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Abstract: The emergence of a minimal observable length of order of the Planck scale is a prediction
of many quantum theories of gravity. However, the question arises as to whether this is a real
fundamental length affecting nature in all of its facets, including spacetime. In this work, we show
that the quantum measurement process implies the existence of a minimal measurable length and
consequently the apparent discretization of spacetime. The obtained result is used to infer the value
of zero-point energy in the universe, which is found to be in good agreement with the observed
cosmological constant. This potentially offers some hints towards the resolution of the cosmological
constant problem.
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1. Introduction

Gravity is a universal force in nature, although it is the least known at the quantum
level. As a matter of fact, a complete theory of quantum gravity is still far from being devel-
oped, notwithstanding several decades of research and numerous tentative models, such as
string theory [1,2], M-theory [3], brane-world scenario [4], loop quantum gravity [5], and
asymptotic safety [6] (see also [7] for a recent review of quantum gravity phenomenology).
Within the framework of quantum gravity, the quantization of spacetime is expected to
emerge naturally. In fact, continuum space and time as described by Einstein’s General
Relativity are thought to break down at very small scales, generating a fluctuating and
non-smooth structure where spacetime is poorly defined locally. The ensuing background
is then characterized by a sea of quantum fluctuations that define and perturb the structure
of spacetime itself.

The relation between quantum fluctuations and the texture of spacetime has been
largely investigated from different perspectives in recent years. For instance, in [8,9] deco-
herence mechanisms from a fluctuating minimal length have been discussed along with
their potential implications on cavity optomechanics experiments. On the other hand,
in [10–13] it has been proposed that at the Planck scale, quantum gravity fluctuations and
the structure of spacetime could be related to Einstein–Podolski–Rosen (EPR) [14,15] entan-
gled states through the equivalence with Einstein–Rosen (ER) [16] wormholes (ER = EPR
conjecture). However, no clear effect has been revealed so far, indicating that fluctuations
might occur at even smaller scales or that we still do not understand the interactions
between photons and gravitons.

Starting from the above premises, in Section 2 of the present work we argue that the
quantum measurement process implies the existence of a fundamental measurable length at
the Planck scale and consequently the apparent discretization of spacetime. It is necessary
to note from the outset that we do not intend to provide any rigorous proof of this, since
it would require knowledge from a quantum theory of gravity that is not yet available;
rather, we aim at outlining some plausibility arguments, which could hopefully set the
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stage toward developing such a framework. As an application of our study, in Section 3
we infer the value of zero-point energy in the universe, which is found to be very close to
the observed cosmological constant. Conclusions and outlook are finally summarized in
Section 4.

2. The Minimal Measurable Length

In this section, we argue why spacetime should be considered as apparently discrete.
We show that there exists a minimal measurable length which is essentially the Planck
length and study the consequences of this result. Also, we anticipate that, although
many quantum models of gravity and discussions related to the Planck scale suggest
the possibility of discrete time structures, the problem of “quantum time” is far from
being understood, as existing paradigms and ideas are still speculative. In our model, we
shall essentially provide a semiclassical treatment of time, wherein the only quantum-like
ingredient is the time–energy uncertainty relation (see Equation (14) below). Clearly, more
research which goes beyond our heuristic arguments is needed to understand the nature of
time at the quantum level.

In the same way as the Heisenberg Uncertainty Principle (HUP), the discreteness of
spacetime is nontrivially intertwined with the measurement problem in quantum mechan-
ics. Rigorously, the study of quantum measurement processes should involve the usage of
projection-valued measures of positive-operator-valued measures derived from the spectral
theorem for quantum observables. However, it is known that the spectral theorem may
face challenges when applied in the context of quantum gravity. For instance, one such
issue concerns the nature of spacetime: while the conventional spectral theorem deals with
operator on Hilbert spaces, in quantum gravity questions arise about the fundamental
nature of the spacetime manifold, which may not be accurately represented as a Hilbert
space. Furthermore, a modification of the standard spectral theorem may be required to
accommodate non-commutative geometries in some non-commutative models of quantum
gravity. Addressing these issues involves exploring more sophisticated frameworks. This
goes far beyond our preliminary analysis, which is essentially based upon semiclassical
arguments and order of magnitude estimates.

