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Abstract: The action of an ideal fluid in Euler variables with a variable number of particles is used for
the phenomenological description of the processes of particle creation in strong external fields. It has
been demonstrated that the conformal invariance of the creation law imposes quite strict restrictions
on the possible types of sources. It is shown that combinations with the particle number density in
the creation law can be interpreted as dark matter within the framework of this model.
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1. Introduction

Conformal invariance is a good candidate for the role of a fundamental symmetry,
which, along with other symmetries, increases the likelihood of the Universe emerging from
“nothing” [1]. Similar ideas are supported by many researchers such as Roger Penrose [2]
and Gerard ’t Hooft [3].

The conformally invariant gravitational Lagrangian contains terms that are quadratic
in curvature. The results found by several independent research groups [4–9] show that
such terms are linked to the conformal anomaly responsible for the particle creation.
The conformal anomaly can be included in the action integral, where it consists of two
parts: local and nonlocal. The local part is included in the gravitational Lagrangian as a set
of counterterms and in the one-loop approximation is equal to the sum of the quadratic
terms in the Riemann curvature tensor and its convolutions.

The study of particle production processes in the presence of strong external fields plays an
important role both in cosmology and in black hole physics. It is especially difficult to calculate
the back reaction for these problems, because it is necessary to take into account not only the
influence on the metric from already produced particles, but also from vacuum polarization.

The exact solution of the quantum problem requires boundary conditions, and the
latter can be imposed only after solving field equations with the energy–momentum tensor
obtained by appropriate averaging from the quantum problem. In order to avoid these
obstacles, we consider a phenomenological description of particle creation processes. It
is a quantum process, but classical description is possible when the external fields are
strong enough and the separation between just-created particles becomes of the order of
their Compton length, and we can safely approximate them with some condensed matter.
For example, F. Hoyle [10] used a classical creation field in order to introduce the idea of
the continuous creation of matter. The thermodynamic approach to particle production at
the expense of a gravitational field has been studied in [11]. Recently, J. Farnes [12] applied
Hoyle’s creation tensor and the concept of negative mass to propose a single negative-mass
fluid explanation of dark matter and dark energy.

In the phenomenological approach to particle creation, the nonlocal processes become,
formally, the local ones. The same concerns also the trace anomalies, and, for example, in the
article [13], it is shown that the non-local terms in the effective action become insignificant
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under certain conditions. In this case, the use of anomaly-induced effective action can be
considered as an example of a phenomenological description of particle production.

To describe the processes of particle creation in the presence of strong external fields,
we use the action for an ideal fluid in Euler variables [14], in which the particle conservation
law is replaced by the creation law [15]. This method makes it possible to study the
process of particle creation phenomenologically at the classical level but while also taking
into account the back reaction. In addition, it will be shown further that the use of the
conformally invariant action of gravity in combination with the considered action of
matter leads to a case in which we are actually dealing with a kind of Sakharov’s induced
gravity [16].

When applying the model in consideration of cosmology, it can be assumed that it is
most relevant for those phases of the evolution of the Universe when there was a rapid
birth of particles. Take, for example, immediately after the supposed birth of the Universe,
“nothing” [1], or at the end of inflation during the reheating [17]. Moreover, if the Universe
was born anisotropic [18], then, as shown in the articles [19–21], it was the birth of particles
that led to its isotropization.

It is easy to verify that the law of particle creation is itself conformally invariant. If we
assume that the source of particle creation is an external scalar field, then we obtain fairly
strict restrictions on the possible types of sources. Specifically, they include conformally
invariant combinations of geometric quantities, scalar fields, and particle number density.
It turns out that it is the combinations with the particle number density that contribute to
the hydrodynamic part of the energy-momentum tensor and act like dust and radiation. It
is important to note that the above types of sources are not real matter but rather an echo of
the quantum process of particle creation. In this regard, their interpretation as dark matter
becomes possible.

