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Abstract: We consider geodesic motions in Kerr–Sen–AdS4 spacetime. We obtain equations of motion
for light rays and test particles. Using parametric diagrams, we show some regions where radial
and latitudinal geodesic motions are allowed. We analyze the impact of parameters related to the
dilatonic scalar on the orbit and find that it will result in more rich and complex orbital types.
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1. Introduction

Studying test particles and light rays in spacetimes has been a matter of interest for a
long time: it is an important channel for understanding black holes and predicts a number
of observational effects. The study of geodesic motion can be traced back to the early
work conducted by Hagihara [1], who analytically solved the equations of motion of test
particles and light rays in Schwarzschild spacetime. It has been shown that the geodesic
equations in Kerr, Reissner–Nordström, and Kerr–Newman spacetimes have the same
mathematical structure [2]. Since then, many works in the literature have extensively
investigated the equations of motion of particles and light rays in various spacetimes; see,
for example, [3–8]. The geodesic equations in some spacetimes can be analytically solved in
terms of the Weierstrass functions and the derivatives of Kleinian functions [4,6,9,10]. These
methods have been applied to higher dimensional black holes [11–14], to Taub-NUT and
wormhole spacetime [15,16], and to Kerr–Sen dilaton–axion black holes [9]. Recently, this
analytical approach has been further developed and applied to the hyperelliptic case, where
the analytical solutions of the equations of motion in the four-dimensional Schwarzschild–
(A)dS, Reissner–Nordström(A)dS, and Kerr–(A)dS spacetimes were presented [6,11,17–20].
The motions of test particles were also studied in various black string spacetimes [21–27].
The radial time-like geodesic motion of the exterior nonextremal Kerr spacetime was
classified in detail in [28]. Recently, Kerr geodesics in terms of Weierstrass elliptic functions
were discussed in [29]. Other works (see, for example, refs. [28,30–46]) also discussed the
possible geodesic motions in various spacetimes.

In ref. [47], a solution, including a nonzero negative cosmological constant for the
Kerr–Sen solution, was obtained. Kerr–Sen–AdS4 and Kerr–Newman–AdS4 black holes
have some similar properties, such as horizon geometry and conformal boundaries, but
they exhibit some significant physical differences; for example, the former does not violate
the reverse isoperimetric inequality, while the latter always strictly does. It is valuable
to investigate particle motion in Kerr–Sen–AdS4 spacetime, but analyses of the geodesic
motions for massive particles in the Kerr–Sen–AdS4 spacetime are still not presented. In
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this paper, we will fill this gap. We will investigate in detail the geodesic motions in the
background of the Kerr–Sen–AdS4 black hole.

The order of this paper is as follows. In Section 2, we give a brief review of the
Kerr–Sen–AdS4 metric. In Section 3, we present the equations for geodesic motions in
Kerr–Sen–AdS4 spacetime. In Section 4, we give a full analysis of the geodesic equations.
Finally, we will briefly summarize and discuss our results in Section 5.

2. The Kerr–Sen–AdS4 Black Hole Solution

The Lagrangian including a nonzero negative cosmological constant in four-dimensional
gauged Einstein–Maxwell dilaton–axion theory has the following form:

L =
√
−g
{

R − 1
2
(∂ϕ)2 − 1

2
e2ϕ(∂χ)2 − e−ϕF2 +

1
l2

[
4 + e−ϕ + eϕ

(
1 + χ2

)]}
+

χ

2
εµνρλFµνFρλ, (1)

where g is the determinant of the metric, R is the Ricci scalar, ϕ is the dilaton scalar field,
Fµν is the electromagnetic tensor, and F2 = FµνFµν, χ is the axion pseudoscalar field dual
to the three-form antisymmetric tensor H = −e2ϕ ⋆ dχ and H2 = Hµνσ Hµνσ, l is the
cosmological scale, and εµνρλ is the four-dimensional Levi–Civita antisymmetric tensor
density. A solution for this Lagrangian, called the Kerr–Sen–AdS4 black hole, was obtained
in [47]. Written in terms of Boyer–Lindquist coordinates, it takes the following form:

ds2 = −∆r

ρ2

(
dt − a sin2 θ

Ξ
dφ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

(
adt − r2 + 2br + a2

Ξ
dφ

)2

, (2)

where

∆r =

(
1 +

r2 + 2br
l2

)(
r2 + 2br + a2

)
− 2Mr, (3)

∆θ = 1 − a2

l2 cos2 θ, Ξ = 1 − a2

l2 , ρ2 = r2 + 2br + a2 cos2 θ, (4)

in which a = J/M is the angular momentum per unit mass of the black hole, b = Q2/2M
is the dilatonic scalar charge, M is the mass of the black hole, and Q is the charge of the
black hole. The horizons in metric (2) are given by ∆r = 0. The horizons are local at
∆r = 0, meaning that there could be up to four horizons, and one of them is probably
a cosmological horizon. In addition, the four parameters in (2) may not be completely
independent to avoid naked singularity; see, for example, if M2 + b2 − 2Mb − a2 < 0 for a
zero cosmology constant, and Equation (2) presents a naked singularity spacetime. Here,
we focus on exploring the case of Equation (2), representing a black hole.