To understand the problem of quantum measurement in a naive way, we can follow a
heuristic approach and think of how we carry out measurements in classical mechanics.
Suppose we want to measure the length of a certain object by using a common ruler. If the
object is larger than the ruler, we can measure its length by moving the ruler in consecutive
positions along the object and keep track of the number of times we iterate this process
(or, alternatively, we might use a longer ruler). But if the object is very tiny, we must take
a ruler whose unit of measure is smaller than (or at most equal to) the length we want to
measure, since otherwise this task cannot be achieved.

On the other hand, it is well-known that in the quantum framework the interactions
between bodies occur through the action of other particles called “mediator” bosons. For
the electromagnetic interaction this particle is the photon, while for the gravitational field it
is expected to be the graviton. Let us then consider a central mass M that interacts with
a test body m in a classical view of the interaction. We assume that the two objects are
separated by a distance R (which we take to be of the same order as the radius of the central
body). In order for the mass m to escape the gravitational field of M, its kinetic energy
must be equal to or greater than its gravitational potential energy i.e.,

1
2

mv2 ≥ GMm
R

. (1)

From this equation we can derive the escape velocity v =
√

2GM
R as the minimum

speed at which the test mass m has to travel to move away indefinitely from the gravity
source M.

By extending the above paradigm to a relativistic picture, we know that there is an
upper limit for the speed at which signal carrying information can travel through the space,
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which is the speed of light c. Therefore, the smallest distance from which the test body can
escape is

R ≥ 2GM
v2

v→ c→ rs =
2GM

c2 . (2)

This corresponds to the radius defining the event horizon of a Schwarzschild black
hole, which is a coordinate singularity that appears in General Relativity. Nothing can
escape the gravity of a black hole, except for the Hawking radiation arising from quantum
fluctuations near the event horizon.

Now, the measure theory in quantum mechanics is well understood and based on
shooting particles (essentially photons) toward a target to determine its position and size.
But, as it happens classically, the size of the probe must be at most equal to that of the
target, for otherwise it is impossible to localize the latter.

For massive particles, the characteristic length scale is roughly given by their de
Broglie wavelength

λ =
h
p

, (3)

where h is the Planck constant and p = mγv = mv√
1−v2/c2 denotes the momentum of the par-

ticle. It is clear that for velocities v much less than the speed of light c, we can approximate
p = mv, so that λ = h/mv. Notice that Equation (3) resembles the corresponding formula
for massless photons

λ =
hc
E

, (4)

where E is the energy of the photon and we have used the relation p = E/c. From this
equation, we can see that smaller wavelengths correspond to higher energies and vice versa.
Consequently, the smaller the size we aim to probe, the higher the energy we need.

Bearing the above reasoning in mind, let us consider a particle of size r and suppose
we want to localize it in the space. Toward this end, we need photons of wavelengths λb
satisfying

λb ≲ r. (5)

In order for these photons to be detected by the observer after hitting the target, their
energy Eb must be less than or equal to the energy of the particle we want to localize, i.e.,1

Eb ≡ mbc2 ≲ Ep =
√

m2c4 + p2c2, (6)

where we have defined mb ≡ Eb/c2 = pb/c as the equivalent mass of the photon and Ep is
the energy of the particle. Therefore, in the limit case where p → 0, we obtain mb ≲ m.

