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Abstract: We apply a very simple procedure to construct non-singular cosmological models for flat
Friedmann universes filled with minimally coupled scalar fields or by tachyon Born–Infeld-type
fields. Remarkably, for the minimally coupled scalar field and the tachyon field, the regularity of
the cosmological evolution, or in other words, the existence of bounce, implies the necessity of
the transition between scalar fields with standard kinetic terms to those with phantom ones. In
both cases, the potentials in the vicinity of the point of the transition have a non-analyticity of the
cusp form that is characterized by the same exponent and is equal to 2

3 . If, in the tachyon model’s
evolution, the pressure changes its sign, then another transformation of the Born–Infeld-type field
occurs: the tachyon transforms into a pseudotachyon, and vice versa. We also undertake an analysis
of the stability of the cosmological evolution in our models; we rely on the study of the speed of
sound squared.

Keywords: Friedmann universe; regular cosmology; tachyons; scalar fields

1. Introduction

For many years, the cosmological singularity has been one of the most attractive prob-
lems in general relativity. Starting from Robertson’s seminal work [1], the initial singularity
issue of Friedmann-type cosmologies was under scrutiny. Launching the singularity-to-
maximal-radius-and-back cyclic evolution was already considered there. It seemed that
touching the singularity did not bother him too much. Thereafter, generalization to the
case of not only homogeneous and isotropic spacetimes was explored [2–5], resulting in
the proof of some general theorems and the discovery of the oscillatory (BKL) approach
to the cosmological initial singularity [6], also known as the Mixmaster Universe [7]. The
investigation of arising (rather soft) future singularities at the finite scale factor was done
further [8] and still maintains interest [9–14]. Regarding such soft future singularities, the
condition of their crossing becomes important; see, e.g., [15,16]. The idea of the possible
crossing of the so-called Big Bang–Big Crunch singularity appears rather counterintuitive in
contrast to the crossing of the soft singularities. Thus, the desire to find models free of such
singularities is understandably strong, and this direction is prevalent. However, the idea of
the possible transition from a Big Crunch–Big Bang transition was also studied in some
cosmological models. Let us point out here the string or pre-Big Bang scenario [17–19],
wherein the accelerated expansion of the universe is driven by the kinetic energy of the
dilaton field. From the cosmological singularity’s point of view, its presence is essential,
since by making the transition from the string frame—where the dilaton is non-trivially
coupled to gravity—to the Einstein frame, the observable evolution of the universe can be
drastically changed: what looks like an expansion in one frame can look like a contraction
in another one. An alternative treatment is to reformulate the theory, relying on the role of
scalar fields, to define the finite variables as the scale factor shrinks to zero. That suggests
a natural way to match the solutions before and after the singularity crossing and was
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inspired by superstring theories [20–22]. The importance of such features is significant in
other approaches as well [23–29].

While the activity of the description of crossing a singularity in cosmology becomes
intensive, attempts to find cosmological non-singular models still conserve their charm;
see, e.g., [30–32]. Even more active is the search for regular black hole solutions. The study
of non-singular black holes started a long time ago [33], and for recent reviews, see [34,35].
One can write down a singularity-free metric ansatz from the Schwarzschild black hole
by a simple substitution of the radial coordinate r as r →

√
r2 + b2, as was proposed by

Simpson and Visser [36]. That results in the following spacetime:

ds2 =

(
1 − 2m√

r2 + b2

)
dt2 −

(
1 − 2m√

r2 + b2

)−1
dr2 −

(
r2 + b2)dΩ2

2, (1)

where b is a parameter, and the singularity at r = 0 is replaced by a regular minimum of the
area function at r = 0: a sphere of radius b. If b > 2m, this spacetime represents a wormhole
with a throat at r = 0; if b < 2m, one has a black hole with two horizons at r = ±

√
4m2 − b2,

and the b = 2m case corresponds to an extremal black hole with a single horizon at r = 0.
At the hypersurface r = 0 in the black hole case, the coordinates change their temporal and
spatial assignments, which corresponds to a bounce in one of the two scalar factors of the
Kantowski–Sachs universe: the so-called black bounce. Afterward, a Vaidya spacetime [37],
charged black-bounce spacetimes [38], and Kerr black holes [39] were “regularized” in this
Simpson–Visser spirit. This one-parameter extension (1) is sustained by a phantom scalar
field and a magnetic field within nonlinear electrodynamics, as was established in [40].

