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Abstract: The quantum Hall effect under the influence of gravity and inertia is studied in a unified
way. We make use of an algebraic approach, as opposed to an analytic approach. We examine
how both the integer and the fractional quantum Hall effects behave under a combined influence
of gravity and inertia using a unified Hamiltonian. For that purpose, we first re-derive, using the
purely algebraic method, the energy spectrum of charged particles moving in a plane perpendicular
to a constant and uniform magnetic field either (i) under the influence of a nonlinear gravitational
potential or (ii) under the influence of a constant rotation. The general Hamiltonian for describing the
combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the
eigenstates are obtained. The electrons mutual Coulomb interaction that gives rise to the familiar
fractional quantum Hall effect is also discussed within such a combination.

Keywords: integer quantum Hall effect; fractional quantum Hall effect; landau levels; gravitationally
induced harmonic oscillator; noninertial frames; induced field

1. Introduction

The possible influence of a nonlinear gravitational potential on the integer quantum
Hall effect was recently studied in Ref. [1]. It was shown there that, unlike the effect of
the linear gravitational potential of the Earth [2] which might be viewed as giving rise
only to an apparent modified Hall resistivity, the nonlinear gravitational potential created
along the equatorial plane inside a massive solid sphere of uniform mass density affects
the degeneracy of Landau levels in such a way that the Hall resistivity is unambiguously
affected. This comes about thanks to the simple harmonic gravitational potential inside of
which the charge carriers are immersed. In Ref. [1], only the integer quantum Hall effect
under the influence of gravity was thus studied.

However, besides the integer quantum Hall effect, which was the first to be experi-
mentally discovered [3], the fractional quantum Hall effect discovered soon after [4,5] gave
rise to tremendous new theoretical developments soon after its theoretical explanation [6].
See, e.g., Refs. [7–9] for a comprehensive textbook introduction to the subject, see the re-
view [10] for the more modern developments, and see Ref. [11] for a review of the modern
applications and experimental results.

In the present work, we aim at exploring the fate of both the fractional and integer
quantum Hall effects not only in the presence of the nonlinear gravitational potential inside
a massive sphere considered in Ref. [1] but also their fate in the presence of inertial effects
caused by a uniform rotation of the Hall sample. In fact, inertial effects on the quantum
Hall effect have already been examined in Refs. [12–18]. By solving the corresponding
Schrödinger equation, it was found that the energy spectrum of the charge carriers of the
sample is affected in a nontrivial way. The results from those works rely on the equivalence
principle at the quantum level [19,20], which finds thus a very interesting application
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among many others reported in the literature within and outside of condensed matter
physics (see, e.g., Refs. [21–29] and references therein).

However, our goal in this paper is not so much to illustrate the equivalence principle
at the quantum level as to study the combined effect of gravity and inertia on the motion of
charged particles. Furthermore, our investigation here is restricted to Newtonian gravity,
as opposed to the studies reported in Refs. [30–35] where gravity is mainly taken in its
general relativistic expression, i.e., as a manifestation of the curvature of spacetime.

The remainder of this paper is organized as follows. In Section 2, we formulate in
terms of creation and annihilation operators the Hamiltonian that describes the dynamics of
the electrons of the Hall sample as they move under the influence of the uniform magnetic
field and the nonlinear gravitational potential along the equatorial plane of a massive
solid sphere. In Section 3, we formulate in terms of those operators the Hamiltonian of the
electrons under the influence of the uniform magnetic field and pure inertia by letting the
Hall sample spin around the axis of the magnetic field. The Hamiltonian of the electrons
moving under a simultaneous influence of gravity and inertia is then built in Section 4.
The eigenstates of such a Hamiltonian are given in Section 5. An outlook on the eventual
amplification of the effect due to the induced electric field caused by the compression of
the atoms of the sample under gravity and inertia is given in Section 6. We conclude this
paper with a brief summary and discussion section in which we comment on and highlight
our main findings.

2. The Hall Sample under Gravity

The effect of a nonlinear gravitational potential is achieved by putting the Hall sam-
ple between two identical massive neutral hemispheres, each having the same radius R.
However, as the thickness of the sample is extremely small compared to the radius of the
massive hemispheres, one can, to a very good approximation, consider the electrons of
the sample to be effectively moving along the equatorial plane inside the gravitational
potential of a full solid sphere. For such a case, the gravitational potential Vg(x, y) at
any point of coordinates (x, y) from the centre of the sphere can easily be shown to be
given by Vg(x, y) = − 2

3 πmeGρ
(

R2 − x2 − y2) [1], where me is the mass of the electron, G
is Newton’s constant, and ρ is the uniform mass density of the solid sphere.

