific configuration:

EW(A : B) =
1
2

I(A : B). (68)

Substituting the result described in Equation (68) into Equation (67) and comparing them
with Equation (66), we arrive at the following equality for the bulk BTZ black hole configu-
ration:

EW(A : BC) = EW(A : B) + EW(A : C), (69)

where B and C are adjacent to A.
Following the construction in [11], we now consider a tripartition (see Figure 3)

consisting of interval A of length l, with two auxiliary intervals B1 and B2, each of length L,
on either side of A where B ≡ B1 ∪ B2. Next, we implement the bipartite limit L → ∞ to
recover the original configuration with a single interval A and the rest of the system given
by B = Ac. Note that in the bipartite limit, A ∪ B describes the full system, which is in a
pure state and obeys Equation (69). Thus, for this configuration (in the bipartite limit),

lim
L→∞

EW(A : B1B2) = lim
L→∞

[
EW(A : B1) + EW(A : B2)

]
. (70)
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AB1 B2

Figure 3. Alternate computation of the EWCS (dotted lines) for a single interval A (with rest of the
system B) in a finite temperature CFT2, dual to a planar bulk BTZ black hole geometry.

Computing the right-hand side of Equation (70), we obtain the EWCS for the biparti-
tion involving the interval A and the rest of the system B = Ac as follows:

EW(A : B) =
c
3

ln
(

β

πϵ
sinh

πl
β

)
− πcl

3β
+

c
3

ln 4. (71)

The holographic entanglement negativity for the mixed state configuration of a single
interval A in a CFT2 at a finite temperature dual to the bulk planar BTZ black hole may
now be obtained by utilizing Equations (45) and (71) as follows:

E =
c
2

ln
(

β

πϵ
sinh

πl
β

)
− πcl

2β
+

c
2

ln 4. (72)

The above expression matches exactly with the corresponding field theory replica technique
result for the entanglement negativity described in Equation (58) in the large central charge
limit up to a constant related to the Markov gap. Interestingly, the result for the holo-
graphic entanglement negativity for this mixed state configuration utilizing the alternate
holographic construction involving the algebraic sum of bulk geodesics as reported in [26]
matches exactly with the corresponding field theory replica technique results in the large c
limit without the constant. This once again indicates the equivalence of the two proposals
up to a constant.

In Figure 4, we have plotted the possible candidates for the EWCS as a function of
the inverse temperature β to compare our construction with that described in [43] for
this configuration. In Figure 4a, the two possible candidates (green and blue curves) for
the EWCS described in Equation (56) have been compared with our expression given in
Equation (71) without the third term (red curve). In Figure 4b, the proposed EWCS (blue
curve), as prescribed in [43], given in Equation (56), has been plotted along with the EWCS
modulo the constant (red curve) obtained by utilizing our alternative proposal, as described
in Equation (71). It is interesting to note that our proposed EWCS always remains strictly
less than that advanced in [43] for the range of β used in the plot. This conclusively singles
out our construction for the EWCS over the other proposal as the correct minimal EWCS,
which also reproduces the replica technique result described in [11], in the large c limit. We
also observe that Equations (56) and (71) asymptotically approaches each other in the limits
of high (β → 0) and low (β → ∞) temperatures. Naturally, this resolves the issue with
the holographic entanglement negativity for this configuration and restores the missing
thermal entropy term.
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Figure 4. Plots for different choices of EWCS against the inverse temperature for a single interval at a
finite temperature. Here, ϵ = 0.01 and l = 0.5. (a) EW /c vs. β plots for various candidates for EWCS.
(b) EW /c vs. β plots for EWCS utilizing the two different constructions.

6. Discussions and Conclusions

To summarize, we have established the equivalence modulo the Markov gap constant
of two different proposals in the literature for the holographic entanglement negativity
of bipartite states in the context of the AdS3/CFT2 correspondence. The first proposal
described in [26,30,32] involved an algebraic sum of the lengths of bulk geodesics homolo-
gous to certain combinations of subsystems, and the second one reported in [35,37] was
based on the EWCS backreacted by a cosmic brane for the conical defect of the replicated
bulk geometry in a gravitational path integral.

In this connection, we have analyzed and compared the results for the holographic
entanglement negativity following from the above two proposals for various bipartite state
configurations described by two disjoint intervals, two adjacent intervals, and a single
interval in dual CFT2s. We observe that the results obtained from these two proposals
match each other up to certain constants which arise from the Markov gap for the EWCS,
establishing their equivalence.