2. Local Conformal Transformation

This paper considers Riemannian geometry, which is completely determined by
specifying the metric gµν. The affine connection Γλ

µν(x) is specified using Christoffel
symbols:

Γσ
µν = Γσ

νµ, gµν;σ = 0, Γσ
µν =

1
2

gσλ
(

gµλ,ν + gνλ,µ − gµν,λ
)
, (1)

It defines the parallel transport of vectors and tensors and their covariant derivatives

lµ
;λ = lµ

,λ + Γµ
λν lν, (2)

where “comma” denotes a partial derivative while “semicolon” denotes covariant derivative.
The Riemann tensor Rµ

νλσ is defined as follows:

Rµ
νλσ =

∂Γµ
νσ

∂xλ
−

∂Γµ
νλ

∂xσ
+ Γµ

κλΓκ
νσ − Γµ

κσΓκ
νλ, (3)

Ricci tensor Rµν is its convolution:

Rµν = Rλ
µλν. (4)

The curvature scalar is R = gµνRµν.
Next let us consider a local conformal transformation; by definition we have:

ds2 = Ω2(x)dŝ2 = Ω2(x)ĝµνdxµdxν, (5)

where Ω(x) is the conformal factor, and “hats” denotes the conformally transformed quantities.
It is worth noting that a local conformal transformation is fundamentally different from a

coordinate change. Different coordinates correspond to different observers, but the geometry of
space-time itself remains unchanged, in contrast to a local conformal transformation, which
does not change the coordinates, but changes the geometry.
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The metric and its determinant are transformed, evidently, in the following way:

gµν = Ω2 ĝµν, gµν =
1

Ω2 ĝ µν,
√
−g = Ω4

√
−ĝ. (6)

An important geometric quantity that will be used below is the Weyl tensor Cµνλσ,
which is the traceless part of the Riemann tensor,

Cµνλσ = Rµνλσ −
1
2

Rµλ gνσ +
1
2

Rµσ gνλ −
1
2

Rνσ gµλ +
1
2

Rνλ gµσ +
1
6

R
(

gµλ gνσ − gµσ gλν

)
.

In the context of this work, its most important property is conformal invariance:

Cµ
νλσ = Ĉµ

νλσ. (7)

3. Phenomenological Description of Particle Creation

There are two types of dynamical variables in classical hydrodynamics: Lagrangian
and Eulerian. The first ones are tied to the motion of individual particles, so the world line
of each particle is subject to variation when applying the principle of least action. These
coordinates are not suitable for describing the processes of creation or annihilation, and
therefore, the Euler formalism is preferred, when dynamical variables are fields describing
the average characteristics of the medium. This formalism was developed by J. R. Ray [14],
who showed that the motion equation for an ideal fluid derived from this action coincides
with the Euler equation. The advantage of this approach is that the continuity equation
is explicitly incorporated into the action through the corresponding connection with the
Lagrange multiplier.

Let us consider the action of an ideal fluid in Euler variables [14],

Sm = −
∫

ε(X, n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x +

∫
λ1(nuµ);µ

√
−g d4x +

+
∫

λ2X,µuµ
√
−g d4x. (8)

The dynamical variables are the particle number density n(x), the four-velocity uµ(x),
and the auxiliary dynamical variable X(x) introduced in order to avoid the identically zero
vorticity of particle flow. From the constraint with the Lagrangian multiplier λ2, it follows
that X(x) is constant along the trajectories, and therefore, the choice of this function defines
the labeling of the trajectories.

The energy density ε provides us with the equation of state p = p(ε), where

p = n
∂ε

∂n
− ε, (9)

is the hydrodynamic pressure.
The corresponding constraints are obtained by varying the matter action with respect to

the Lagrangian multipliers λ0, λ1, and λ2, the four velocity normalization uµuµ = 1, the particle
number conservation (nuµ);µ = 0 and the enumeration of trajectories X,µuµ = 0, respectively.

The energy momentum tensor is:

Tµν = (ε + p)uµuν − pgµν. (10)

As demonstrated in the article by [15], the process of particle creation can be described
phenomenologically if the corresponding constraint in the action of an ideal fluid is modified:

(nuµ);µ = Φ(inv), (11)

where function Φ depends on the invariants of the fields responsible for the creation process.
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It is easy to show that the left-hand side of the creation law becomes conformally
invariant when multiplied by the root of the modulus of the determinant of the metric:

n =
n̂

Ω3 , uµ =
ûµ

Ω
,
√
−g = Ω4√−ĝ, (12)

hence

(nuµ);µ =
1√−g

(nuµ
√
−g),µ =

1√−g

(
n̂

Ω3
ûµ

Ω
Ω4√−ĝ

)
,µ
=

=
1√−g

(n̂ûµ
√
−ĝ),µ, (13)

Then, it follows that, in turn, the quantity Φ
√−g is also conformally invariant.