Denoting the charge of the electron by −e, the Hamiltonian describing the dynamics
of the latter then reads H = (p + eA)2/2me + Vg. Taking the magnetic field B = Bẑ to
be parallel to the z-direction which is chosen to be along the axis of the sphere that is
perpendicular to the equatorial plane of the latter, and choosing the symmetric gauge, for
which the vector potential has the form A = 1

2 B(−y, x, 0), the Hamiltonian in Cartesian
coordinates then reads up to an unimportant additive constant as follows:

H =
1

2me
(p + eA)2 + me

2πGρ

3

(
x2 + y2

)
=

1
2me

(
px − 1

2 eBy
)2

+
1

2me

(
py +

1
2 eBx

)2
+ meΛG

(
x2 + y2

)
. (1)

We have set 2
3 πGρ = ΛG, where the subscript ‘G’ denotes here a gravity-induced parameter.

In addition, let us introduce the following four ladder operators:

aL =
1
4

√
2meϖG

h̄
(x + iy) + i

px + ipy√
2h̄meϖG

, aR =
1
4

√
2meϖG

h̄
(x − iy) + i

px − ipy√
2h̄meϖG

,

a†
L =

1
4

√
2meϖG

h̄
(x − iy)− i

px − ipy√
2h̄meϖG

, a†
R =

1
4

√
2meϖG

h̄
(x + iy)− i

px + ipy√
2h̄meϖG

, (2)

where
ϖG =

√
ω2

c + 8ΛG. (3)
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For convenience, here and henceforth, we set eB/me = ωc. The non-vanishing commutation
relations satisfied by these four operators are [aL, a†

L] = 1, [aR, a†
R] = 1. The Hamiltonian (1)

then takes the following expression in terms of the ladder operators (2):

H = 1
2

(
a†

RaR + a†
LaL + 1

)
h̄ϖG + 1

2

(
a†

RaR − a†
LaL

)
h̄ωc. (4)

The angular frequency ωc is the usual one that would be obtained for the electrons under
the influence of the magnetic field in the absence of gravity and in a non-rotating sample.
The second term in this Hamiltonian is simply 1

2 ωcLz, where Lz = xpy − ypx is the angular
momentum operator.

Let the eigenvalues of the operators NR ≡ a†
RaR and NL ≡ a†

LaL be the positive integers
nR and nL, respectively. These two operators can be viewed as number operators for right
and left movers, respectively. Then, by setting nR + nL = n and nR − nL = ℓ, the energy
eigenvalues of the Hamiltonian (4) read, En,ℓ =

1
2 (n + 1)h̄ϖG + 1

2 ℓh̄ωc. We thus recover the
complete splitting of the Landau levels under the influence of the nonlinear gravitational
potential, already derived in Ref. [1], where only the positive quantum number ℓ was
considered. Our expression here generalizes the result in Ref. [1] as ℓ = nR − nL can now
be positive, negative or zero. Clearly, the degeneracy of the Landau levels is in this case
completely lost because of the gravitational field.

Turning off the gravitational field leads to ϖG = ωc, for which the En,ℓ take the usual
form of the infinitely degenerate quantized Landau levels caused by a pure magnetic field:
En = h̄(nR + 1

2 )ωc. On the other hand, turning off the magnetic field leads to ϖG =
√

8ΛG,
for which the En take the usual form of the quantized levels of the two-dimensional simple
harmonic oscillator, En = (nR + nL + 1)h̄ω0, of fundamental frequency ω0 =

√
2ΛG. Unlike

the Landau levels, these gravitational levels are, each, (nR + nL + 1)-fold degenerate. For
this reason, only extremely high energy levels could come close to mimic Landau levels’
infinite degeneracy. Nevertheless, one might still hope to be able to reproduce the famous
quantum Hall effect plateaus even in the absence of the magnetic field by simply relying
on such a nonlinear gravitational potential.

Before building the eigenstates of the Hamiltonian (4), we will first derive in the next
section the Hamiltonian for the electrons under the influence of inertia and without the
gravitational field.

3. The Hall Sample under Rotation

The effect of rotation and inertia is easily taken into account by letting the Hall sample
undergo a constant spinning of angular velocity Ω that we assume, for simplicity, to be
parallel to the vertical magnetic field’s direction, B = Bẑ.