For the convenience of discussion, we give contravariant metric components as follows:

gtt = − (r2 + 2br + a2)2∆θ sin2 θ − a2 − a2∆r sin4 θ

ρ2∆θ∆r sin2 θ
,

grr =
∆r

ρ2 ,

gθθ =
∆θ

ρ2 , (5)

gφφ = − (a2∆θ sin2 θ − ∆r)Ξ2

ρ2∆θ∆r sin2 θ
,

gtφ = gφt =
(a∆r sin2 θ − a∆θ(r2 + 2br + a2) sin2 θ)Ξ

ρ2∆θ∆r sin2 θ
.
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The Kerr–Sen–AdS4 black hole (2) reduces to the Kerr–AdS4 solution [48,49] for b = 0
and reduces to the Kerr–Sen solution [50] when l tends to infinity.

3. The Geodesic Equations

In this section, we will derive the equations of motion for massive particles, the
background of Kerr–Sen–AdS4 black holes (2), by using the Hamilton–Jacobi formalism,
and later we will introduce effective potentials for the r and θ motion. The Hamilton–Jacobi
equation is

∂S
∂τ

+
1
2

gij ∂S
∂xi

∂S
∂xj = 0, (6)

which can be solved with an ansatz for the action

S =
1
2

τ − Et + Lzϕ + Sθ(θ) + Sr(r). (7)

where τ is an affine parameter along the geodesic. The energy E and the angular momentum
L, two constants of motion, are related to the the generalized momenta Pt and Pϕ as

Pt = gtt ṫ + gtφ φ̇ = −E, Pϕ = gφφ φ̇ + gtφ ṫ = L, (8)

where the dot denotes the derivative with respect to τ. Since gtφ depends on b, this param-
eter will affect the energy E and the angular momentum L of the test particle compared
with the case in the Kerr–AdS4 solution [6,18]. Using Equations (6)–(8), we have

∆θ

(
∂S
∂θ

)2
+ a2 cos2 θ − 2aELΞ − E2a2 sin2 θ

∆θ
+

L2Ξ2

∆θ sin2 θ

= −∆r

(
∂S
∂r

)2
−
(

r2 + 2br
)
+

(
r2 + 2br + a2)2E2 + a2L2Ξ2 − 2a

(
r2 + 2br + a2)ELΞ

∆r
.

(9)

The left-hand side of Equation (9) depends only on θ, and the right-hand side depends only
on r. With the ansatz Equation (7) and the Carter constant [51], we obtain the equations of
motion for massive particles:

ρ4
(

dr
dτ

)2
= −∆r

[
K +

(
r2 + 2br

)]
+
[(

r2 + 2br + a2
)

E − aLΞ
]2

, (10)

ρ4
(

dθ

dτ

)2
= ∆θ

(
K − a2 cos2 θ

)
− 1

sin2 θ

(
aE sin2 θ − LΞ

)2
, (11)

ρ2
(

dφ

dτ

)
=

a
(
r2 + 2br + a2)EΞ − a2LΞ2

∆r
− 1

∆θ sin2 θ

(
aEΞ sin2 θ − LΞ2

)
, (12)

ρ2
(

dt
dτ

)
=

E
(
r2 + 2br + a2)2 − a

(
r2 + 2br + a2)LΞ

∆r
− sin2 θ

∆θ

(
a2E − aLΞ

sin2 θ

)
, (13)

where K is the Carter constant [51]. From Equation (11), we have a bound on the Carter
constant: K ≥ (aE − LΞ)2. Bounds on the Carter constant for Kerr black holes were first
discussed in [51,52], and stronger bounds on the Carter constant for Kerr black holes were
discussed in detail in [28].
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From Equations (10) and (11), we introduce two effective potentials, Vre f f and Vθe f f ,

such that Vre f f = E and Vθe f f = E, corresponding to
(

dr
dτ

)2
= 0 and

(
dθ
dτ

)2
= 0, respectively,

Vre f f =
aLΞ ±

√
∆r[K + (r2 + 2br)]

r2 + 2br + a2 , (14)

Vθ e f f =
LΞ ±

√
∆θ(K − a2 cos2 θ) sin2 θ

a sin2 θ
. (15)

Vre f f is finite at r = 0 due to the presence of a; however, if r = −b ±
√

b2 − a2, it will
diverge. Vθ e f f is finite for θ = π/2, while it will diverge for θ = 0. To simplify the
equations of motion, we adopt the Mino time λ [53] connected to the proper time τ via
dτ
dλ = ρ2, and then the equations of motions can be rewritten as

(
dr
dλ

)2
= −∆r

(
K + r2 + 2br

)
+
[(

r2 + 2br + a2
)

E − aLΞ
]2

, (16)

(
dθ

dλ

)2
= ∆θ

(
K − a2 cos2 θ

)
− 1

sin2 θ

(
aE sin2 θ − LΞ

)2
, (17)

dφ

dλ
=

a
(
r2 + 2br + a2)EΞ − a2LΞ2

∆r
− 1

∆θ sin2 θ

(
aEΞ sin2 θ − LΞ2

)
, (18)

dt
dλ

=
E
(
r2 + 2br + a2)2 − a

(
r2 + 2br + a2)LΞ

∆r
− sin2 θ

∆θ

(
a2E − aLΞ

sin2 θ

)
. (19)

Introducing some dimensionless quantities to rescale the parameters

r̃ =
r
M

, ã =
a
M

, t̃ =
t

M
, L̃ =

L
M

, l̃ =
l

M
, b̃ =

b
M

, K̃ =
K

M2 , γ = Mλ, (20)

then the equations of motion (16)–(19) can be formulated as

(
dr̃
dγ

)2
= −∆r̃

(
K̃ + r̃2 + 2b̃r̃

)
+
[(

r̃2 + 2b̃r̃ + ã2
)