Generally, in the majority of works devoted to the construction of regular black holes,
one can use the method that many years ago was called the “G-method” by Synge [41];
see also a recent e-print [42]. Using this method, one chooses a metric, substitutes it into
the left-hand side of the Einstein equations, and then sees what happens on the right-hand
side. The G-method is opposed to the “T-method”, for which one chooses the form of the
matter in the right-hand side of the Einstein equations and then tries to find the metric that
satisfies this system of equations by substituting it into the left-hand side. The advantage
of the G-method consists of the fact that it always works (in contrast with the T-method).
Unfortunately, the right-hand side of the Einstein equations that arises as the result of the
application of the G-method does not always have some reasonable physical sense that can
be identified with some known fields or other types of matter. The remarkable example
of a regular black hole sustained by a minimally coupled phantom scalar field with an
explicitly known potential was found in [43]. Some properties of this solution were studied
in further detail [44], and it was also used [45] in an attempt to construct a regular rotating
black hole.

Recently, Bronnikov explored [46] the regularized version of the Fisher solution [47],
which has been rediscovered many times in different contexts [48–55]. One can observe
an interesting transition from the standard scalar field to the phantom one there. Herein,
we can note that the Friedmann cosmological models have a simpler structure than the
Schwarzschild-like black holes. That gives some hope that, using an analogy with the
Simpson–Visser prescription [36] in cosmology, one can obtain rather simple cosmological
solutions with the matter content, which can be analyzed, at least qualitatively. Indeed,
this was done in paper [44]. It was shown that when considering a non-singular metric
of the flat Friedmann universe filled with a minimally coupled scalar field, one can find
two interesting qualitative features of the model: First, at some moment, the standard
scalar field becomes a phantom one, i.e., the kinetic term changes its sign. Second, even
if we cannot find an explicit expression for the scalar field potential, we can state that it
should be non-analytical, or, more precisely, it should have a cusp. Remarkably, a similar
phenomenon was observed in the study of the opportunity of the so-called phantom divide
line crossing [56,57], and the forms of the cusps of the potentials coincide.
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As is well known, cosmological models with minimally coupled scalar fields are not
the only kind of scalar field models. Some time ago, in the context of string-inspired
cosmological models, the so-called tachyon fields were studied [58–62]. These tachyon
fields arising in string theory [58] are not connected with the tachyon particles flying with
superluminal velocities [63]. Nevertheless, we shall use the term “tachyons”, which has
already become traditional in the cosmological literature. These tachyons indeed represent
scalar fields with non-trivial kinetic terms of the type that was first studied by Born and
Infeld [64]. It is interesting to note that the birth of Born–Infeld non-linear electrodynamics
was at least in part motivated by the desire to eliminate the singularity of the electric field of
a point-like electric charge. Remarkably, sharing with the linear Maxwell electrodynamics
the electric–magnetic duality and the physical propagation of waves, the Born–Infeld theory
manages to tame the divergence of the Coulomb self-energy [65]. Indeed, the expression
for the electric field of the point-like charge Q has the form

E⃗ =
Q√

r4 + Q2
e⃗r. (2)

Thus, one has regularization, which in a way reminds one to put “by hands” into the
Simpson–Visser-like metrics for black holes and cosmological models. However, here in (2),
the charge Q plays the role of both the source of the electric filed and of the regularizing
quantity. The effective density of the electric point-like charge acquires a finite radius,
which is connected with the dimensional parameter b in the definition of the Born–Infeld
action [64]. Later, it was discovered that this action appears as an effective action in
supersymmetric theories [66,67] as well as in string theory [68]. The attempts to construct a
Born–Infeld-type extension of gravity, despite not being unique and well-motivated, are
under investigation; see the recent review [69].