As shown in Ref. [19] (see also Refs. [12,13]), the effect of such a rotation on the
electrons of the sample is threefold. First, a Coriolis force, given by 2mev × Ω, is induced.
Such a force would emerge from the Hamiltonian if one replaces in the latter the canonical
momentum p + eA of the electron by p + eA − meΩ × r. The other force to which the
electrons of the sample are subjected due to the rotation of the sample is the centrifugal
force, given by −meΩ × (Ω × r). To take into account this force inside the Hamiltonian,
one needs to add in the latter the potential term − 1

2 me(Ω × r)2. The last contribution one
needs to account for inside the Hamiltonian is the induced electric field felt by the electrons
within their moving reference frame. This induced electric field appears due to the rotation
of the sample inside the uniform magnetic field B. The induced electric field in the moving
reference frame of the sample is given by (Ω × r)× B, causing an induced electric force on
each electron given by −e(Ω × r)× B, which is just the well-known Lorentz force law for
moving charges inside a magnetic field. One takes account of this induced electric force
inside the Hamiltonian by inserting into the latter the potential term 1

2 eΩBr2.
Therefore, the combination of the uniform magnetic field and the constant rotation

gives rise to the following Hamiltonian:
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H =
1

2me
(p + eA − meΩ × r)2 − me

2
(Ω × r)2 +

e
2

ΩBr2

=
1

2me

(
px − 1

2 eBIy
)2

+
1

2me

(
py +

1
2 eBIx

)2
+ meΛI

(
x2 + y2

)
, (5)

where, in the second line, we have adopted again the symmetric gauge for the potential
vector A and we have set, for convenience,

BI = B
(

1 − 2Ω
ωc

)
, ΛI =

Ω
2
(ωc − Ω). (6)

The subscript ‘I’ is used here to denote inertia-related parameters. Note that the Hamilto-
nian (5) has exactly the same form as the Hamiltonian (1), provided only one substitutes in
Equation (1) B with BI and ΛG with ΛI. Therefore, the decomposition of the Hamiltonian (5)
in terms of ladder operators also takes exactly the form (4), provided only one performs the
substitutions (B → BI and ΛG → ΛI) in the expression of the angular frequency ϖG that
becomes ϖI and in the expression of ωc that becomes ωcI in Equation (2), such that

ϖI =
√

ω2
cI
+ 8ΛI, ωcI =

eBI

me
. (7)

It is worth noting here that by choosing an angular speed of rotation such that Ω = ωc,
the parameter ΛI is made to vanish and BI becomes −B, leading to ϖI = ωcI (the parameter
BI is taken in its absolute value inside ωcI). This case amounts then to simply inverting
the uniform magnetic field in the usual quantum Hall effect. This comes about due to the
cancelling of the centrifugal force by the induced electric field caused by the noninertial
reference frame of the charge carriers. The Coriolis force on the latter is such that the
magnetic field’s effect is counterbalanced, inducing on the electrons the effect of an inverted
magnetic field. The quantum Hall plateaus will, in this case, still be observable.

On the other hand, choosing an angular speed Ω = 1
2 ωc leads to ΛI =

1
2 Ω2 and a

vanishing BI and ωcI . This case amounts to exactly balancing the effect of the magnetic
field by the Coriolis force on the charge carriers. The effect of the electric force due to the
motion-induced electric field and the effect of the centrifugal force combine then into a
single effect that is opposite to that of a rotation of angular speed 1√

2
Ω. As in the case

of imposing a nonlinear gravitational potential alone (cf. Section 2), the quantized levels
take here the form En = (nR + nL + 1)h̄Ω, and their degeneracy is lost. The quantum Hall
effects are thus destroyed.

4. The Hall Sample under Gravity and Rotation

To date, we have considered separately the effect of gravity and the effect of rotation
of the sample on the electrons of the latter as they move inside a uniform and constant
magnetic field. However, one can actually combine both the gravitational and the inertial
effects. Indeed, one has only to insert the sample inside a solid sphere, of uniform mass
density ρ, along the equatorial plane of the sphere and let the whole setup spin around the
axis of the sphere with a constant velocity Ω parallel to the axis of the latter. Of course,
we refrain from discussing here the serious technological challenges such a setup would
obviously present.