Now we try to answer the following question: what is the smallest distance we can
measure practically? To address this issue, let us consider the smallest mass that an object
compressed inside the smallest radius can have. We denote this mass by ms and the smallest
radius that can have this object is of course the Schwarzschild radius of a black hole with
equivalent mass ms, i.e.,

rs =
2Gms

c2 . (7)

Based on Equation (5), it is clear that to measure this distance rs we need photons with
wavelength λb obeying

λb =
h

mbc
≲ rs =

2Gms

c2 . (8)
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Moreover, from Equation (6) we have mb ≲ ms and consequently using Equation (8)
we obtain

h
msc

≲
h

mbc
≲ rs =

2Gms

c2 . (9)

Therefore, we have

ms ≳

√
hc
2G

≳

√
h̄c
G

= mP ≈ 2.18 × 10−8 Kg, (10)

where mP is the Planck mass. The obtained equation implies that the Planck mass is the
mass of the smallest measurable black hole. Notice that this does not mean that the smallest
measurable mass is mP. In fact, all elementary particles have masses much smaller than mP.

We can now derive the smallest measurable distance. From Equations (7) and (8), we
figure out that it is given by the radius of the event horizon of a black hole with equivalent
mass mP. More specifically, for the case when mb ≃ mP in Equation (8), we obtain

rs ≳
h

mPc
=

√
hG
c3 = ℓP ≈ 1.616 × 10−33 cm, (11)

where ℓP is the Planck length. To summarize, our reasoning was as follows: we started
by considering the Schwarzschild radius rs associated to the mass ms of a given object
(See Equation (7)). As is well known, rs represents the size to which the object needs to be
compressed in order to become a black hole. Clearly, this radius defines the event horizon
of the black hole. Theoretically, once an object crosses the event horizon, it cannot send
information back out, making the inner region inaccessible to external observation. In this
sense, rs is the minimum accessible distance that can be probed by measurements. Next,
from Equation (10), we figured out that the minimum mass that such a black hole-like
object can have is just the Planck mass mp. Accordingly, from Equation (7), the minimum
accessible distance is (up to a numerical factor, which is irrelevant for our purpose of
estimating the orders of magnitude) the Schwarzschild radius of a black hole having the
minimum mass mp. Although this a well-known result, we would like to point out that
here it has been derived in a way alternative to other approaches presented in the literature.

Therefore, we do not know if spacetime is discrete and perhaps we will never know
that, but for practical purposes and due to the peculiarities of the measurement process
in quantum mechanics, it behaves as if it were discrete, with the minimal measurable
distance being given by the Planck length. The fact that there exists such an elementary
length implies that at scales smaller than ℓP, we cannot know what structure the spacetime
has, since we cannot access it. From this perspective, our claim differs conceptually from
other results in prior literature, where the Planck scale is typically assumed (rather than
inferred) as a characteristic cutoff scale. A detailed discussion of whether a minimal length
is physical appears in the recent analysis of [17]. In that context, it is claimed that the
emergence of a minimal observable length in the framework of generalized uncertainty
relations is physical, in the sense that it is not altered by different representations of the
physical operators obeying the deformed algebra.

Another important implication of the above achievement is that quantum fluctuations,
which in principle could originate at any point in a space, actually appear as if they were
created at discrete points on the Planck scale. Therefore, the points where quantum fluctu-
ations can be generated are (at least) at a distance ℓP apart from each other. We shall see
below that this feature has non-trivial implications on the cosmological constant problem.
Moreover, we have to take into account only those fluctuations with wavelength λ ≳ ℓP.
Indeed, assuming that the uncertainty in the localization of any quantum fluctuation is
∆x ≃ ℓP, for those fluctuations that saturate the Heisenberg Uncertainty Principle, we have

∆x∆p ≃ h̄
2

, (12)
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which in turn implies

∆p ≃ h̄
2∆x

≃ h̄
2ℓP

=
mpc

2
. (13)

At this stage, it is worth noting that, for our analysis, we are essentially taking inspira-
tion from some semiclassical computations, like those in [18–20], where ∆x is interpreted as
the width of a given space region, ∆E as the energy fluctuations of the quantum vacuum in
this region, and so on. Strictly speaking, a thorough analysis should involve defining such
quantities in terms of variances of quantum observables relative to a specific quantum state.
This task, however, can only be accomplished upon proper reformulation of our study in
terms of quantum operators (see the discussion at the beginning of Section 2).