In this context, we have investigated a critical issue with the proposal involving the
backreacted EWCS for the holographic entanglement negativity of a single interval in a
finite temperature CFT2 dual to a bulk planar BTZ black hole. Specifically, the holographic
entanglement negativity obtained for the above configuration from the backreacted EWCS
excluded a subtracted thermal entropy term in the corresponding field theory replica tech-
nique result at large c. In this article, we have resolved this significant issue by proposing an
alternative construction for the EWCS of this configuration, which is actually the minimal
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one. Our construction involved the introduction of two large auxiliary intervals adjacent
to the single interval in question. Subsequently, a bipartite limit for this configuration
was implemented through the consideration of the auxiliary intervals to be infinite and
constitute the rest of the system. To this end, we utilized certain polygamy properties to
obtain the correct bulk EWCS for the single interval in a holographic CFT2. Interestingly,
our results following from the above construction reproduced the excluded thermal term
and matched the field theory replica technique result exactly in the large central charge limit
in the literature. Naturally, the holographic entanglement negativity proposal involving
the backreacted EWCS requires substantiation from explicit higher-dimensional examples
for generic AdSd+1/CFTd scenarios. However, the difficulties for the computation of the
EWCS for higher dimensions are well known. We hope to address some of these issues in
the near future.
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Appendix A. Entanglement Negativity of Two Disjoint Intervals

In this appendix, following [9,10,12], we describe the derivation of the entanglement
negativity for two disjoint intervals in a CFT2 through a replica technique in the large
central charge limit. The entanglement negativity for this case is described by a four-point
twist field correlator involving a non-universal function of the cross ratio x, which depends
on the full operator content of the theory. As described in [10], it is not possible to evaluate
this non-universal function analytically for general values of the cross ratio x. However,
it may be approximated in the large central charge limit for the regimes characterized
by x ≈ 0 and x ≈ 1 when the intervals are far away and in proximity, respectively.11

These two regimes are described in the s and t channel approximations for the four-point
correlator involving the fusion of distinct pairs of the twist fields.12 As shown in [10], the
non-universal function vanishes non-perturbatively in the regime x ≈ 0 for the s channel
at a large c. On the other hand, for the regime x ≈ 1 for the t channel, the four-point twist
correlator admits the following conformal block expansion, as described in [12]〈

Tne(z1)T ne(z2)T ne(z3)Tne(z4)
〉
C = ∑

p
F (c, hp, hi, x)F (c, h̄p, h̄i, x̄), (A1)

where the summation is taken over by all the primary operators with conformal dimensions
(hp, h̄p), and (hi, h̄i) represent the conformal dimensions of the twist operators on the left-
hand side of Equation (A1). Note that apart from some particular values of the parameters,
it is not possible to analytically derive F (c, hp, hi, x). In the semi-classical approxima-



Universe 2024, 10, 125 19 of 25

tion characterized by c → ∞ with hp/c, hi/c fixed, the conformal block exponentiates as
follows [66,67]:

F (c, hp, hi, x) ≈ exp
[
−(c/6) f (hp/c, hi/c, x)

]
. (A2)

The function f in Equation (A2) may be computed through the monodromy properties
of the solutions of a second-order differential equation.13 In the semi-classical regime, the
dominant contribution was shown to arise from the conformal block for the intermediate
operator with the lowest conformal dimension in the exchange channel.

For two disjoint intervals in proximity (x ≈ 1 in the t channel), the relevant intermedi-
ate operator with the lowest conformal dimension is T 2

ne [12]. Hence, the conformal block
with the conformal dimension hp = hT 2

ne
(≡ ĥ) provides the dominant contribution to the

correlator in Equation (A1). Utilizing Equation (A2), the correlator in Equation (A1) may
then be expressed at a large c as14

〈
Tne(z1)T ne(z2)T ne(z3)Tne(z4)

〉
C ≈ exp

[
−(c/3) f (ĥ/c, hi/c, x)

]
, (A3)

and the function f in this case is determined from a monodromy analysis to be [12]

f = (3/4) ln(1 − x), (A4)

which describes a universal divergent behavior as x approaches 1. The four-point twist
correlator in Equation (A3) may then be expressed at a large c as

lim
ne→1

〈
Tne(z1)T ne(z2)T ne(z3)Tne(z4)

〉
C = (1 − x)2ĥ. (A5)

The entanglement negativity for two disjoint intervals in proximity (x ≈ 1) may now be
computed from Equation (A5) as follows [12]:

E =
c
4

ln(1 − x) =
c
4

ln
(
|z13||z24|
|z14||z23|

)
, (A6)

where we have utilized the relation x ≡ (z12z34)/(z13z24). The solution for a general value
of the cross ratio x is not amenable to analytic methods; however, a consistent numerical
analysis has been described in [12], although several open issues remain.15

We note here that in [7], the entanglement entropy for two disjoint intervals at a large c
limit was shown to display a phase transition from its s channel value to its t channel value
at x = 1/2. Interestingly, in [12], a similar phase transition was demonstrated through
the numerical analysis described above for the corresponding entanglement negativity at
a large c, from its s channel value of zero to its t channel value given by Equation (A6),
although the corresponding critical value of x for the transition could not be established.
However, due to the existence of a correspondence between the classical geometries dual to
the Rényi entanglement entropy and the Rényi entanglement negativity, as shown in [13],
it could be expected that this phase transition also occurs at x = 1/2.

Appendix B. HEN and Replica Symmetry Breaking Saddle

In this appendix, we review a plausible derivation of the holographic proposal involv-
ing the algebraic sum of the areas of backreacting cosmic branes, as described in [61], which
utilized the replica symmetry breaking saddle reported in [68]. As discussed in [9,10], a
Rényi generalization for the entanglement negativity may be defined as follows:

N (k)(A : B) = Tr
[(

ρTB
AB

)k
]
=

Z
[
MA,B

2n

]
(Z[M1])

2n , (A7)
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where MA,B
2n denotes the replicated manifold for the entanglement negativity where dif-

ferent copies of the subsystem A are glued cyclically and the copies of B are glued anti-
cyclically, M1 denotes the original manifold, and Z denotes their respective path integrals.
The entanglement negativity is then given by the analytic continuation of even Rényi
negativities (k = 2n) defined above to k = 1 as

E(A : B) = lim
n→1/2

logN (k=2n)(A : B). (A8)

In holography, this implies that the entanglement negativity at the leading order is related
to the corresponding bulk gravitational on-shell actions in the saddle point approximation,
as follows:

Z[MA,B
2n ]

(Z[M1])2n =
Z[BA,B

2n ]

(Z[B1])2n = e2nIgrav[B1]−Igrav[B2n ] . (A9)

Note that the odd analytic continuation of Equation (A7) to k = 1 does not lead to
entanglement negativity but simply gives back the trace condition. Quite interestingly, the
authors in [68] demonstrated that the replica symmetric gravitational saddle is the same
for even and odd k and leads to a vanishing result for the entanglement negativity:

E (sym)(A : B) = lim
k→1

log N(sym)
k = 0. (A10)

The authors showed that, remarkably, the dominant saddle corresponding to the entan-
glement negativity breaks the replica symmetry in the bulk spacetime. The holographic
construction of the replica non-symmetric saddle is as follows: Consider 2n copies of
the bulk manifold which are cut along three non-overlapping codimension-one homol-
ogy hypersurfaces ΣA, ΣB and ΣAB that obey the homology condition ∂ΣX = X ∪ γX,
where γX is the codimension-two hypersurface homologous to X. Now, different homology
hypersurfaces are glued as follows:

• ΣA: odd-numbered copies of the bulk manifold are glued cyclically, whereas the even
ones are glued to themselves;

• ΣB: even-numbered copies of bulk manifold are glued anti-cyclically, whereas the odd
ones are glued to themselves;

• ΣAB: all the copies are glued pairwise.

Observe that the above construction respects the replica symmetry in the boundary;
however, it is explicitly broken from Z2n → Zn in the bulk. This led the authors in [68] to
consider the Zn quotient of the original manifold:

B̂A,B(nsym)
2n = BA,B(nsym)

2n /Zn. (A11)

This quotienting has the following effect on the corresponding gravitational on-shell actions:

Igrav

[
BA,B(nsym)

2n

]
≡ nIgrav

[
B̂A,B(nsym)

2

]
= nIgrav

(
MAB

2 , γ
(n)
A1

, γ
(n)
B2

)
, (A12)

where Igrav(MAB
2 , γ

(n)
A1

, γ
(n)
B2

) corresponds to the on-shell bulk action for the alternative

construction of the quotiented bulk manifold B̂A,B(nsym)
2 with conical deficits along the

codimension-two surfaces γ
(n)
A1

and γ
(n)
B2

(subscripts 1 and 2 simply indicate in which copy
the codimension-two surface is located), and having MAB

2 as its asymptotic boundary.
Substituting the above equation in Equation (A9) and utilizing the result obtained in
Equation (A7) lead to the following expression for the Rényi entanglement negativity:

log N(even,nsym)
2n = −n

[
I
(
MAB

2 , γ
(n)
A1

, γ
(n)
B2

)
− 2I(B1)