For such a combination of gravitational and inertial effects, the resulting Hamiltonian,
which we call here the ‘unified’ Hamiltonian, is again given by expression (4), with the
substitutions B → BI and Λ → ΛGI inside ϖG and ωc, where

BI = B
(

1 − 2Ω
ωc

)
, ΛGI =

Ω
2

(
ωc − Ω +

2ΛG

Ω

)
. (8)
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The subscript ‘GI’ is used to denote gravity-induced plus inertia-induced parameters.
Therefore, the expression of the angular frequencies entering the decomposition (4) of the
unified Hamiltonian in terms of ladder operators take the following forms, respectively:

ϖGI =
√

ω2
cI
+ 8ΛGI, ωcI =

eBI

me
. (9)

Note that by setting Ω = 0 in Equation (8), we recover the combined effect of the magnetic
and gravitational fields, whereas by setting G = 0, we recover the combined effect of the
magnetic and rotation effects. However, this more general combination (8) offers yet four
other special scenarios.

The first consists of having BI = 0 and ΛGI =
1
2 (Ω

2 + 2ΛG), leading to ωcI = 0. This
is achieved for a rotation of angular speed Ω = 1

2 ωc. The magnetic field is fully balanced
in this case by the Coriolis force on the charge carriers. The effects of the electric force,
of the centrifugal force and of the gravitational force all combine into a single effect that
is equivalent to having a larger “effective” gravitational source as it is manifested by the
parameter ΛGI. Because in this case we have ϖGI ̸= ωcI , the degeneracy of the Landau
levels is lost, as we shall see in the next section, and the quantum Hall effects are destroyed.

The second scenario consists of choosing Ω = ωc, for which case, we get back the
inverted magnetic field scenario combined with the presence of the gravitational field, such
that ΛGI = ΛG. This leads again to the case of the Hall sample under the influence of a
gravitational field only without rotation. Because in this case, we also have ϖGI ̸= ωcI , the
degeneracy of the Landau levels is completely lost too, and the quantum Hall effects are
destroyed as well.

The third scenario consists of choosing Ω2 = 2ΛG, for which case, we end up with
ΛGI =

1
2 Ωωc. This scenario is achieved thanks to the centrifugal force that exactly balances

the gravitational force. Because in this case we have again ϖGI ̸= ωcI , the degeneracy of
the Landau levels is completely lost, and the quantum Hall effects are destroyed too.

The fourth scenario is achieved by choosing Ω = 1
2 ωc +

1
2

√
ω2

c + 8ΛG, for which
case, we recover back the case with a pure magnetic field of “effective” algebraic value
Beff = −B

√
1 + 8ΛG/ω2

c . The (−) sign in this expression corresponds to an inverted
magnetic field. Among all the scenarios we listed here, this last one is the most interesting.
Indeed, in this case, we have ϖGI = ωcI , which means that the infinite degeneracy of the
Landau levels is fully restored. Consequently, both the integer and the fractional quantum
Hall effects are fully preserved in this scenario as will be shown in detail in the next section.

5. Eigenstates of the Unified Hamiltonian

We consider in this section the following unified Hamiltonian, inside of which the
substitutions (8) should be kept in mind throughout the remainder of this paper to keep
working with the most general case of combined gravitational and inertial effects.

H = 1
2

(
a†

RaR + a†
LaL + 1

)
h̄ϖGI +

1
2

(
a†

RaR − a†
LaL

)
h̄ωcI . (10)

The creation and annihilation operators in this expression are given by Equation (2) with
the aforementioned substitutions. The eigenstates |nL, nR⟩ of this Hamiltonian are then
built by successively acting with the creation operators on the ground state |0, 0⟩ as follows:

|nL, nR⟩ =
a†nL

L√
nL!

a†nR
R√
nR!

|0, 0⟩ . (11)

In view of our discussion of the fractional quantum Hall effect, however, it is more con-
venient at this stage to switch to the complex coordinates z = (x− iy)/β and z∗ = (x + iy)/β,
where β = 1/

√
2meϖGI. The ladder operators (2) then take the following forms:
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aL =
1
4

(
z∗ + 8

∂

∂z

)
, aR =

1
4

(
z + 8

∂

∂z∗

)
,

a†
L =

1
4

(
z − 8

∂

∂z∗

)
, a†

R =
1
4

(
z∗ − 8

∂

∂z

)
. (12)

From these identities, we easily obtain the ground state |0, 0⟩ in the complex coordinates
representation by solving both equations, aL |0, 0⟩ = 0 and aR |0, 0⟩ = 0. We find the
following ground state wavefunction:

Ψ0,0(z, z∗) =
1

β
√

8π
e−

|z|2
8 . (13)

As the Landau levels’ degeneracy is completely suppressed, the lowest Landau level,
like all the other levels, contains a single electron state. We can see this by writing the
non-degenerate Landau energy levels in the form