The interest in cosmological models with tachyons was mainly connected with their
possible role as a source of dark energy. However, further studies have shown that the
presence of non-trivial kinetic terms in these models can imply the appearance of some very
unusual properties. For example, a tachyon cosmological model with a particular potential
depending on trigonometrical functions was studied, and two interesting phenomena were
discovered: the self-transformation of the tachyon field into a pseudo-tachyon field and the
appearance of a particular type of soft future cosmological singularity, which was called
“Big Brake” in [12]. Thus, taking into account the richness of the cosmological models based
on the presence of Born–Infeld-type fields, it is interesting to study regular flat Friedmann
cosmological universes filled with such fields and to see what kind of effects one can
observe there. This is the main goal of the present paper. Its structure is the following:
in the second section, we present known results for a regular flat Friedmann universe
filled with a minimally coupled scalar field [44]; in the third section, we consider a flat
Friedmann universe filled with a tachyon field. The last section contains a discussion of the
obtained results.

2. Regular Friedmann Universes and Scalar Fields

The well-known exact solution for a flat Friedmann universe with a massless scalar
field ϕ is

ds2 = dt2 − t2/3(dx2
1 + dx2

2 + dx2
3
)
, ϕ̇ =

√
2
3

1
t

. (3)

Hereafter, dots refer to time derivatives. Following the Simpson–Visser recipe [36], one can
write down the regularized one from (3) as:

ds2 = dt2 −
(
t2 + b2)1/3(dx2

1 + dx2
2 + dx2

3
)
. (4)



Universe 2024, 10, 137 4 of 13

A straightforward calculation provides us with the Ricci tensor components:

R0
0 =

2t2 − 3b2

3
(
t2 + b2

)4 , R1
1 = R2

2 = R3
3 = − b2

3
(
t2 + b2

)2 , (5)

and the Ricci scalar:

R =
2t2 − 6b2

3
(
t2 + b2

)2 . (6)

Then, the Einstein equations immediately afford the expressions for the energy density and
the isotropic pressure of matter as

ρ =
t2

3
(
t2 + b2

)2 , p =
t2 − 2b2

3
(
t2 + b2

)2 . (7)

Considering spacetime that is filled with a spatially homogeneous scalar field with some
potential V(ϕ), namely,

ρ =
1
2

ϕ̇2 + V(ϕ), p =
1
2

ϕ̇2 − V(ϕ), (8)

one can compare these expressions and gain

ϕ̇ = ±
√

2
3

√
t2 − b2

t2 + b2 , (9)

V =
b2

3
(
t2 + b2

)2 . (10)

Equation (9) can be integrated, providing the field ϕ as a function of time t. However,
we are not able to invert the result and find t as an explicit function of ϕ, and thus we
cannot use Equation (10) to find the explicit form of the potential in terms of the scalar
field. Nonetheless, the Formulas (9) and (10) provide us with rather interesting information.
One can see that the expression (9) makes sense only if |t| ≥ b. What would happen at
|t| < b? In this situation, the kinetic energy of ϕ changes sign, and the standard scalar field
transition to a phantom one appears. Therefore, one can observe an analogous effect to that
explored in [46]. The behavior in the vicinity of t = b can be defined through t = b + τ,
τ << b, resulting in

dϕ

dτ
=

√
τ√

3b3
, → ϕ(τ) = ϕ0 +

2τ3/2

3
√

3b3
, (11)

where ϕ0 is an integration constant. Accordingly,

τ = 3b
(

ϕ − ϕ0

2

)2/3
. (12)

Replacing in the expression the potential with (12), one can find the behavior near the
vicinity of the critical point, and by keeping the leading terms, we have

V(ϕ) =
1

12b2

(
1 − 6

(
ϕ − ϕ0

2

)2/3
)

. (13)

The presence of cusp type’s non-analyticity in the expression above is responsible for the
transition from the standard scalar field to its phantom counterpart and vice versa.
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One can also consider a slightly more general model:

ds2 = dt2 − t2α
(
dx2

1 + dx2
2 + dx2

3
)
, (14)

in which the dynamics evolve a perfect fluid with the equation-of-state parameter as follows:

w =
2 − 3α

3α
. (15)