In the usual (Casimir-like) picture of a quantum vacuum, the existence of quantum
fluctuations means that the vacuum is not really empty. In fact, it is filled with virtual
particles–antiparticles pairs that continuously originate from fluctuations and annihilate
shortly afterwards. The lifetime ∆t of such virtual pairs can be roughly estimated from the
time–energy uncertainty relation

∆E∆t ≃ h̄
2

. (14)

Of course, from this equation we observe that the higher the energy ∆E of the pair,
the shorter its lifetime, and vice versa. In particular, in the case of photons (which are ex-
pected to provide the dominant contribution to the vacuum energy), Equation (13) implies

∆E = c∆p ≃
mpc2

2
. (15)

By plugging into Equation (14), we obtain

∆t ≃ h̄
mpc2 =

ℓP
c

= tP, (16)

where tP denotes the Planck time. We recall that this is the time it takes light to traverse a
distance of one Planck length in a vacuum, and is approximately

tP ≈ 5.39 × 10−44s . (17)

Therefore, the Planck time can be naturally derived from the time–energy uncertainty
relation Equation (14) as corresponding to the lifetime of vacuum fluctuations with local-
ization ∆x of order of the Planck scale. It is clear that, if the wavelength of the virtual
particle is less than ℓP, then the scale over which it can be localized is within the Planck
length. Hence, the unique quantum fluctuations which spread beyond the cube of side ℓP
centered on the point where the fluctuation appears are those satisfying λ ≳ ℓP.

Before proceeding further, we would like to remark that the above considerations
on vacuum polarization are the insight and result of perturbative quantum field theory.
The extension to gravity and spacetime could be in principle challenging, due to known
issues with renormalizability. In the absence of a fundamental description that comprises
all four interactions, such arguments can be extrapolated to gravity as a guideline in the
quest for a quantum formulation of Einstein’s theory.

Before moving on, we would like to draw attention to the fact that, although a com-
pletely quantum description of gravity is still missing, it is commonly believed that gravita-
tional effects should somehow affect the basic principles of quantum theory. One of the
most eloquent examples is the alleged modification of the HUP approaching the Planck
scale. In fact, the standard Heisenberg relation does not include corrections arising from
the gravitational interaction.

In most quantum gravity proposals to address the Planck scale, natural cutoffs appear
as intrinsic characteristics of quantum spacetime. Mathematically, these are a result of
the compactness of the corresponding symplectic manifold, as can be seen in [21]. These
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cutoffs are encoded as fundamental length scales [22–29], which can be a new source of
uncertainty. In particular, the generalized uncertainty principle (GUP) takes into account
gravitational uncertainty of position and momentum related to the existence of a minimal
length of the order of the Planck length ℓP [30–35] and/or a maximal momentum [36,37].
Discreteness of space from GUP has been largely explored in [38].

On the other hand, the dual of the GUP is the extended uncertainty principle (EUP),
which considers the geometrical aspects of the spacetime curvature on large scales. Specif-
ically, it embeds the uncertainty related to the background spacetime manifested by a
maximal horizon scale (typically the cosmological event horizon rh) and/or by a minimal
momentum scale (see for instance [39–41]).

Both the GUP and EUP can be combined to give rise to the so-called Generalized
Extended Uncertainty Principle (GEUP)

∆p∆x ≥ h̄
2

[
1 + α

(
ℓP∆p

h̄

)2
+ β

(
∆x
rh

)2
]

, (18)

where α, β are (dimensionless) deformation parameters [26]. When α = 0 or β = 0, we
recover the EUP and GUP extensions, respectively.

3. Discreteness of Spacetime and Cosmological Constant

In this section, we exploit the above result on the discretization of spacetime to estimate
the cosmological constant. To this aim, we first make a digression to review the derivation
of the Unruh effect [42] proposed in [43]. The relation of the quantum fluctuations with
the cosmological constant problem has been historically studied [44]. Also, in [45] it has
been argued that GUP models in their current form are unable to adequately address
the cosmological constant problem. In this regard, we emphasize that the solution here
proposed is not directly connected with any modification of the Heisenberg relation, but it
is rather based on the conjecture that spacetime is apparently granulated at Planck scale
and that only points at Planck distance resonate, contributing to the total zero-point energy
of the universe.