]
. (A13)
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Following the above result, in [61], the authors utilized a result for the bulk action away
from n = 1 given in [69,70] to arrive at the following expression for the on-shell action:

Igrav

(
MAB

2 , γ
(n)
A1

, γ
(n)
B2

)
= 2Igrav[B1] +

A(1/2)(γAB)

4G
+

(
1 − 1

n

)
A(n)(γA) +A(n)(γB)

4G
. (A14)

Implementing the limit n → 1/2 in the above equation, inserting it into Equation (A13), and
finally substituting the result obtained into Equation (A8) lead to the following expression
for the holographic entanglement negativity:

E(A : B) =
1

8GN

[
A(1/2)(γA) +A(1/2)(γB)−A(1/2)(γAB)

]
(A15)

=
1
2

I(1/2)(A : B), (A16)

where in the last line, I(1/2)(A : B) denotes the holographic Rényi mutual information
of order half for the bipartite system AB. Note that in order to arrive at Equation (A13),
the authors in [68] assumed that the subsystems A, B, and AB are together in a tripartite
pure state. Upon imposing this assumption in the holographic constructions for the
entanglement negativity of a single interval, two adjacent intervals, and two disjoint
intervals [26,30,32], the authors in [61] demonstrated that they all reduce to the above
expression.

Appendix C. HEN and Markov Gap

In this appendix, we describe the crucial role of the holographic Markov gap to
the holographic entanglement negativity proposals described in [28,32,35,37]. Before we
discuss the relation of the Markov gap to the holographic entanglement negativity, let us
briefly review the definition of the reflected entropy described in [36] and the holographic
Markov gap, as explained in [60]. To this end, consider a bipartite mixed state ρAB. There
exists a canonical purification |√ρAB⟩ in the doubled Hilbert spaces HA ⊗HB ⊗HA∗ ⊗
HB∗ . The von Neumann entropy of the bipartite state ρAA∗ , which is obtained from the
state |√ρAB⟩ by tracing over the degrees of freedom of BB∗, is known as the reflected
entropy [36]:

SR(A : B) = SAA∗ = −Tr(ρAA∗ log ρAA∗), (A17)

ρAA∗ = TrBB∗(|√ρAB⟩⟨
√

ρAB|). (A18)

Now, consider the action of a quantum channel RB→BC which acts on the bipartite mixed
state ρAB to produce a tripartite state ρ̃ABC:

ρ̃ABC = RB→BC(ρAB). (A19)

The Markov recovery process refers to reproducing the quantum state ρABC, whose re-
duction led to the bipartite mixed state ρAB through the operation of the above quantum
channel R, which acts on subsystem B alone. If ρ̃ABC = ρABC, the Markov recovery process
is said to be perfect and the state ρABC is said to be a quantum Markov chain for the order-
ing A → B → C. Furthermore, it has been shown through quantum information techniques
that this happens when the conditional mutual information I(A : C | B) vanishes [71]. This
result was further refined in [72], where the authors demonstrated that there exists a bound
expressed as follows:

I(A : C | B) ≥ − max
RB→BC

log F(ρABC,RB→BC(ρAB)), (A20)

where F(ρABC,RB→BC(ρAB)) is the quantum fidelity which is in unity when ρ̃ABC = ρABC
and zero when the two density matrices have support on orthogonal subspaces. This led the
authors to examine the above bound for the Markov recovery process of the reduced den-
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sity matrix ρABB∗ that occurs in the canonical purification ρABB∗ = TrA∗(|√ρAB⟩⟨
√

ρAB|).
This immediately implies the following constraint on the conditional mutual information
because of the above inequality:

I(A : B | B∗) ≥ − max
RB→BB∗

log F(ρABB∗ ,RB→BB∗(ρAB)), (A21)

SR(A : B)− I(A : B) ≥ − max
RB→BB∗

log F(ρABB∗ ,RB→BB∗(ρAB)), (A22)

where in the last line, the conditional mutual information I(A : B | B∗) is simply re-
expressed in terms of the reflected entropy and the mutual information which the authors
in [60] termed as the Markov gap. Furthermore, in the context of AdS3/CFT2, the authors
demonstrated that the above bound may be expressed geometrically as follows:

SR(A : B)− I(A : B) ≥ ℓAdS(log 2)
2GN

× (# of boundaries of EWCS) +O
(

1
GN

)
, (A23)

where ℓAdS refers to the AdS radius and the # of boundaries of EWCS denotes the number
of end points of EWCS in the bulk AdS3 geometry (boundaries at asymptotic infinity are
not considered as they are infinitely far away).