This is the well-known particular solution for the flat Friedmann model with a minimally
coupled scalar field and exponential potential. To eliminate the cosmological singularity,
one can modify metric (14) in a Simpson–Visser spirit as

ds2 = dt2 −
(
t2 + b2)α(dx2

1 + dx2
2 + dx2

3
)
; (16)

the corresponding Ricci tensor components are

R0
0 = −

3α
(
(α − 1)t2 + b2)(

t2 + b2
)2 , R1

1 = R2
2 = R3

3 = −
α
(
(3α − 1)t2 + b2)(

t2 + b2
)2 , (17)

and the Ricci scalar is

R = −
6α
(
(2α − 1)t2 + b2)(

t2 + b2
)2 . (18)

Now the expressions for energy density and pressure read

ρ =
3α2t2(

t2 + b2
)2 , p = −

α
(
(3α − 2)t2 + 2b2)(

t2 + b2
)2 , (19)

and the corresponding expressions for the potential and the time derivative of the scalar
field realizing the evolution (16) are

V(ϕ) =
α
(
(3α − 1)t2 + b2)(

t2 + b2
)2 , ϕ̇2 =

2α
(
t2 − b2)(

t2 + b2
)2 . (20)

In the absence of the regularizing parameter b = 0, we can get from Equation (20) the
known expression for the exponential potential:

V(ϕ) = α
(
3α − 1

)
exp

(
−
√

2
α

(
ϕ − ϕ0

))
. (21)

Nevertheless, if b > 0, one can see that, just as in the previous case, the transition from
the standard scalar field to the phantom one (or vice versa) takes place. Now, we can
again consider the vicinity of the instant t = b. Proceeding in a similar way, we obtain the
following expression for the behavior of the potential in the vicinity of the cusp:

V(ϕ) =
α

4b2

(
3α − 2 · 32/3

α1/3

(
ϕ − ϕ0

2

)2/3
)

. (22)

This expression has the same non-analyticity (∼(ϕ − ϕ0)
2/3) as that seen in the expression

(13), and when α = 1
3 , these expressions coincide.

3. Regular Friedmann Universes and Tachyons

Let us now again consider a regular flat Friedmann universe with the metric (16).
The expressions for the components of the Ricci tensor, Ricci scalar, energy, and pressure
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are given by Equations (17)–(19). However, now the universe is filled by the tachyon
(Born–Infeld-type) field with the Lagrangian [58]:

L = −V(T)
√

1 − T,µT,µ (23)

where T is the tachyon field, and the function V(T) will be called the “potential” of the
tachyon field. In the framework of our Friedmann model, we shall consider a spatially
homogeneous tachyon field T = T(t), and the Lagrangian (23) will take the simple form

L = −V(T)
√

1 − Ṫ2. (24)

The energy density and the pressure for this field are

ρ =
V(T)√
1 − Ṫ2

, p = −V(T)
√

1 − Ṫ2. (25)

The analogue of the Klein–Gordon equation now looks as follows:

T̈
1 − Ṫ2 +

3αt(
t2 + b2

) Ṫ +
V,T

V
= 0. (26)

Comparing the expressions (25) for the tachyon field with the corresponding components
of the energy–momentum tensor coming from Friedmann’s equations (19), we obtain

Ṫ2 =
ρ + p

ρ
=

2
(
t2 − b2)
3αt2 , (27)

V(T) =
√
−ρp =

√
3α3t2

(
(3α − 2)t2 + 2b2

)
(
t2 + b2

)2 . (28)

One can solve Equation (27), to find a solution

T(t) = T0 ±

√
2
(
t2 − b2

)
3α

(
1 − b√

t2 − b2
arctan

√
t2 − b2

b

)
. (29)

Let us note here that this solution automatically satisfies Equation (26) due to the
Bianchi identities. This feature is typical for the reconstruction techniques for the poten-
tials of both the minimally coupled and the tachyon fields; see, e.g., ref. [12] and the
references therein. We cannot invert Equation (29) and find the cosmic time parameter
t as a function of the tachyon field T. Thus, as a result, we cannot find an explicit form
of the tachyon potential (28) as a function of T. Let us compare this situation with that
of the singular cosmology for which the regularizing parameter b = 0. In this case, the
universe expands (or contracts) following a simple power law, and Equations (27) and (28)
become simpler:

Ṫ2 =
ρ + p

ρ
=

2
3α

, V(T) =
√
−ρp =

√
3α3
(
3α − 2

)
t2 . (30)

Integrating Equation (30), we get

T(t) = T0 ±
√

2
3α

t, (31)
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and inverting Equation (31), one obtains

t = ±
√

3α

2
(
T − T0

)
. (32)

Substituting expression (32) into Equation (30), we find the explicit form of the tachyon potential:

V(T) =

√
4α(3α − 2)

3(
T − T0

)2 . (33)

A tachyon model with potential (33) was considered in papers [59,60]. Such a model
has a particular exact solution that describes a universe expanding according to the power
law with a negative effective pressure. In our terms, it corresponds to the parameter α
such that α > 2

3 . To have a flat Friedmann universe expanding according to the power law
but with positive pressure, i.e., with the parameter α < 2

3 , one can introduce another type
of the Born–Infeld-type field, which is called a “pseudotachyon” and is described by the
following Lagrangian [12]:

L = V(T)
√

Ṫ2 − 1. (34)

Furthermore, it was shown that it is possible to construct a potential of the tachyon field
with the Lagrangian (24) such that the dynamics drive the universe to the point where the
transformation of the tachyon field into a pseudotachyon field is unavoidable and arises in
a natural way.

Let us come back to a flat Friedmann universe with metric (16) and non-singular
evolution, i.e., with b > 0. We shall first consider the model with α > 2

3 . In this case, the
pressure is always negative, and the expression for the potential (28) is well defined. Using
the obtained expression (27), one can find that

√
1 − Ṫ2 =

√
1 − 3

3α
+

b2

3αt2 (35)

is also well defined at α > 2
3 . However, we see that at |t| < b, the right-hand side of

Equation (27) becomes negative. That means that at the moment in time when t = ±b,
we encounter the transformation of the tachyon field into the phantom tachyon field with
the Lagrangian:

L = −V(T)
√

1 + Ṫ2. (36)

Thus, the universe at |t| > b is driven by the tachyon field, while at |t| < b, it is driven
by the phantom tachyon field. Note that the transformation between these two types of
Born–Infeld-type fields also occurs if α < 2

3 .
It is interesting to look at the form of the potential in the vicinity of the point of this

transition using the same method that was used in the preceding section for the analysis
of the models with minimally coupled scalar fields. Straightforward calculations show
that in the vicinity of the phantom–non-phantom transition point, the potential has the
following behavior:

V =
3α2

b2 −
3α
(
3α + 1

)
b3

(
αb
2

)1/2(
T − T0

)2/3. (37)

Note that we again have the same exponent 2
3 as in Equation (13) for the potential of the

scalar field.
In the case when α < 2

3 , we have a couple of additional particular time moments

t = ±
√

2
2 − 3α

b (38)



Universe 2024, 10, 137 8 of 13

during which both the expression under the square root in the formula for the potential
(28) and the expression under the square root for the kinetic structure (35) change their
signs. This situation is exactly as described in [12], and it corresponds to the transition
from the tachyon field to the pseudotachyon one. Below, Figure 1 graphically represents
the transitions between different regimes in the model with α < 2

3 . It is easy to see that for
α ≥ 2

3 , the transition from tachyon to pseudotachyon is absent.

+∞−∞

Pseudotachyon

−
√

2b√
2 − 3α

Tachyon

−b

Phantom tachyon

b

Tachyon Pseudotachyon

√
2b√

2 − 3α

Figure 1. Possible transitions between different regimes in the tachyon model (23) with α < 2
3 .

It is well known that cosmological solutions avoiding singularities, i.e., solutions with
bounces, suffer from instability. While detailed analysis of cosmological perturbations
represents a rather cumbersome task that lies beyond the scope of the present paper, we
can undertake the study of the speed of sound squared for a cosmological model with
the metric (16). This analysis will be relevant for both the scalar model of the preceding
section and the tachyon model. We have the expressions for the time dependencies of the
pressure and energy densities with respect to time; see Equations (7) and (19). Using these
expressions, one can find

c2
s =

dp′t2

dρ′t2
=

(2 − 3α)t2 − 3(2 − α)b2

3α(t2 − b2)
. (39)

Now we are able to study the time behavior of the speed of sound squared for models with
different values of the parameter α, characterizing our cosmological evolution.