EnR ,nL = 1
2 [nR h̄(ϖGI + ωcI) + nL h̄(ϖGI − ωcI) + h̄ϖGI]. (14)

The lowest level is found at nR = 0 and nL = 1. We clearly see from this expression that,
apart from setting ϖGI = ωcI , there is no other way of restoring back to the energy levels
their infinite degeneracy. Therefore, both the integer quantum Hall effect and the fractional
quantum Hall effect are destroyed. Whenever ϖGI does not depart much from the value
of ωcI , however, as in the case studied in Ref. [1] based on a reasonable laboratory-scale
massive solid sphere, there is still the possibility of having split energy levels that are so
close to each other that they could meaningfully give rise to a survival of the quantum Hall
effect thanks to localized states around the sample’s defects. Before coming back to such a
case, however, we start by considering the scenario in which the relation ϖGI = ωcI holds,
a case which allows us to discuss both the integer and the fractional quantum Hall effects.

5.1. The Integer Quantum Hall Effect

As discussed in Sections 3 and 4, there are two scenarios for which the condition
ϖGI = ωcI could be achieved; the first involves pure inertia, and the second involves both
inertia and the gravitational field. The first is obtained for a rotation speed Ω = ωc in the
absence of the gravitational field, and the second is obtained for Ω = 1

2 ωc +
1
2

√
ω2

c + 8ΛG.
As for such cases, the Landau levels’ degeneracy is fully restored, we may simply consider
the lowest Landau level as it is customary in the literature on the fractional quantum Hall
effect. The infinitely degenerate lowest Landau level is then obtained for nR = 0, for which
case the corresponding eigenstates of interaction-free electrons read,

Ψ0,nL(z, z∗) =
znL

β
√

2nL+3πnL!
e−

|z|2
8 . (15)

These wavefunctions, of angular momentum nL, are peaked on a ring of radius r =
√

2nLlI,
where l2

I = h̄/eBI. Therefore, for a circular sample of surface area S, the number of available
states at the lowest Landau level is roughly SBIe/h. Thus, the density of electrons filling ν
Landau levels is given by n = νBI/Φ0, where Φ0 is the usual quantum of flux Φ0 = h/e.
The Hall resistivity B/ne in the presence of gravity and rotation takes then the form

ρxy =
B
BI

h
νe2 = − h

νe2

(
1 +

8ΛG
ω2

c

)− 1
2
. (16)

We see from this formula that without the gravitational source and for the rota-
tion speed Ω = ωc, we get back the usual quantum Hall effect but with an inverted
effective magnetic field. In the presence of the gravitational source, however, the re-
sult (16) shows that, in contrast to the pure magnetic-field quantum Hall effect, for
Ω = 1

2 ωc +
1
2

√
ω2

c + 8ΛG, the variation in the Hall resistivity does depend on the mag-
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netic field, and it does so in a nonlinear way as the parameter BI in this expression also
contains B according to Equation (8). This is in agreement with what has been reported in
Ref. [1] based on the purely analytic method and in the absence of rotation. Experimentally,
this would entail that for strong magnetic fields/weak nonlinear gravitational potentials,
one does recover the usual behaviour of the Hall resistivity as the gravitational field’s
contribution becomes negligible.

5.2. The Fractional Quantum Hall Effect

The fractional quantum Hall effect arises thanks to the Coulomb repulsion force
between the free electrons of the Hall sample. Therefore, adding such an interaction to the
gravitational, inertial and magnetic forces already included in the Hamiltonian in Section 4
amounts to adding the Coulomb potential terms e2/(4πϵ0|ri − rj|) for any two electrons
at positions ri and rj. However, when taking into account the multi-electron Coulomb
interaction, the Hamiltonian of the degenerate Landau levels in the case ϖGI = ωcI allows
us to simply make use of Laughlin’s wavefunction for the electrons in the lowest Landau
level, with an odd integer q and for a total number of electrons N, as follows:

Ψq(z1, . . . , zN) = ∏
i<j

(zi − zj)
q exp

(
−

N

∑
i=1

|zi|2
8

)
. (17)

For a given electron at position zi, its wavefunction peaks on a ring of radius r ∼
√

2qNlI,
leading, when the lowest level is completely filled, to a total number of available states
given roughly by SBI/Φ0 ∼ qN. The filling fraction then comes out to be the usual fraction
with an odd denominator ν = N/qN = 1/q. By the same token, the density of electrons
at such a level-filling fraction being n = νBI/Φ0, leads to the Hall resistivity B/ne in the
presence of gravity and rotation given by

ρxy = − h
(1/q)e2

(
1 +

8ΛG
ω2

c

)− 1
2
. (18)

Although we see from this formula that the fractional Hall resistivity also depends in
a nonlinear way on the magnetic field, given that the fractional quantum Hall effect is
observed for strong magnetic fields, this result also shows that the gravitational source
has to have a large mass density for the ratio inside the parentheses in Equation (18) to
be meaningful.