3.1. The Unruh Effect

The Unruh effect is a characteristic prediction of quantum theory, which states that
from the point of view of a uniformly accelerating (Rindler) observer, empty space appears
as a thermal bath of particles at a temperature proportional to the proper acceleration, i.e.,

T =
h̄a

2πckB
, (19)

where kB is the Boltzmann constant. This effect is due to the particular geometry of Rindler
space induced by the uniformly accelerated motion in Special Relativity, which leads to the
appearance of an event horizon for the accelerated observer.

Although the original derivation of the Unruh effect was carried out within the
framework of quantum field theory [42], the Unruh temperature (19) can be heuristically
deduced from the HUP in a simple way [18,43]. Indeed, from Equation (12), we have

∆x∆E ≃ h̄c
2

(20)

where we have considered that the major contribution to Unruh radiation comes from
photons, for which ∆E = c∆p. In passing, we would like to mention that an intuitive
derivation of the Unruh effect has been proposed in [46] by using the Doppler shift method
for both a scalar field in one spatial dimension and a spin-1/2 Dirac field. For an alternative
approach based on the coupling between the Unruh–de Witt detector and an external field,
one can resort to the analysis contained in [47].

Now, by taking into account that ∆x ≃ πd, where d = c2/a is the distance of the
observer from the Rindler horizon [43], we have
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∆E ≃ h̄c
2πd

=
h̄a

2πc
. (21)

Finally, considering that the Unruh radiation is thermalized, i.e., ∆E = kBT, we obtain
T ≃ h̄a/(2πckB), which coincides with the definition (19). Notice that the above reasoning
can be readily generalized to three spatial dimensions, following the same reasoning as in
Section 3.4 below. Furthermore, the same expressions for the vacuum energy and Unruh
temperature are obtained in the case of massive fields, as argued in [48] and the subsequent
extension to mixed fields [49].

In [28], the modified Unruh effect in the presence of a minimal length was addressed
in both quantum mechanics and field theory. In spite of the different approaches, it was
shown that corrections to the Unruh temperature are consistent in the two frameworks (up
to some numerical factor). It is then expected that our considerations in quantum mechanics
might continue to hold valid in quantum field theory, although a universally accepted
implementation of a minimal length has not yet been formulated in the latter theory.

3.2. Cosmological Constant

The cosmological constant problem (known also as vacuum catastrophe) is the dis-
agreement between the observed value of the vacuum energy density (i.e., the tiny value
of the cosmological constant) and the theoretical large value of the zero-point energy pre-
dicted by quantum field theory. The challenge is to determine the value of Λ in Einstein’s
field equations

Rµν −
1
2

R gµν + Λgµν =
8πG

c4 Tµν, (22)

in such a way that the ensuing dynamic model is consistent with the observed accelerated
expansion of the present universe, considering that Λ has the same effect as an intrinsic
vacuum energy density with negative pressure.

3.3. Analysis in the Cosmological Horizon

As is well-known, accelerating spatial expansion creates cosmological horizons, i.e., dis-
tances beyond which we cannot exchange information. In particular, in [50–52] it has been
argued the Hubble horizon is responsible for a damping of Unruh radiation, giving rise
to a Hubble-scale Casimir-like effect for any observer at any spacetime point. The energy
of fluctuations coming from this horizon at distance ru = c/H0, where H0 is the present
value of the Hubble parameter, can be estimated by applying the same reasoning as for the
Unruh radiation in Equation (21), yielding

∆E ≃ h̄c
2∆x

. (23)

Now, we take into account that the spacetime is apparently granulated at Planck
scale and each point of Planck size is a resonant point of the spacetime. Hence, in a linear
distance ru, the number of resonant points is N0 ≃ ru/ℓP. Next, we use the relation
∆x ≃ 2πru = 2πN0ℓP [50–52], where the factor 2 is due to the fact that the cosmic horizon
appears isotropically [53], obtaining