In the absence of classical external fields, the birth of particles is due to the vacuum
polarization caused by gravity, so Φ is a function of geometric invariants. In Riemannian
geometry in the four-dimensional case, the square of the Weyl tensor C2 = Cµνλσ Cµνλσ is the
only possible choice if we restrict ourselves to invariants which are at most quadratic in the
curvature tensor. The same result was obtained in [22] for particle creation by the vacuum
fluctuations of the massless scalar field on the background of the homogeneous and slightly
anisotropic cosmological spacetime. For our model, it is universal for any Riemannian geometry,
irrespective of the form of the gravitational Lagrangian, and the back reaction is also taken
into account. In this regard, it can be assumed that the creation law describes the relationship
between the vacuum average values of the corresponding quantities.

If we consider a case in which some external scalar field φ is involved in the creation
process, then additional possible contributions to the source function Φ appear:

φ□φ − 1
6

φ2 R + Λ φ4, (14)

It is easy to see that it is invariant under a conformal transformation when the scalar field
changes as

φ =
φ̂

Ω
, (15)

where □ denotes Laplace-–Beltrami operator.
The particles in question are on shell quanta of the scalar field, so they can also produce

“new” particles. The rate of particle creation in this case should depend on the density of
the number of “old” particles, i.e., it is some function of n. Due to conformal invariance,
the most natural choice is φ n, and n

4
3 . It is easy to verify that, when multiplied by

√−g,
they form conformal invariants. Theoretically, it is possible to use other degrees of φ and
n, but this leads to the appearance of particles with the properties of exotic or phantom
matter, so we will limit ourselves to the options presented above. Thus, our creation law
takes the following form:

Φ = α C2 + β

(
φ□φ − 1

6
φ2 R + Λ φ4

)
+ γ1 φ n + γ2 n

4
3 . (16)

4. Induced Gravity

Let us consider the action of an ideal fluid modified in the manner indicated earlier:

Sm = −
∫

ε(X, φ, n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x +

+
∫

λ1
(
(nuµ);µ − Φ

)√
−g d4x +

∫
λ2X,µuµ

√
−g d4x, (17)

note that ε = ε(X, φ, n).
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Let us consider a situation in which the action of gravity is conformally invariant.
This case is to a certain extent equivalent to induced gravity, in which there is nothing
except the action of matter, since the Lagrangian multiplier λ1 is defined up to a constant;
therefore, even in the absence of a separate Lagrangian for gravity, we can distinguish
terms proportional to C2 and φ2R. For the first time, such models, in which there is no
separate action for gravity, were studied by A.D. Sakharov [16]. He suggested that the
gravitational field is not fundamental, but is the result of the averaged influence of the
vacuum fluctuations of all other quantum fields; these ideas formed the basis of the theory
of induced gravity. Thus, we assume:

Sm = Stot. (18)

Evidently,
δStot

δΩ
=

δSm

δΩ
= 0, (19)

in the solutions. The only part of the action of matter that is not conformally invariant from
the very beginning or does not vanish due to constraints is∫

ε(X, φ, n)
√
−g d4x. (20)

Since n = n̂
Ω3 , φ = φ̂

Ω ,
√−g = Ω4

√
−ĝ, one gets:

φ
∂ε

∂φ
+ 3n

∂ε

∂n
= 4 ε, (21)

with the solution:

ε = F
(

n
φ3

)
φ4, (22)

where F is an arbitrary function of one variable.
There are two important examples. For dust, that is, for p = 0, it follows from this

equation that ε = µ0 n φ, where µ0 is a constant. For radiation, ε = 3p, therefore, two
options are possible: either φ = 0, or ∂ε

∂φ = 0. That is, the energy density does not depend

on the scalar field: ε = ν0 n
4
3 . Note the resemblance with two "hydrodynamical" terms in

the creation law.