E − ãL̃Ξ
]2

≡ R̃(r̃), (21)

(
dθ

dγ

)2
= ∆θ

(
K̃ − ã2 cos2 θ

)
− 1

sin2 θ

(
ãE sin2 θ − L̃Ξ

)2
≡ Θ̃(θ), (22)

dφ

dγ
=

ã
(
r̃2 + 2b̃r̃ + ã2)EΞ − ã2 L̃Ξ2

∆r̃
− 1

∆θ sin2 θ

(
ãEΞ sin2 θ − L̃Ξ2

)
, (23)

dt̃
dγ

=
E
(
r̃2 + 2b̃r̃ + ã2)2 − ã

(
r̃2 + 2b̃r̃ + ã2)L̃Ξ

∆r̃
− sin2 θ

∆θ

(
ã2E − ãL̃Ξ

sin2 θ

)
, (24)

where

∆θ = 1 − ã2

l̃2
cos2 θ = 1 − a2

l2 cos2 θ, ∆r̃ =

(
1 +

r̃2 + 2b̃r̃
l̃2

)(
r̃2 + 2b̃r̃ + ã2

)
− 2r̃. (25)

And the effective potentials can be expressed in terms of a dimensionless quantity as

Ṽre f f =
ãL̃Ξ ±

√
∆r̃
(
K̃ + r̃2 + 2b̃r̃

)

r̃2 + 2b̃r̃ + ã2
, (26)

Ṽθe f f =
L̃Ξ ±

√
∆θ

(
K̃ − ã2 cos2 θ

)
sin2 θ

ã sin2 θ
. (27)



Universe 2024, 10, 133 5 of 15

4. Analysis of the Geodesic Equations

In this section, we will give a full analysis of the geodesic equations of motion in the
Kerr–Sen–AdS4 spacetime and investigate the possible orbit types.

In ref. [6], two theorems were proved for the case of the Kerr–AdS4 solution. We find
those two theorems still holds for the Kerr–Sen–AdS4 solution (2), though the parameter b
will change the values of the Carter constant K̃, the energy Ẽ, and the angular momentum L̃:

Theorem 1. The modified Carter constant Q̃ ≡ K̃ −
(
ãE − L̃Ξ

)2 is zero if a geodesic lies entirely
in the equatorial plane θ = π/2 or if it hits the ring singularity ρ = 0.

Proof. For a geodesic that lies entirely in the equatorial plane, one has θ(γ) = π/2 for all
γ, implying that (Θ(θ) = dθ/dγ)2 = 0, which gives

0 = Θ̃
(

θ =
π

2

)
= K̃ −

(
ãE − L̃Ξ

)2 ≡ Q̃. (28)

If a geodesic hits the ring singularity, there is a γ such that r̃(γ) = 0 and θ(γ) = π/2. Since
R̃(r̃) ≥ 0 and Θ̃(θ) ≥ 0 for all γ and θ, in particular for r̃ = 0 and θ = π/2, it follows

0 ≤ R̃(0) = −ã2
[
K̃ −

(
ãE − L̃Ξ

)2
]
= −ã2Q̃ ⇒ Q̃ ≤ 0. (29)

And as above, Θ̃(π/2) = Q̃ ≥ 0. Combining these two results yields Q̃ = 0.

Theorem 2. All time-like and null geodesics have K̃ ≥ 0 if 1 > ã2/l̃2. In this case, K̃ = 0 implies
Q̃ = 0 and the geodesic lies entirely in the equatorial plane.

Proof. A geodesic can only exist if there are values for r̃(γ) with R̃(r̃) ≥ 0 and θ(γ) with
Θ(θ̃) ≥ 0. From 1 > ã2/l̃2, one has ∆θ = 1 − a2

l2 cos2 θ > 1 − cos2 θ ≥ 0. If K̃ < 0, then

Θ̃(θ) ≡ ∆θ

(
K̃ − ã2 cos2 θ

)
− 1

sin2 θ

(
ãE sin2 θ − L̃Ξ

)2
≤ 0 (30)

for all values of θ. If now K̃ = 0, consequently

Θ̃(θ) = −∆θ ã2 cos2 θ − 1
sin2 θ

(
ãE sin2 θ − L̃Ξ

)2
≤ 0. (31)

Θ̃(θ) = 0 only if cos2 θ = 0 and additionally ãE sin2 θ − L̃Ξ = ãE − L̃Ξ = 0.

From these two theorems, it is obvious that the modified Carter constant Q̃ has
a geometric interpretation since it is related to possible θ values of the orbits. These
two theorems will be useful in the study of geodesic motion in the background of a rotating
black hole.