In order to understand the connection of the holographic Markov gap to the holo-
graphic entanglement negativity, consider an alternative proposal for it developed in [35,37].
As explained in detail in Section 4, the authors in [35] proposed that the holographic en-
tanglement negativity is given by the area of the backreacting EWCS. This proposal was
further refined in [37], where the authors related it to the Rényi reflected entropy of order
half as follows:

E0 =
1
2

S(1/2)
R (A : B) (A24)

=
Xd
2

SR(A : B), (A25)

where the second equality is valid when AA∗ and BB∗ share a spherical entangling surface
in higher dimensions or when AA∗ is a continuous interval in AdS3/CFT2 [37]. We have
denoted the entanglement negativity computed from this proposal as E0 to distinguish it
from that obtained through the proposal involving the mutual information of order half
in Equation (A16). Consider now the difference between the holographic entanglement
negativity computed using these two proposals:

E − E0 =
1
2

[
S(1/2)

R (A : B)− I(1/2)(A : B)
]

. (A26)

As discussed in Section 2.1, for subsystems with spherical entangling surfaces and in
AdS3/CFT2, the Rényi entropies of order half of A, B, and AB are proportional to their
corresponding von Neumann entropies, as given by Equation (8), and hence, the above
equation reduces to

E − E0 =
Xd
2

[
SR(A : B)− I(A : B)

]
, (A27)

E − E0 ≥ 3ℓAdS(log 2)
8GN

× (# of boundaries of EWCS) +O
(

1
GN

)
, (A28)

where in order to arrive at the last line of the above equation, we have utilized the inequality
given in Equation (A23) and X2 = 3/2. Thus, the difference between the entanglement
negativities computed from the two proposals is proportional to the Markov gap, which is
non-vanishing in a holographic CFT2, as described by the above equation.
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Notes
1 Several other measures to characterize mixed state entanglement have also been proposed in quantum information theory.

However, most of these involve optimization over LOCC protocols and are not directly computable.
2 The authors in [63] utilized a conformal map from a hyperbolic cylinder to the causal evolution of a subregion enclosed by a

spherical entangling surface in flat space. This in turn implies that the entanglement entropy of a spherical region in a CFT on a
flat Minkowski space is given by an integral of thermal entropy of a CFT on a hyperbolic cylinder. In the context of AdS/CFT
correspondence, this translates to computing the horizon entropy of a certain topological black hole by the well-known Wald
formula.

3 The trace norm for an arbitrary hermitian matrix M is given by ∥M∥ = Tr
(√

MM†
)

.

4 For details of this proof, refer to [61].
5 Note that sometimes the minimal surface Σmin

AB itself is referred to as the entanglement wedge cross section. The meaning is
usually clear from the context.

6 In the literature, the regime x ≈ 1 has been loosely stated as the limit x → 1. However, such a limit will force the EWCS to be
divergent and implies setting d → 0, which is not possible as d > ϵ, where ϵ is the UV cutoff in the CFT2.

7 A brief review of the determination of the entanglement negativity for disjoint intervals from a field theory replica technique
approach, as described in [10,12], has been provided in Appendix A.

8 The holographic Markov gap between the reflected entropy and the mutual information is briefly described in Appendix C. For
details, see [60].

9 In [43], the authors have indicated that for a single interval at a finite temperature with a length l ≫ β ln(
√

2+ 1)/π, the extensive
contribution is missing in the expression for the EWCS, as described in Equation (56).

10 Note that we have omitted a Markov gap term −(c/4) ln 4 on the right-hand side of Equation (63).
11 Note that, as explained in [10], the proximity regime x ≈ 1 does not involve setting the separation d between the intervals equal

to the UV cutoff ϵ in the CFT2 with a clear hierarchy l1, l2 >> d > ϵ. In particular, it is not equivalent to the limit x → 1, which
will force d = 0.

12 Note that the s and t channels are characterized by 0 < x < 1/2 and 1/2 < x < 1 respectively.
13 Refer to [12] for details of this monodromy technique and related computations.
14 Note that hi = 0 and ĥ = −c/8 in the replica limit ne → 1 [9,10,12].
15 Note that in [35], the corresponding bulk EWCS has been numerically evaluated assuming an ad hoc conformal block-like

expansion. As the EWCS is a bulk geometrical quantity, it is not clear from their analysis why such an expansion should be valid.
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