Note that although the correction term 8ΛG/ω2
c in expressions (16) and (18) of the

Hall resistivity is extremely small, it is not excluded that one can bring the effect into
evidence even by using the currently available experimental devices as already pointed
out in Ref. [1]. To see this, let us assume, as already done in Ref. [1], that the solid sphere
to be used is made of a material of mass density that is as large as that of pure platinum
(ρ = 21, 447 kg/m3) or larger. The parameter ΛG can then be of the order of ∼10−5 s−2.
Before we proceed further, however, we should emphasize here that as the gravitational
parameter ΛG does not depend on the radius of the solid sphere but only on the mass
density of the latter, the high costs that would necessarily be associated with the material
used to build such a sphere should not be an issue.

First, going back to the second identity giving ΛGI in Equation (8), we observe that
to be able to keep the two contributions (the gravitational term 2ΛG and the centrifugal
term −Ω2) at a comparable order of magnitude for such an order of magnitude of ΛG, one
needs to impose rotation speeds of the order of ∼10−2 rad/s. Unfortunately, the Lorentz
term in ΛGI (the term Ωωc) exceeds those values by many orders of magnitude for the
currently applied magnetic fields in the quantum Hall effect. Similarly, the Coriolis term
(the correction term 2Ω/ωc inside BI in Equation (8)) is orders of magnitude smaller than
unity for the currently applied magnetic fields.
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Next, assume the applied uniform magnetic field to be B = 1 T. The electrons’ cyclotron
frequency is then ωc ∼ 1011 rad/s. The rotation speeds required to achieve the condition
Ω = 1

2 ωc +
1
2

√
ω2

c + 8ΛG for which the degeneracy of the Landau levels is fully restored
are then also of the order of ∼1011 rad/s; an order of magnitude which is obviously far
from being realistic. Nevertheless, if one were to replace the charge carriers by heavier ions
instead of electrons (protons were considered in Ref. [1] in the absence of rotation), one can
bring down the rotation speeds to the order Ω ∼ 103 rad/s or smaller for ions that are at
least 108 times heavier than electrons. For this case, the correction term 8ΛG/ω2

c becomes of
the order of ∼10−10. Notwithstanding these limitations, note that this extremely stringent
requirement on the rotation speeds is only necessary for fully restoring back the infinite
degeneracy of Landau levels and without taking into account the amplification due to the
induced electric field. In fact, as we shall see in Section 6, a considerable amplification of
the gravitational and inertial effects is obtained when one takes into account the induced
electric field coming from the compressed atoms of the lattice. In addition, for small rotation
speeds, or in the absence of rotation altogether, the degeneracy is lost due to the nonlinear
gravitational potential, but an interesting nontrivial effect can still be witnessed at very low
temperatures as we shall discuss in what follows.

5.3. Destroyed Quantum Hall Effects

As we argued below Formula (14), both the integer quantum Hall effect and the
fractional quantum Hall effect should in principle be destroyed as long as the condition
ϖGI = ωcI that guarantees the degeneracy of each Landau level is not satisfied. Nev-
ertheless, whenever ϖGI does not depart significantly from the value of ωcI , the term
1
2 h̄nL(ϖGI −ωcI) in the energy spectrum (14) can be viewed as a correction term that merely
induces a “broadening” of the energy levels EnR = 1

2 h̄(nR + 1)ϖGI that can thus be viewed
as the “principle” Landau levels.

Indeed, for very low temperatures, such a correction term does not depart much from
the usual thermal broadening of the Landau levels, which is of order ∆th ∼ kBT [1]. The
effect of such a broadening has been investigated in detail in Ref. [1] and shown to induce
a smoothing in the transition between the Hall plateaus. The difference is that now the
requirement to achieve a comparable effect to a thermal broadening of the Landau levels
is made less stringent thanks to the combined rotational and gravitational effects. In fact,
realizing ΛGI ∼ 0 can now be achieved simply by choosing Ω ≈ 1

2 ωc +
1
2

√
ω2

c + 8ΛG,
which is relatively (with the ramifications discussed above) much easier to achieve than
adjusting the mass density of the gravitational source alone.