Types of Latitudinal Motion

First we consider the function Θ̃(θ) in Equation (22) for massive particle. Let v = cos2 θ
with v ∈ [0, 1]; the function Θ̃ can be written as

Θ̃(v) =
(

1 − ã2

l̃2
v
)(

K̃ − ã2v
)
− 1

1 − v
[
ãE(1 − v)− L̃Ξ

]2. (32)

Geodesic motion is possible only for Θ̃(v) ≥ 0, which also implies that K̃ ≥ 0 in all
spacetimes with 1 > ã2/l̃2. The zeros of Θ̃(θ) are the turning points of the latitudinal
motion. Assuming that Θ̃(v) has some zeros in [0, 1], the number of zeros changes only if
(i) a zero crosses 0 or 1 or (ii) a double or triple zero occurs. If v = 0 is a zero, then
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Θ̃(v = 0) = K̃ −
(
ãE − L̃Ξ

)2, (33)

or

L̃ =
ãE ±

√
K̃

Ξ
. (34)

From Equation (32), we see that v = 1 is a pole of Θ̃(v) for L̃ ̸= 0. So v = 1 is a zero of
Θ̃(v) only if L̃ = 0; therefore, we have

Θ̃(v = 1, L̃ = 0) =
(

1 − ã2

l̃2

)(
K̃ − ã2

)
. (35)

So for Θ̃(v = 1, L̃ = 0) = 0, we have K̃ = ã2. In order to remove the pole of Θ̃(v) at v = 1,
we consider another function

Θ̃′(v) = (1 − v)
(

1 − ã2

l̃2
v
)(

K̃ − εã2v
)
−
[
ãE(1 − v)− L̃Ξ

]2, (36)

where Θ̃(v) = 1
1−v Θ̃′(v). The double zeros satisfy the following conditions,

Θ̃′(v) = 0 and
dΘ̃′(v)

dv
= 0, (37)

which implies

L̃ =

(
6E ±

√
36E2 − 36

l̃2 K̃
)(

− 12
l̃2 ã2 + 12

)

− 144
l̃2 ãΞ

. (38)

We can use this information to analyze the θ motion of all possible geodesics for
given parameters of the black hole, ã, b̃, and l̃. We see that Equation (32) does not depend
obviously on the parameter b̃, but it will change the number of zeros or the positions of
the zeros via changing the Carter constant K̃, the energy Ẽ and the angular momentum L̃
compared with the case for the Kerr–AdS4 solution in Einstein’s gravity [6,18] or the case
for the Kerr–AdS4 solution with q = 0 in f (R) gravity [4].

We plot parametric L̃ − E2 diagrams in Figure 1 from the condition of v = 0 being
a zero (Equation (34)) and the condition of double zeros (Equation (38)). The half plane
is divided into four regions by the curves. The boundaries of region a are given by

L̃ = ãE±
√

K̃
Ξ , which will get lager if K̃ grows, or it will shift up or down if ã changes. In

regions a and b, geodesic motions are possible because in all other regions Θ(v) is negative
for all v ∈ (0, 1). The function Θ̃ has a single zero in region a, where the geodesics will
cross the equatorial plane (K̃ > (ãE − L̃Ξ)2 or Q̃ > 0). In region b, the function Θ̃ has
two zeros, corresponding to motion above or below the equatorial plane (K̃ < (ãE − L̃Ξ)2

or Q̃ < 0). If K̃ = (ãE − L̃Ξ)2, according to the Theorem 1, the geodesics will remain in the
equatorial plane.

We note that Equation (36) may have triple zeros which satisfy the following conditions:

Θ̃′(v) = 0,
dΘ̃′(v)

dv
= 0, and

dΘ̃′2(v)
dv2 = 0. (39)

In Figure 2, we plot the L̃ − E diagram for the triple root of function Θ̃ with some
special values of parameters. We observe that L̃ has two branches: the inferior branches de-
crease as E increases and run close to zero, while the upper branches increase as E increases.
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0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

3

4

a

b

E2

̃L

Figure 1. Parametric L̃ − E2-diagram for the function Θ̃ with ã = 0.4, K̃ = 3, l̃2 = 3× 105. Θ̃ possesses
one zero in region a and two zeros in region b. In the grey areas, geodesic motion is not allowed.

0 2 4 6 8 10

E

−5

0

5

10

15

20

25

30

L̃

ã = 0.4, K̃ = 3, l̃2 = 3× 105

ã = 0.7, K̃ = 3, l̃2 = 4× 105

ã = 0.7, K̃ = 5, l̃2 = 4× 105

ã = 0.9, K̃ = 5, l̃2 = 3× 105

Figure 2. Parametric L̃ − E diagram for the triple root of function Θ̃ with some special values
of parameters.

5. Analysis of the Radial Geodesic Equations

In this section, we will give a full analysis of the radial geodesic equations of motion
in the background of Kerr–Sen–AdS4 black holes and investigate the possible types of orbit,
the equatorial circular orbits, and the innermost stable circular orbits for massive particles.

5.1. Types of Radial Motion

For massive particles, a radial geodesic motion is possible if R̃(r̃) ≥ 0. The zeros of
the function R̃ in Equation (21) are the turning points of orbits of particles, so R̃(r̃) = 0
determines the possible types of orbits. Since the polynomial R̃(r̃) is of degree six in r̃ for
massive particles, see that, for example, the expansion of R̃(r̃) takes the form

R̃(r̃) = f0 + f1r̃ + · · ·+ f6r̃6, (40)
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where

f0 = E2 ã4 − 2EΞã3 L̃ − ã2K̃ + Ξ2 ã2 L̃2, (41)

f1 = 4E2 ã2b̃ − 4EΞãb̃L̃ − 2ã2b̃K̃
l̃2

− 2ã2b̃ − 2b̃K̃ + 2K̃, (42)

f2 = −4ã2b̃2

l̃2
+ 2E2 ã2 − 2EΞãL̃ − ã2K̃

l̃2
− ã2 + 4E2b̃2 − 4b̃2K̃

l̃2
− 4b̃2 + 4b̃ − K̃, (43)

f3 = −4ã2b̃
l̃2

+ 4E2b̃ − 4b̃K̃
l̃2

− 8b̃3

l̃2
− 4b̃ + 2, (44)

f4 = − ã2

l̃2
− 12b̃2

l̃2
+ E2 − K̃

l̃2
− 1, (45)

f5 = −6b̃
l̃2

, (46)

f6 = − 1
l̃2

, (47)

so it has, in general, six possibly complex zeros of which the real zeros are of interest for
the type of motion. The parameter b̃ will change the number of zeros or the positions of the
zeros for other parameters taking the same values in the Kerr–AdS4 case [6,18]. If r̃ = 0 is
an allowed value of r̃(γ), we have