5. Equations of Motion and Constraints

Let us derive the (modified) hydrodynamical equations of motion and constraints for
the action in question:

Sm = −
∫

ε(X, φ, n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x +

∫
λ2X,µuµ

√
−g d4x+

+
∫

λ1

(
(nuµ);µ − γ1 φ n − γ2 n

4
3 − α C2 − β

(
φ□φ − 1

6
φ2 R + Λ φ4

))√
−g d4x.

Dynamical variables are n, uµ, φ, and X:

δφ : β

(
λ1□φ +□(λ1 φ) + 4λ1 Λφ3 − 1

3
λ1 φ R

)
+ γ1 n = − ∂ε

∂φ
, (23)

δn : − ∂ε

∂n
− λ1,σ uσ − λ1γ1 φ − 4

3
λ1γ2 n

1
3 = 0, (24)

δuµ : λ2 X,µ + 2λ0 uµ − λ1,µ n = 0, (25)

δX : − ∂ε

∂X
− (λ2 uσ);σ = 0. (26)
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The corresponding constraints are:

δλ0 : uσ uσ − 1 = 0, (27)

δλ1 : (nuσ);σ = Φ, (28)

δλ2 : X,σ uσ = 0. (29)

From Equation (25) multiplied by uµ and constraints we get:

2λ0 = −n
∂ε

∂n
− λ1γ1 φ n − 4

3
λ1γ2 n

4
3 . (30)

Let us calculate the hydrodynamical part of the energy–momentum tensor, that is, the
energy–momentum tensor of the perfect fluid plus contribution from the γ1 and γ2 terms.
From the general definition:

Sm = −1
2

∫
Tµν δgµν

√
−g d4x, (31)

Taking into account Equation (30), we get:

Tµν
hydro = ε gµν − 2λ0 uµ uν + gµν

(
n λ1,σ uσ + λ1γ1 φ n + λ1γ2 n

4
3

)
=

=

(
ε + p + λ1γ1 φ n +

4
3

λ1γ2 n
4
3

)
uµ uν − gµν

(
p +

1
3

λ1γ2 n
4
3

)
. (32)

The remaining parts of the energy–momentum tensor are:

Tµν[φ] = λ1βΛ φ4 gµν − β ∂σ(λ1 φ)∂σ φ gµν + β ∂µ(λ1 φ)∂ν φ+

+ β ∂ν(λ1 φ)∂µ φ +
β

3

{
λ1 φ2 Gµν −▽µ▽ν

(
λ1 φ2

)
+ gµν □

(
λ1 φ2

)}
,

Tµν[C2] = −8α

(
▽σ ▽η +

1
2

Rση

)
(λ1 Cµσνη), (33)

where Gµν is the Einstein tensor. Since we are dealing with induced gravity, then:

Tµν = Tµν
hydro + Tµν[φ] + Tµν[C2] = 0. (34)

It should be clarified that the trace of the energy–momentum tensor T is equal to zero,
even for a non-zero gravitational part of the action, if it is conformally invariant. Let us
show that the condition T = 0 reduces to Equation (21) obtained above:

T = ε − 3p + 4β λ1 Λ φ4 − β

3
λ1 φ2 R + β φ□(λ1 φ) + β λ1 φ□φ + λ1 γ1 φn =

= ε − 3p − φ
∂ε

∂φ
= 4ε − 3n

∂ε

∂n
− φ

∂ε

∂φ
, (35)

where in the second equality, the equation of motion obtained by variation in φ was used.
The terms from the creation law which contain the particle number density lead to the

appearance of corresponding contributions to the hydrodynamic part of the energy–momentum
tensor: the term with γ1 is dust-like and the term with γ2 is radiation-like. They are not real
because the particle number density n refers to real created particles whose equation of state
can be arbitrary (anything). We can say that they are echoes of the process of creation itself.
Thus, the most appropriate name for them is “gravitating mirages”.