6. Induced-Field Amplification

The study we conducted in the previous sections was entirely based on the forces
directly exerted on the electrons due to the magnetic field, the gravitational field and the
inertial effects. However, given that the free electrons of the sample are swimming in the
sea of positive charge coming from the heavy ions of the lattice, any effect on those ions
would translate into a modified background potential for the free electrons.

It was shown in Ref. [1] that the nonlinear radial gravitational potential Vg(r) inside
the solid field compresses the atoms of the lattice. As a result, an induced radial electric
field, given by Ei(r) ≈ (M/7e)∂Vg/∂r, where M is the mass of the atoms of the lattice, also
acts on the electrons besides the gravitational field. As such, and to conserve neutrality,
an induced electric force is exerted on the free electrons in the same direction and of the
same form as the gravitational force, but of a much stronger magnitude than the latter. The
effect of the gravitational field becomes thus indirectly amplified. To take account of such
an amplification in the absence of rotation, one needs only to substitute the gravitational
contribution ΛG = 2π

3 Gρ in the angular frequency (3) with the induced-field contribution
Λi

G = 2π
21 MGρ/me [1]. We see indeed that, as the ratio M/me is of the order of ∼105 for a

sample made of copper of atomic mass M = 1.06 × 10−25 kg, the gravitational contribution
could be amplified by at least five orders of magnitude.
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Similarly, in the case of rotation in the presence of gravity the atoms of the lattice are
also subject, besides the gravitational force, to the various induced and noninertial forces
which the free electrons experience in their moving reference frame. As a consequence, the
ions of the lattice get also compressed by the Coriolis force 2Mv × Ω, by the centrifugal
force −MΩ× (Ω× r) and by the induced electric force e(Ω× r)×B caused by the induced
electric field felt by the ions within their moving reference frame. We can make use of these
various forces acting on the lattice atoms to extract the induced electric field by working
out the balance equation as done in Ref. [1] for the case of the pure gravitational field. The
procedure is as follows.

First, following Ref. [36], we assume the pressure of the electrons of the sample to
be pe = 2

3 nϵ ∝ 2
3 n5/3, where the average energy ϵ of the electron gas of density n (not

to be confused with the integer n of the energy levels) is taken to be ϵ ∝ n2/3. On the
other hand, the gradient ∂pe/∂r of the pressure of the electron gas is balanced by the total
forces acting on the electron gas and is given by n0(eEi + Fi

me), where n0 is the equilibrium
density of the electrons. We denoted here the induced electric field due to the ions by Ei,
and we denoted the various induced forces acting on the electrons, but that are not due
to the ions of the lattice, by Fi

me . Therefore, the balance equation for the electrons reads
10
9 ϵ∂n/∂r = −n0(eEi + Fi

me).
Next, applying the same reasoning to the lattice atoms of mass M, we conclude that

the density of the ions of the lattice under the influence of the induced forces Fi
M obeys

the equilibrium equation C∂n/(n0∂r) = −n0Fi
M, where C depends on the sample’s elastic

properties [36]. To preserve neutrality throughout the sample, the two equations for the
density n should be identified. This leads then to Ei = (γFi

M − Fi
me)/e, where γ = 10

9 ϵn0/C
is a constant that depends on the sample’s material. For copper, this constant is ∼ 1/7.
Therefore, by gathering all the forces listed above inside the terms Fi

M and Fi
me , the induced

electric force acting on the free electrons of the sample reads in vector form as follows:

−eEi =

[
me

(
γM
me

− 1
)(

2v × Ω − Ω × [Ω × r]− 4πGρ

3
r
)
+ e(γ + 1)(Ω × r)× B

]
. (19)

We clearly see that the dominant contribution to this induced force for the case of weak
magnetic fields comes from those terms that are proportional to γM/me. Nevertheless,
in order to keep our analysis as general as possible, we shall keep all the terms in this
expression of the induced force. As a consequence, taking account of the latter in the unified
Hamiltonian of the electrons besides the forces we already included in the previous section
amounts to replacing the effective parameters (8) by the following induced ones:

BI = B
(

1 − 2γM
me

Ω
ωc

)
, ΛGI =

1
2

Ω
[

γωc −
γM
me

(
Ω − 2ΛG

Ω

)]
. (20)

These expressions show explicitly the effect of the compression of the atoms of the lattice
by the gravitational force and by the frame-dependent forces. This amplification of the
effect is very promising, for it provides orders-of-magnitude larger parameters than those
obtained without taking the induced electric field into account.