0 ≤ R̃(0) = −ã2
[
K̃ −

(
ãE − L̃Ξ

)2
]
= −ã2Q̃. (48)

Therefore, r̃ = 0 can only be crossed if Q̃ ≤ 0, which corresponds to region b of the θ
motion. Since Q̃ > 0 in region a of the θ motion, a transition from positive to negative r̃ is
not possible. The number of real zeros of R̃ changes if a double zero occurs:

R̃(r̃) = 0 and
dR̃(r̃)

dr̃
= 0. (49)

When the number of real zeros R̃ changes, the type of orbit will change.
Now, we discuss the possible types of orbit on which R̃(r̃) ≥ 0. The types of orbit

were discussed in detail in [4,6]. For the sake of discussion, we consider a black hole with
two horizons to illustrate this point. Let r1 and r2 denote the roots of R̃(r̃), let r̃+ be the
outer event horizon, and let r̃− be the inner event horizon.

1. Transit orbit (TrO): −∞ < r̃ < ∞. The particle starts from ±∞ and goes to ∓∞.
2. Escape orbit (EO): r1 ≤ r̃ < ∞ with r1 > r̃+, or −∞ < r̃ ≤ r1 with r1 < r̃−.

The particle approaches the black hole but turns around at a certain point to escape
towards infinity.

3. Two-world escape orbit (TEO): r1 ≤ r̃ < ∞ with r1 < r̃−, or −∞ < r̃ ≤ r1 with
r1 > r̃+. The particle crosses the horizon twice and can enter another universe.

4. Crossover one-world escape orbit (COEO): r̃− < r1 < r̃+ with r1 ≤ r̃ < ∞ or
−∞ < r̃ ≤ r1. The particle crosses the outer horizon or inner horizon and can enter
another universe.

5. Bound orbit (BO): r1 ≤ r̃ ≤ r2 with r1, r2 > r̃+ or r1, r2 < r̃− or r̃− < r1, r2 < r̃+.
The particle oscillates between r1 and r2.

6. Crossover one-world bound orbit (COBO): r1 ≤ r̃ ≤ r2 with r1 < r̃− and r̃− < r2 <
r̃+, or r1 ≤ r̃ ≤ r2 with r̃− < r1 < r̃+ and r2 > r̃+. The particle oscillates between r1 and r2
and crosses the inner or outer horizon.

7. Many-world bound orbit (MBO): r1 ≤ r̃ ≤ r2 with r2 > r̃+ and r1 < r̃−. The particle
crosses the horizon multiple times and can enter another universe.

8. Circular orbit (CO): R̃(r̃) has real double roots. The particle circles around the black
hole with r1 = r2 ≥ r̃+ (COO), when r1 = r2 = r̃+, the orbits are confined at the even
event horizon. The particle circles outside the inner horizon with r1 = r2 < r̃− (COI), when
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r1 = r2 = r̃−, the orbits are confined at the even inner horizon. The particle circles in the
black hole with r̃− < r1 = r2 < r̃+ (COIn).

In the following, we will discuss in detail the types of orbit for the radial geodesic
motion of massive particles.

First, we discuss in detail two cases: R̃(r̃) has no real zero or has two real zeros. Other
cases can be discussed similarly but are much more complex. Because the more zeros there
are, the more types of orbits there are.

Region I: R̃ has no real zero. If Q̃ < 0, we have R̃(r̃) > 0 with r̃ ∈ (−∞,+∞), orbit
type: TrO. If Q̃ = 0, we have r̃ ∈ [0,+∞), orbit type: TEO.

Region II: R̃ has two real zeros. There are two cases needed to consider: these two zeros
are a double zero or they are not.

Case A: these two zeros are not a double zero.
(1) If Q̃ ≥ 0: (a) r1 ≤ r̃ ≤ r2 with r1, r2 > r̃+ or r1, r2 < r̃− or r̃− < r1, r2 < r̃+, orbit

type: BO; (b) r1 ≤ r̃ ≤ r2 with r1 < r̃− and r̃− < r2 < r̃+, or with r̃− < r1 < r̃+ and r2 > r̃+,
orbit type: COBO; (c) r1 ≤ r̃ ≤ r2 with r2 > r̃+ and r1 < r̃−, orbit type: MBO; (d) r̃ ≤ r1
with r1 < 0 or r̃ ≥ r2 with r2 < r̃−, orbit type: EO or TEO; (e) r̃ ≤ r1 with r1 < 0 or r̃ ≥ r2
with r̃− < r2 < r̃+, orbit type: EO or COEO; (f) r̃ ≤ r1 with r1 < 0 or r̃ ≥ r2 with r2 > r̃+,
orbit type: EO.

