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Various precise cosmological observations, e.g., Supernovae Ia (SNe Ia) [1,2], the
cosmic microwave background (CMB) radiation [3–8], the large-scale structure (LSS) of
the universe [9,10], the baryon acoustic oscillations (BAO) [11,12], and the effect of weak
lensing [13–15], have strongly suggested that the accelerated expansion of the present
universe is realized in addition to inflation in the early universe [16–19]. In particular,
according to the recent Planck results [7,8], for the spatially flat universe, the energy of the
current universe is composed of the following three components: (i) Dark energy (around
70%), an unknown type of energy with negative pressure; (ii) Dark matter (around 25%),
which does not shine and has only its gravitational interaction; (iii) Baryon (around 5%),
i.e., basically protons and nucleons.

It is expected that more detailed and precise observational data in terms of modern
cosmology will be obtained by the Euclid satellite [20] of the European Space Agency
(ESA) [21–27]. Moreover, the events of gravitational waves have been detected [28,29],
along with cosmology, through further future observations of the gravitational waves not
only from astrophysical compact objects, but also the origins in the early universe, including
inflation and cosmological phase Electro-Weak (EW) and QCD transitions [30–33].

Two representative approaches have been explored so that the mechanism of the
accelerated expansion of the late-time universe can be understood. The first approach is
to assume the existence of dark energy such as the cosmological constant within general
relativity. The second is to extend a gravity theory from general relativity at large scale.
The latter is interpreted as a kind of geometrical dark energy. Various extended theories of
gravity have been studied (for detailed reviews of the physics of the cosmic acceleration,
dark energy, alternative theories of gravity, and their cosmological and astrophysical
applications and investigations, see, e.g., Refs. [34–63] and references therein). This Special
Issue of Universe,“Origins and Natures of Inflation, Dark Matter and Dark Energy”, collects
eleven original research manuscripts on the topics of inflation, dark matter, and dark
energy. The Special Issue is organized as follows. Firstly, the topic of inflation [64] related
to the origin of dark matter is discussed. Secondly, both theoretical and experimental
studies of dark matter are described. In particular, quark-nugget dark matter [65–67] and
axion-like particles [68–70] are investigated. After that, the subjects of dark energy [71,72]
and modified gravity theories [73] are explored. In the end, acting as a summary of sorts,
a recent review on modern cosmology in terms of dark energy, dark matter, as well as
inflation [74] is included in this Special Issue. See below for a brief overview of the ten
research articles and one review included in this Special Issue.

In Ref. [64], as a candidate of small primordial black holes, the discretely charged dark
matter is studied in inflationary cosmology with the holographic spacetime. A new model
of black holes created by inflation is proposed. The Big Bang universe is realized by the
decay of the black holes, and the charge of a discrete symmetry has the smallest value. The
fraction of the inflationary black holes carrying this charge is determined for the case in
which the universe enters the matter-dominated stage from the radiation-dominated stage
at a cosmic temperature of approximately 1 eV.
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In Ref. [65], as a candidate of dark matter, the limits on magnetized quark nugget
constructed by up, down, and strange quarks, whose numbers are approximately equal,
are analyzed based on episodic natural events. This is an application of the implication that
the center part of magnetar is composed of quark nuggets, which are a liquid state with a
ferromagnetic nature. Magnetized quark nuggets are known to form and aggregate before
decaying, and their mass distribution is broad and stabilized by magnetic fields. Through
the magnetopause, magnetized quark nuggets can interact with ordinary matter. During
this process, their translational velocity decreases and their rotational velocity increases,
and the energy of electromagnetic fields radiates. In this work, rare events compatible with
the property of magnetized quark nuggets are explored. The strength of magnetic fields
covering quark nuggets is constrained and a proposal to test whether magnetized quark
nuggets can be a candidate of dark matter is supported.

In Ref. [66], for a possible candidate of dark matter, magnetized quark nuggets are
evaluated based on their radial impacts on the earth. At the early stage of the universe,
magnetized quark nuggets formed and aggregated before decaying through the weak force
with a wide distribution of mass. An event has been reported which may support the
presence of magnetized quark nuggets. The parameter of magnetic fields on the surface
determines the distribution of the mass of magnetized quark nuggets and the cross section
of the interaction. Sufficient energy may be transferred to create craters that do not originate
from meteorites. In the present work, the computer simulations for the energy deposition
of magnetized quark nuggets are performed for an environment containing peat saturated
by water, soft sediments, and granite. Moreover, the report of the excavation of the crater is
shown. Five agreement points of the observations with the computer simulations support
the second event, which suggests magnetized quark nuggets. Furthermore, the potential
qualification of more events for magnetized quark nuggets is discussed.

In Ref. [67], the possibility that the multi-modal events of the Horizon-10T are related
to quark nuggets of axion fields is discussed. Multi-modal events with several peaks,
implying they originated from clustering, were reported by the Horizon-10T collaboration.
It is proposed that the events of the annihilation of dark matter would lead to these multi-
modal events in a dark matter model of quark nuggets of axion fields. This is because it is
too difficult to understand these events based on an ordinary interpretation with cosmic
rays. It is demonstrated that various observational results such as the frequency of their
appearance, the intensity, the distribution of space, the duration of time, and the property
of the clustering may be compatible with the nature of the emission from the events of the
atmosphere for the annihilation of quark nuggets of axion fields. In addition, in light of the
ordinary air showers of the cosmic rays, many properties relating to the events of quark
nuggets of axion fields are discussed.