Let us start with the case α > 2, which, in the model with the non-regularized metric,
i.e., at b = 0, corresponds to a Friedmann universe filled with a perfect fluid with negative
pressure and an equation-of-state parameter w ≤ − 2

3 . First of all, we note that at all values
of parameter α, the denominator of the expression (39) is positive at t2 > b2 and negative
at t2 < b2. For α > 2, by catching the sign of the numerator, one can easily see that

c2
s < 0 if t2 > b2 or t2 <

3(2 − α)

2 − 3α
b2, while c2

s > 0 if
3(α − 2)
3α − 2

b2 < t2 < b2. (40)

Then, if the time belongs to interval (40), where the speed of sound squared is positive, we
may ask ourselves when c2

s is subluminal and when it is superluminal. A simple analysis
shows that

c2
s < 1 if

3(α − 2)
3α − 2

b2 < t2 <
3(α − 1)
3α − 1

b2; and if
3(α − 1)
3α − 1

b2 < t2 < b2, (41)

one has a superluminal velocity for the propagation of the perturbations.
One can consider the case 1 < α ≤ 2, which matches a perfect fluid with a negative

pressure with the equation-of-state parameter − 2
3 ≤ w < − 1

3 . A similar analysis shows that
c2

s < 0 at t2 > b2. The speed of sound squared is positive, subluminal, and superluminal,
correspondingly, at

t2 <
3(α − 1)
3α − 1

b2 and
3(α − 1)
3α − 1

b2 < t2 < b2. (42)

The next case is 2
3 ≤ α ≤ 1, which agrees with a perfect fluid with negative pressure

and equation-of-state parameter − 1
3 ≤ w ≤ 0, and c2

s < 0 at t2 > b2 and positive, but it is
superluminal at t2 < b2.
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The case 1
3 ≤ α < 2

3 corresponds to a perfect fluid with positive pressure and equation-
of-state parameter 0 < w ≤ 1, leading to

c2
s < 0 if b2 < t2 <

3(2 − α)

2 − 3α
b2; c2

s < 1 if t2 >
3(2 − α)

2 − 3α
b2, and c2

s > 1 if t2 < b2. (43)

This particular case, namely 1
3 ≤ α < 2

3 , is presented graphically below in Figure 2.

+∞−∞

0 < c2
s < 1

−
√

6 − 3α

2 − 3α
b

c2
s < 0

−b

c2
s > 1

b

c2
s < 0 0 < c2

s < 1

√
6 − 3α

2 − 3α
b

Figure 2. The corresponding squared speed of sound to the possible transformations in the tachyon
model (23), which is shown in Figure 1.

Finally, in the case of 0 < α < 1
3 , suited for the equation of state with w > 1, we have

c2
s < 0 if b2 < t2 <

3(2 − α)

2 − 3α
b2, and

c2
s > 1 if t2 < b2 or

3(1 − α)

1 − 3α
b2 < t2; c2

s < 1 if
3(2 − α)

2 − 3α
b2 < t2 <

3(1 − α)

1 − 3α
b2.

(44)

Let us now switch off the regularization, i.e., set b = 0. As follows from Equation (39),

c2
s =

2 − 3α

3α
; (45)

the speed of sound squared is positive if α < 2
3 , i.e., if the pressure is positive, and it is

subluminal if α > 1
3 , i.e., the pressure is smaller than the energy density. We have seen

that in any case, the inclusion of the parameter b and regularizing the metric introduces
instabilities into the cosmological solutions. Such a situation looks rather natural. One can
remember that, for example, in a very simple cosmological model of a closed Friedmann
universe filled with a minimally coupled scalar field, for which the potential includes only
a massive term that is quadratic in field, there are solutions with bounces, but they are
actually unstable. This model was studied in detail by many authors; see, e.g., refs. [70–77].
Thus, it looks like a very challenging task to obtain a cosmological model with non-singular,
stable evolution.