(2) If Q̃ ≤ 0: (a) r1 ≤ r̃ ≤ r2 with r1 ≤ 0 and r2 < r̃−, orbit type: BO; (b) r1 ≤ r̃ ≤ r2
with r1 ≤ 0 and r̃− < r2 < r̃+, orbit type: COBO; (c) r1 ≤ r̃ ≤ r2 with r2 > r̃+ and
r1 ≤ 0, orbit type: MBO; (d) r̃ ≤ r1 or r̃ ≥ r2 with r1 < r2 < 0, orbit type: EO or
TEO; (e) r̃ ≤ r1 or r̃ ≥ r2 with 0 ≤ r1 < r2 < r̃−, orbit type: EO or TEO; (f) r̃ ≤ r1 or
r̃ ≥ r2 with 0 ≤ r1 < r̃− < r2 < r̃+, orbit type: EO or COEO; (g) r̃ ≤ r1 or r̃ ≥ r2 with
r̃− < r1 < r2 < r̃+, orbit type: COEO; (h) r̃ ≤ r1 or r̃ ≥ r2 with 0 ≤ r1 < r̃− < r̃+ < r2,
orbit type: EO; (i) r̃ ≤ r1 or r̃ ≥ r2 with r̃− < r1 < r̃+ < r2, orbit type: COEO or EO; (j)
r̃ ≤ r1 or r̃ ≥ r2 with r̃+ < r1 < r2, orbit type: TEO or EO.

Case B: those two zeros are a double zero.
If r1 = r2 > r̃+, orbit type: COO; if r1 = r2 < r̃−, orbit type: COI; if r̃− < r1 = r2 < r̃+,

orbit type: COIn.
Region III: R̃ has four real zeros and R̃(r̃) ≥ 0. Possible orbit types: EO, TEO, CO, BO,

COBO, MBO, COEO.
Region IV: all six zeros of R̃ are real and R̃(r̃) ≥ 0. Possible orbit types: EO, TEO, CO,

BO, COBO, MBO, COEO.
From the condition of double zero, we can plot parametric L̃ − E2 diagrams; see, for

example, in Figure 4. The polynomial R̃ has two positive zeros in the left region IIa, one
negative and one positive zero in the right region IIa, four positive zeros in left region IIIa,
three positive and one negative zeros in right region IIIa for the left figure, and for the right
figure, there are no zeros in region Ib, one negative and one positive zero in region IIa, two
negative zeros in region IIb, four positive zeros in the left region IIIa, three positive and
one negative zeros in the right region IIIa. In regions marked with the letter “a”, the orbits
cross θ = π/2 but not r̃ = 0, whereas in regions marked with the letter “b”, r̃ = 0 can be
crossed but θ = π/2 is never crossed. The θ equation dose not allow geodesic motion in
the grey areas. The L̃ − E2 diagrams for Kerr, Kerr–AdS4, and Kerr–dilaton spacetime are
also presented for compariso; there are four positive zeros on the left side of the vertical
line, while there are three positive and one negative zeros on the other side in region IIIa.

As shown in [6], a non-vanishing cosmological constant can dramatically change
the possible structure of orbits and the L̃ − E2 diagram. See, for example, the following:
compared with the Λ = 0 case, the region in L̃ − E2 with four real zeros of R̃(r̃) becomes
larger for Λ < 0, and the transit orbit in region where R̃(r̃) has no real zero is transformed
to a bound orbit in the region where R̃(r̃) has two real zeros for Λ < 0. However, these
might not necessarily be the cases here, because parameter b will affect the evolution of
R̃(r̃). See in Figures 3 and 4 that region III becomes lager when parameter b̃ is nonzero,
while a vertical line switch from limr̃→∞R̃(r̃) = ∞ to limr̃→∞R̃(r̃) = −∞ appears when the
cosmological constant is nonzero.
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We observe from the discussions above that the parameter b will result in rich and
complex orbital types compared to the case of Kerr–AdS4 [6]. To be more specific about this
point, we consider an interesting case: r̃ = 0 as a double zero of R̃. From R̃(0) = 0 yields

ã = 0, or K̃ =
(
ãE − L̃Ξ

)2. (50)

From dR̃
dr̃ (0) = 0, we have

b̃ = 1, or b̃ =

(
Eã − L̃Ξ

)2 l̃2

E2 ã4 − E2 ã2 l̃2 − 2 EL̃Ξã3 + L̃2Ξ2 ã2 + L̃2Ξ2 l̃2 + ã2 l̃2
. (51)

We find that r̃ = 0 is not a double zero of R̃ in the case of Kerr–AdS4 with ã = 0 [6], but it is a
double zero of R̃ in the case of Kerr–Sen–AdS4 with ã = 0 and b̃ = 1. If Eã = L̃Ξ, then r̃ = 0
is a double zero of R̃ for both the case of Kerr–AdS4 [6] and the case of Kerr–Sen–AdS4 with
b̃ = 0. If Eã ̸= L̃Ξ (b̃ ̸= 0), r̃ = 0 is a double zero of R̃ only for the case of Kerr-Sen-AdS4.