∆E ≃ h̄c
4πN0ℓP

. (24)

Then, the contribution of any resonant point of the cosmological horizon to the vacuum
energy is

∆Ei =
∆E
N0

≃ h̄c
4πN2

0 ℓP
≃ h̄cℓP

4πr2
u

. (25)
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3.4. Analysis in the Bulk of the Universe

We can alternatively estimate the energy per resonant point from the cosmological
constant. The cosmological constant is equivalent to the intrinsic density energy of a
vacuum through the equation

ρvac =
Λc4

8πG
. (26)

Therefore, the total vacuum energy is

ET = ρvac V = ρvac
4
3

πr3
u, (27)

where V is the volume enclosed by the cosmological horizon. Since the number of resonant
points in the entire universe is N = 4

3 πr3
u/ℓ3

P (not to be confused with N0 introduced
above), the energy of each resonant point is found to be

ET
N

= ρvac ℓ
3
P. (28)

Finally, we observe that any resonant point of the universe must resonate with the
same energy, because whether the point is on the cosmological horizon or inside it only
depends on the location of the observer. Note that a fixed point in the universe defines
the cosmological horizon associated to this point. We then equate Equations (25) and (28)
to obtain

Λ =
2Gh̄

c3ℓ2
Pr2

u
=

2
r2

u
=

2H2
0

c2 . (29)

The obtained result is to be compared with the well-known expression

Λ = 3ΩΛ
H2

0
c2 , (30)

where ΩΛ is the ratio between the energy density due to the cosmological constant and the
critical density of the universe. Using the value known for ΩΛ ≃ 0.69 [54], this leads to
Λ ≃ 2.07H2

0 /c2, which is in good agreement with Equation (29).

4. Discussion and Conclusions

An important feature of most of the existing models of quantum gravity is the emer-
gence of a minimal length at the Planck scale and, consequently, the quantization of space
and time. Indeed, according to these models, continuum space and time as described by
Einstein’s General Relativity break down at very small scales, generating a fluctuating and
non-smooth structure where spacetime is poorly defined locally. Although a minimum
length seems inconsistent with the Special Theory of Relativity, the problem of a Lorentz
invariant scale has been preliminarily addressed in [55–57].

Most of the recent works on the discreteness of spacetime assume the existence of a
minimal length and a modified uncertainty principle [58–60], while exploring the related
implications. On the other hand, much effort has been devoted to construct a discrete
curved spacetime using the Causal Set approach to Quantum Gravity (See [61,62]). How-
ever, measurements of such a prediction have been mostly unsuccessful up to now [63,64].

In this work, it has been argued that quantum measurement implies the existence of a
minimal length at the Planck scale and, accordingly, the apparent discretization of spacetime.
This is in line with the recent result of [17]. Therefore, regardless of whether spacetime
is genuinely discrete, it appears as such due to the peculiarities of the measurement
process in quantum mechanics. As a consequence, quantum fluctuations that pop out
of a vacuum behave as if they were created at discrete points on the Planck scale. This
result has been exploited to infer the zero-point energy in the universe, which turns
out to be very close to the observed value of the cosmological constant. We once more
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emphasize that our considerations and results are essentially based on heuristic reasoning.
Hence, although the present analysis does not pretend to address the question of minimal
length from a very fundamental perspective, it still provides hints towards understanding
the intrinsic resolution of spacetime that should emerge in the fundamental theory of
quantum gravity.

Further consequences of the existence of a minimal measurable length deserve to be
investigated. For instance, in [65,66] it has been shown that minimal length systems can be
described in terms of non-extensive statistics. Specifically, the emergence of an elementary
length scale would enter into the phase space structure by modifying the elementary cell
volume and giving rise to a non-Gaussian (Tsallis-like) statistics. Thus, it is interesting to
analyze deeper this connection in order to see whether minimal length-like effects can be
measured in non-extensive systems, such as self-gravitating stellar systems, black holes,
dissipative systems, or polymer chains. Work along this and other directions is presently
under consideration and will be presented elsewhere.
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