In Ref. [68], a photon collider of the resonance of the stimulation with the fields of
the focused lasers is investigated. The present collider with three beams is used for the
direct production of particles like axions. Two beams are used to create axion-like particles
and the other beam is used to simulate the decay of such particles. This research explores
how suitable the photon collider is for examining particles like axions whose mass range is
about eV. It is shown that the particles like axions with a mass around the eV range may
be probed. In addition, the sensitivity of the coupling between particles like axions and
photons is analyzed.

In Ref. [69], a pilot survey of particles like axions is performed using a photon collider.
The photon collider is used for the resonance of the stimulation, and it has three beams with
the lasers emitting short pulses. In the case of the present photon collider of the resonance
of the stimulation, three laser beams with short pulses are focused into a vacuum so that
the particles like axions, with a mass range around eV, can be detected systematically. In
order to realize such a collider, a proof-of-principle experiment is described. The incident
angles of these three beams are made large to solve the problem in that the overlap of
the spacetime of the lasers with short pulses must be maintained. Moreover, a way of
evaluating the bias of the states of the polarization is investigated. This method is important
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in a system for a collision with variable incident angles in the future. This paper describes
the consequences of this pilot survey, as well as this method by using the exploited system.
The result of this survey is compatible with the null state. The largest possible value for the
minimum of the coupling between particles like axions and photons is also derived.

In Ref. [70], the plan and composition of a photon collider are presented. The photon
collider that provides the resonance for the stimulation has three very strong laser beams
with variable angles. The purpose of this collider is to survey particles like axion whose
mass scale is around eV. The angle of the emission of these three laser beams can be changed,
and therefore the energy of the collision for the system of the center of mass may vary. As
a result, the mass range around eV can be surveyed continuously. Furthermore, through
the calibration of laser beams, the mechanism of the variation of the angle is verified. The
realistic value of the sensitivity of the photon collider is also projected for a future survey.

In Ref. [71], a scenario in which dark energy is unified with dark matter is proposed as
a novel version of a dark energy model of generalized Chaplygin gas. The evolutions of the
Hubble parameter and distance modulus for the present scenario under considerations and
the ΛCDM model are explored. The theoretical consequences are verified using cosmologi-
cal observations. In addition, two geometric diagnostics are analyzed to distinguish the new
model from ΛCDM. Furthermore, with different observational data points, the trajectories
of the evolution for the planes of the diagnostic are explicitly depicted to investigate the
geometric property of the proposed new model.

In Ref. [72], the solutions of the homogeneous and anisotropic spacetime of the Bianchi
type I are derived for a quintom theory with multifield chirality. In such an extended chiral
model, the energy density of one or two scalar fields is negative. When a degree of freedom
of this theory is removed, the original quintom theory appears. The Kasner type analytic
solutions and an exponential form with anisotropy are found in terms of the potential of
the scalar field with its specialized functional expression. Moreover, based on the Noether
symmetry, the theories are classified by their symmetries and the laws of conservation are
also demonstrated.

In Ref. [73], a solution of charged, nonlinear black holes with is explored as part
of the Rastall gravity theory. The model parameter in the theory does not influence the
solution of the linear gravitational field equation for a charged black hole with spherical
symmetry. On the other hand, if a nonlinear electrodynamic source exists, a new spherically
symmetric black hole solution involved with the Rastall parameter, mainly originated from
the non-vanishing trace part of the nonlinear electrodynamic source, is derived. In addition,
it is demonstrated that the new black hole solution is regarded as the Reissner–Nordström
one for the anti-de Sitter spacetime, where the cosmological constant includes the model
parameter of the Rastall gravity. When the case is limited to general relativity, in which
the Rastall parameter vanishes, the new solution corresponds to the solution of Reissner–
Nordström spacetime. Furthermore, by analyzing the geodesic deviation of gravitational
field equations and thermodynamic properties, including the first law of thermodynamics,
it is shown that this black hole solution is stable, differing from the charged case with the
linearity, in which the second-order phase transition occurs.

In Ref. [74], with recent various cosmological observational data, the constrains on
dark energy models in which a dynamical scalar field plays the role of dark energy are
overviewed in detail. Such scalar fields are classified into two types: a canonical scalar field
called quintessence, whose value of the equation of state is larger than −1 and less than
−1/3; and a kind of non-canonical scalar field called the phantom field, whose value of the
equation of state can be less than −1. The value of the equation of state of the cosmological
constant is −1. The energy density of such a scalar field can lead to the late-time accelerated
expansion of the universe. The background and theoretical motivations of these models are
presented. A scenario in which dark energy interacts with dark matter is also described.
The recent observational constraints on the theoretical model parameters are explained. It
is demonstrated that the ΛCDM model with spatial flatness is favored by the observations,
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and that the dark energy models consisting of such a scalar field may still be compatible
with the cosmological observations.

It is considered that the eleven papers that comprise this Special Issue will provide
useful references for future works investigating the origins and natures of the mechanism
of inflation, dark matter and dark energy in modern physics and cosmology.
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