In Figure 5, we show the effective potential together with examples of energies for
different orbit types. The green and blue curves represent the two branches of the effective
potential. The red dots, which are the turning points of the orbits, denote the zeros of
the polynomial R̃(r̃). The red dashed lines in the grey area correspond to energies. Since
R̃(r̃) < 0, no motion is possible in the grey area. The θ equation does not allow geodesic
motion (Θ̃ < 0) in the oblique lines area.
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Figure 3. Combined L̃ − E2 diagrams of the r̃ motion (green lines) and θ motion (blue lines) with
ã = 0.7, K̃ = 12, and b̃ = 0, l̃2 = ∞ in left column; b̃ = 0, l̃2 = 3 × 105 in middle column; b̃ = 0.175,
l̃2 = ∞ in right colum. In regions marked with “a”, the orbits cross θ = π/2 but not r̃ = 0. The θ

equation does not allow geodesic motion in the grey areas.
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Figure 4. Combined L̃ − E2 diagrams of the r̃ motion (green lines) and θ motion (blue lines) with
ã = 0.7, K̃ = 12, b̃ = 0.175, l̃2 = 3 × 105. In regions marked with “b”, r̃ = 0 can be crossed but
θ = π/2 is never crossed.
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Figure 5. Plots of the effective potential: ã = 0.8, K̃ = 12, b̃ = 0.175, l̃2 = 1
3 × 10−5, L̃ = 0.45 (for

left column), and L̃ = 0.5 (for right column). The blue and green curves show the two branches of
the effective potential. The red dashed lines correspond to energies. The red dots mark the zeros of
the polynomial R. No motion is possible in the grey area. No θ geodesic motions are allowed in the
dashed oblique lines area. The vertical black dashed lines represent the position of the horizons.

5.2. Circular Orbits and Equatorial Circular Orbits

For the circular orbits (COs), we have the conditions: R̃(r̃) = 0 and dR̃(r̃)/dr̃ = 0;
namely, rco is a double root of R̃(r̃). If a double root of R̃(r̃) locates at the horizon, the orbits
will be confined at this horizon. Stable circular orbits with r̃0 occur if radial coordinates
adjacent to r̃0 are not allowed due to R(r̃), which happens if r̃0 is a maximum of R; namely,
the orbit is radially (vertically) stable (unstable) if ∂2

r̃ Ṽre f f ≤ 0 (∂2
r̃ Ṽre f f > 0). Because the

expression of this inequality is very complex, we cannot provide an analytical solution;
however, we can give some numerical solutions. Taking ã = 0.7, L̃ = 0.5, b̃ = 0.1, l̃ = ∞,
and K̃ = 12, the double zero conditions give rco = 0.96, and the inequality ∂2

r̃ Ṽre f f ≤ 0
gives r̃ < −0.8, −0.75 < r̃ < 0.33, 1.45 < r̃ < 4.32, 6.16 < r̃ < 9.76, and r̃ > 13.51. So, the
CO in this case is unstable.

The equatorial circular orbit (ECO) is a type of circular obit which lies in the equatorial
plane. The angular velocity for particles is defined as: Ω = φ̇/ṫ. For circular orbits in the
equatorial plane, ṙ = θ̇ = r̈ = 0 (equivalently Vre f f = 0 and Vre f f ,r = 0, reco is the double
root of R(r)); we have from Equation (8)

Ω =
−∂rgtφ ±

√(
∂rgtφ

)2 − (∂rgtt)
(
∂rgφφ

)

∂rgφφ

=

ρ2(a2 − l2)2
[

2a((b+r)(a2+2r(2b+r))−l2 M)
ρ2(a2−l2)

± 2
√

l2(b+r)(a2(b+r)(2r(2b+r)+l2)+2r(2b+r)(r(4b2+l2)+l2(b−M)+6br2+2r3))

ρ4(a2−l2)
2

]

2l2[−a4(b + r) + a2(r(l2 − 4b2) + l2(b + M)− 6br2 − 2r3) + 2l2r(b + r)(2b + r)]
,

(52)

where the +/− sign refers to corotating/counterrotating orbits, namely orbits with angular
momentum parallel (antiparallel) to the spin of the central object. In this case, the energy E
and the angular momentum L, respectively, take the form

E = −
(

gtt + Ωgtφ

)
ṫ (53)

=
∆r
[
a2 + l2(aΩ − 1)

]
− a∆θ

[
a3 + a2Ωl2 − al2 + Ωl2r(2b + r)

]

ρ

√
∆r(a2 + l2(aΩ − 1))2 − ∆θ(a3 + a2Ωl2 − al2 + Ωl2r(2b + r))2

, (54)

L =
(

gtφ + Ωgφφ

)
ṫ (55)

=
l2[∆θ

(
a2 + r(2b + r)

)(
a3 + a2Ωl2 − al2 + Ωl2r(2b + r)

)
− a∆r

(
a2 + l2(aΩ − 1)

)]

ρ2(a − l)2(a + l)2

√
∆r(a2+l2(aΩ−1))2−∆θ(a3+a2Ωl2−al2+Ωl2r(2b+r))2

ρ2(a−l)2(a+l)2

. (56)
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In terms of dimensionless quantity, the angular velocity Ω, the energy E, and the
angular momentum L can be expressed as

Ω =

ρ̃2(ã2 − l̃2)2
[

2ã((b̃+r̃)(ã2+2r̃(2b̃+r̃))−l̃2)
ρ̃2(ã2−l̃2)

± 2

√
l̃2(b̃+r̃)(ã2(b̃+r̃)(2r̃(2b̃+r̃)+l̃2)+2r̃(2b̃+r̃)(l̃2(b̃+r̃−1)+2r̃(b̃+r̃)(2b̃+r̃)))

ρ̃4(ã2−l̃2)
2

]