One can ask themselves: what can be the value of the regularizing parameter b? As a
matter of fact, because of the purely theoretical nature of our toy model, it is difficult to
make some reasonable estimations. One can say only that any, even the most tiny nonzero
value, of b does the job of eliminating the cosmological singularity. On the other hand, the
smaller the value of b, the less distorting its effects are on other aspects of cosmological
evolution. Thus, with a more complicated and realistic nonsingular cosmological model,
one can hope to find a bound from above on the values of regularizing parameters when
comparing the model with observational data.

4. Discussion

We applied a simple procedure for the construction of cosmological models free from
singularities to flat Friedmann universes filled with minimally coupled scalar fields or
by tachyon Born–Infeld-type fields. The form of the regular metric for the Friedmann
universes, which we have used in the paper [44] and in the present paper, was inspired
by the prescription used in the paper [36] for the construction of regular black holes.
Remarkably, for both cases—the minimally coupled scalar field and the tachyon field—the
regularity of the cosmological evolution, or in other words, the existence of bounce, implies
the necessity of the transition between scalar fields with standard kinetic terms to those with



Universe 2024, 10, 137 10 of 13

phantom ones. In both cases, the potentials of the minimally coupled scalar field and the
tachyon in the vicinity of the point of the transition have a non-analyticity of the cusp form
that is characterized by the same exponent and is equal to 2

3 . If in the tachyon model we
choose the evolution such that the pressure changes its sign, then another transformation
of the Born–Infeld-type field occurs: the tachyon transforms into a pseudotachyon, and
vice versa.

It is worth noting that a transition between these two types of scalar fields was also
investigated in the articles [56,57,78] in a rather different context. The starting point there
was the observation that the equation of the state of effective dark energy models in the
late universe can change its form across the value w = −1. This phenomenon is called
the “crossing of the phantom divide line” in the literature. Onward, the authors of [56],
inspired by [79], proposed a model wherein this effect is realized in the presence of a single
scalar field; see also the earlier work [78]. For this to be achieved in [56], it was necessary
to have a cusp in the potential of the scalar field, and its initial conditions needed to be
chosen in a special way. Further details of this model were explored in [57]. Remarkably,
the form of the cusp found in [56] coincides with that found in [44] for a minimally couple
scalar field and, in the present paper, for a tachyon field. Enigmatically for us, the exponent
2
3 arises everywhere.

We would like to mention some other curious facts concerning Born–Infeld-like fields.
First, as was noticed in the paper [61], a cosmological model with a tachyon with constant
potential exactly coincides with that based on the Chaplygin gas [80] with an equation of
state p = −A/ρ, where A is a positive constant; see also [81–83]. An analogous observation
was made in [12]: a model based on a pseudotachyon with constant potential is equivalent
to a model based on a perfect fluid, which was called “anti-Chaplygin gas” and has an
equation of state p = B/ρ, where B is a positive constant. Remarkably, an equation of state
of this type was obtained from the so-called wiggly strings [84,85]. The anti-Chaplygin gas
appears to be a rather convenient tool for studying future soft singularities.

Concluding the paper, we would like to say that the study of regular cosmological
models free of singularities, just like the investigation of regular black holes, brings some
interesting results and reveals some unusual features of General Relativity and its modifi-
cations and generalizations. However, eliminating the singularities rather often implies
the appearance of some cumbersome and not quite natural types of matter. Thus, in our
opinion, the idea that the singularities in General Relativity are not its drawback but its
distinguishing feature, which should be accepted and for which adequate language for their
treatment should be developed, is very attractive. We complete our text with a reference
to an old paper by Charles Misner in which this idea was expressed in a very clear and
convincing way [86]. In particular, he wrote, “We should stretch our minds, find some
more acceptable set of words to describe the mathematical situation, now identified as
‘singular’, and then proceed to incorporate this singularity into our physical thinking until
observational difficulties force revision on us. The concept of a true initial singularity
(as distinct from an indescribable early era at extravagant but finite high densities and
temperatures) can be a positive and useful element in cosmological theory”.
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