It is important to note that the amplified parts of the two parameters in Equation (20)
come exclusively from the those terms arising from inertial effects since the amplification is
entirely due to the large difference between the masses of the atoms and of the electrons
of the Hall sample. The compression of the ions of the lattice caused by the induced
electric field due to rotation is not proportional to the mass of the ions and, hence, has no
amplifying effect. On the contrary, such a compression actually reduces the effect of the
motion-induced electric field on the electrons as the displacement of the ions creates an
opposite electric field.

Note also that all our formulas are given in terms of the electron’s vacuum mass
me. However, since the effective electron mass m∗

e inside conductors varies from one
material to another and that it could be made as small as m∗

e ∼ 0.01me [37], we immediately
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see from the expressions of BI and ΛGI in Equation (20) that the amplifying factor could
actually reach an order of magnitude of ∼107 for such a small effective mass. Therefore,
the unrealistic values of the rotation speeds required for restoring the infinite degeneracy
of the Landau levels obtained from Equation (8) before taking into account the induced
electric field should now be extracted from Equation (20). Setting ΛGI = 0 in Equation (20),
leads to the following condition:

Ω =
m∗

e ωc

2M

(
1 +

√
1 +

8M2

m∗
e

2
ΛG

ω2
c

)
. (21)

This entails that for a cyclotron frequency of the order of ∼1011 rad/s, the rotation speeds
to be imposed on the Hall sample are of the order of ∼104 rad/s. For even weaker magnetic
fields, this order of magnitude could be lowered down to the more accessible rotation
speeds of ∼103 rad/s (which are already achievable with biomedical instrumentation and
are in wide use in biomedical research [38]) than the ones inferred from Formula (8).

7. Summary and Discussion

We have examined in this paper the effect of both gravity, rotation and inertia on
the integer and the fractional quantum Hall effects using a purely algebraic method. We
first built a general Hamiltonian for the electrons of the Hall sample moving inside a
uniform magnetic field under the influence of a nonlinear gravitational potential and a
constant rotation. We then expressed our Hamiltonian in terms of creation and annihilation
operators, and then, we extracted and explored the energy spectrum of the electrons for
three different scenarios. These are obtained for free electrons that are moving under
the influence of the uniform magnetic field combined either with (i) a gravitational field
giving rise to a harmonic gravitational potential, (ii) or with a constant rotation of the Hall
sample, (iii) or with both a nonlinear gravitational potential and a constant rotation of the
sample. Based on the latter more general case, we studied yet different scenarios that arise
depending on the value of the rotation speed imposed on the Hall sample. We argued that
for an arbitrary rotation speed both the integer and the fractional quantum Hall effects are
in general destroyed. This comes about because of the lost degeneracy of the Landau levels.

We argued that as this lost degeneracy arises because of a correction term that can be
very small for certain values of the rotation speed, the quantum Hall effects are affected in
the form of a mere broadening of the Landau levels. We showed that for very low tempera-
tures, this broadening might even become comparable to the usual thermal broadening of
the Landau levels. We saw that achieving this goal is made relatively simpler thanks to the
combination of rotation and the gravitation field.

We subsequently showed that for a very specific value of the rotation speed Ω, given
in terms of the value of the imposed uniform magnetic field and on the mass density of
the gravitational source, one can fully restore the infinite degeneracy of each Landau level.
We found that this restored degeneracy at this specific rotation speed gives rise again to
both quantum Hall effects, but that the Hall resistivity departs in both cases from the usual
expression it has in the pure quantum Hall effects. We found indeed that the resistivity
becomes dependent in a nonlinear way on the imposed magnetic field.

We finally showed that although the combined effects of gravity and inertia derived
in Section 4 might be extremely weak experimentally and require unrealistic rotation
speeds, taking into account the dynamics of the heavy ions of the lattice induces a realistic
amplification of the effect, both with and without rotation. The amplification comes about
as a result of the compression of the atoms of the lattice which, in turn, induce an electric
field that affects the free electrons more than does the gravitational field or the frame-
dependent forces like the Coriolis force and the centrifugal force. We showed that the
amplification factor for a Hall sample made of atoms of mass M is of the order of M/me,
where me is the mass of the free electrons. We argued that it is the compression caused
to the atoms of the lattice by gravity and inertia that is responsible for the amplification
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not the induced electric field in the reference frame of the Hall sample. Our present study
brings thus a fresh way of combining inertial effects with gravitational effects on charged
quantum particles. The possible novel future uses of the quantum Hall effect based on the
results derived here, as well as possible ways to experimentally overcome the weakness of
the effects, will be the subject of future work.
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