2l̃2
[
ã2
(
l̃2
(
b̃ + r̃ + 1

)
− 2r̃

(
b̃ + r̃

)(
2b̃ + r̃

))
− ã4

(
b̃ + r̃

)
+ 2l̃2r̃

(
b̃ + r̃

)(
2b̃ + r̃

)] (57)

E =
∆r̃
[
l̃2(Ωã − 1) + ã2]− ã

[
Ωã2 l̃2 − ãl̃2 + ã3 + Ωl̃2r̃

(
2b̃ + r̃

)]

ρ̃2
(
ã2 − l̃2

)
√

∆r̃[l̃2(Ωã−1)+ã2]
2−[Ωã2 l̃2−ãl̃2+ã3+Ωl̃2 r̃(2b̃+r̃)]

2

ρ̃2(ã2−l̃2)
2

, (58)

L =
l̃2[(ã2 + r̃

(
2b̃ + r̃

))(
Ωã2 l̃2 − ãl̃2 + ã3 + Ωl̃2r̃

(
2b̃ + r̃

))
− ã∆r̃

(
l̃2(Ωã − 1) + ã2)]

ρ̃2
(
ã2 − l̃2

)2
√

∆r̃[l̃2(Ωã−1)+ã2]
2−[Ωã2 l̃2−ãl̃2+ã3+Ωl̃2 r̃(2b̃+r̃)]

2

ρ̃2(ã2−l̃2)
2

. (59)

Radial profiles of the functions E+/−(r̃) (F+/− denote that Ω takes + in F+ or −
in F−) for ã = 0.8, and various values of other parameters are shown in the Figure 6.
The evolutions of E+/− for large r̃ tend to be consistent for particles circling around a
Kerr (l̃ = ∞ and b̃ = 0) or a Kerr-dilation black hole (l̃ = ∞ and b̃ ̸= 0) or a Kerr–Sen–
AdS4 (l̃ ̸= ∞ and b̃ ̸= 0), but the differences in E+/− in Kerr–AdS4 (l̃ ̸= ∞ and b̃ = 0)
spacetime and in the other three spacetimes are obvious. For small r̃, the evolutions of E+

in Kerr and Kerr–AdS4 spacetime tend to be consistent, while they are distinguished from
those in Kerr-dilation and Kerr–Sen–AdS4 spacetime; E− tends to be consistent in these
four spacetimes.

Radial profiles of the functions L+/−(r̃) for ã = 0.8 and various values of other
parameters are shown in the Figure 7. The evolutions of L+ for large r̃ tend to be consistent
for particles circling around a Kerr or a Kerr-dilation black hole (l̃ = ∞ and b̃ ̸= 0), but
the differences in L+ in Kerr–AdS4 spacetime and in Kerr–Sen–AdS4 spacetime are large,
indicating that the parameter b̃ has a significant impact on L+. For small r̃, the evolutions of
L+ in Kerr and Kerr–AdS4 spacetime also tend to be consistent, while they are distinguished
from those in Kerr-dilation and Kerr–Sen–AdS4 spacetime. L− is positive in Kerr–Sen–AdS4
spacetime, while it is negative in the other three spacetimes.
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Figure 6. Radial profiles of the functions E+/−(r̃) for equatorial circular orbits with ã = 0.8 and
various values of other parameters.

5.3. Innermost Stable Circular Orbit

For a test particle in the gravitational potential of a central body, the innermost stable
circular orbit (ISCO) is of importance as it represents the transition from stable orbit to
those which fall through the event horizon. The ISCO is given by the conditions:

R(r̃) = 0,
dR
dr̃

= 0,
d2R
dr̃2 = 0, (60)

or equivalently ˙̃r = ¨̃r =
...
r̃ = 0. Namely, r̃ISCO is the triple root of R(r̃). Since ∂2

r̃ Ṽre f f = 0,
the ISCOs are marginally stable orbits around the black hole.
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Figure 7. Radial profiles of the functions L+/−(r̃) for equatorial circular orbits with ã = 0.8 and
various values of other parameters.

In Figure 8, we plot E2 − r̃ and L̃ − r̃ diagrams for some ISCOs in Kerr, Kerr-dilaton,
Kerr–AdS4, and Kerr–Sen–AdS4 spacetimes. We observe that E2 decreases as r̃ increases,
while L̃ decreases to some minimum value and then behaves as a monotonous function.
For large r̃, both E2 and L̃ for there ISCOs run to the same values. But for small r̃, parameter
b will bring significant differences to E2 and L̃.
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Figure 8. E2 − r̃ and L̃ − r̃ diagrams for some ISCOs with some special values of parameters.

6. Conclusions

In this paper, we have discussed the motion of particles in the Kerr–Sen–AdS4 space-
time. We have obtained the geodesic equations. Using parametric diagrams, we have
shown some regions where the r̃ and the θ geodesic motions are allowed. We have ana-
lyzed in detail the impact of parameter related to dilatonic scalar on the orbit and found
that it will result in more rich and complex orbit types; see that, for example, r̃ = 0 is not a
double zero of R̃ in the case of Kerr–AdS4 with ã = 0 [6], but it is a double zero of R̃ in the
case of Kerr–Sen–AdS4 with ã = 0 and b̃ = 1. We also have discussed how the parameters
of the model affect the equatorial circular orbit and the innermost stable circular orbit and
visualize the energies and angular momentums of particles with diagrams. Other topics,
such as the bound on the Carter constant, the angular motion for null/time-like geodesics,
the radial motion for null/time-like geodesics, and geodesic motion in naked singularity
spacetime (2), we leave for future studies.
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