Finding a general solution to the equations of motion is quite a difficult task, so we
will limit ourselves to considering two special cases: φ = 0 and λ1 = const.
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In the first case, Equation (21) implies that our perfect fluid is radiation, then, according
to (23), either n or γ1 is zero. If γ1 = 0, then it follows from (24) and (32) that:

λ1,σ uσ = −4
3

n
1
3 (ν0 + λ1 γ2), (36)

Tµν
hydro =

1
3

n
4
3 (ν0 + λ1 γ2) (4 uµuν − gµν). (37)

Using the gauge n = n0 = const and the comoving coordinate system, where uσ = δσ
0 ,

we can find λ1 considering that it depends only on the proper time t:

λ1(t) = − ν0

γ2
+

(
λ1(0) +

ν0

γ2

)
exp
{
−4

3
γ2 n

1
3
0 t
}

. (38)

Note that λ1 tends to a constant − ν0
γ2

, while t → ∞ if γ2 > 0.
In the second case from Equation (24), we get:

∂ε

∂n
= −λ1

(
γ1 φ + γ2 n

1
3

)
, (39)

the solution is:
ε = −λ1

(
γ1 nφ + γ2 n

4
3

)
+ f (φ). (40)

Function f (φ), then, can be found from the relation (22):

f (φ) = Cφ4, (41)

where C is an arbitrary constant. The hydrodynamical part of the energy–momentum
tensor is: Tµν

hydro = C φ4 gµν. This means that in this case, the term f (φ) in ε is equivalent to
the shift of the constant Λ. The equation of motion for φ reduces to the following:

2λ1β

(
□φ − 1

6
R φ + 2Λ φ3

)
+ 4Cφ3 = 0. (42)

The conformal invariance of the equations of motion and the creation law makes it
possible to simplify the problem by fixing the gauge. In the gauge φ = φ0 = const from the
Equation (42) we get:

R =
12φ2

0
βλ1

(C + λ1 βΛ) = const, (43)

therefore the space-time in question is equivalent to the geometry with constant scalar
curvature up to a conformal factor.

6. Cosmology

Let us consider cosmological solutions by which we understand the homogeneous
and isotropic space-times described by the Robertson–Walker metric:

ds2 = dt2 − a2(t)dl2, (44)

dl2 = γijdxidxj =
dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2), (k = 0,±1),

with the scale factor a(t). Due to the high level of the symmetry, we assume that all dynamic
variables except the metric depend only on t and uµ = δ

µ
0 , so the constraint for the λ0 is

automatically satisfied.
For this geometry, Cµ

νλσ = 0; therefore, Tµν[C2] = 0. Since T1
1 = T2

2 = T3
3 , we can only

use T00 and T. From the constraint for λ2, we get:

Ẋ = 0 ⇒ X = const, (45)
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The dot denotes the derivative with respect to t .
The equations of motion for the metric (44) and the action of matter in question are:

T00 = ε + β λ1

{
Λ φ4 + φ̇2 + φ2 ȧ2 + k

a2 + 2φφ̇
ȧ
a

}
+ β λ̇1 φ

(
φ̇ + φ

ȧ
a

)
+

+ λ1

(
γ1 φ n + γ2 n

4
3

)
= 0, (46)

φλ̈1 + λ̇1

(
3φ

ȧ
a
+ 2φ̇

)
+ λ1

(
2φ̈ + 6

ȧ
a

φ̇ + 4Λ φ3 − 1
3

φ R
)
+ λ1

γ1

β
n = − 1

β

∂ε

∂φ
, (47)

Φ = β φ

(
1
a3

d
dt

(
a3 φ̇

)
− 1

6
φ R + Λ φ3

)
+ γ1 φn + γ2 n

4
3 =

1
a3

d
dt

(
a3 n

)
, (48)

∂ε

∂n
+ λ̇1 + λ1 γ1 φ +

4
3

λ1 γ2 n
1
3 = 0, (49)

T = ε − 3p − φ
∂ε

∂φ
= 0, (50)

where R = −6 aä+ȧ2+k
a2 is a scalar curvature.

The system of equations under consideration is degenerate, since the equation of
motion on φ multiplied by φ̇ + φ ȧ

a is obtained by differentiation with respect to t equation
for T00 and using the rest. Thus, one of the equations can be eliminated, except for the case
when φ̇ + φ ȧ

a = 0. An additional relation connecting the original equations is associated
with the conservation of the energy–momentum tensor in quadratic gravity and, as a
consequence, its special case—conformal gravity.

Let us consider the special case β = 0, in which the external scalar field is not dynamic,
that is, the action does not contain derivatives φ. Moreover, from the equations, it follows
that λ1 = const, ε = −λ1

(
γ1 φ n + γ2 , n

4
3

)
, and the functions a(t) and φ(t) are arbitrary.

It should be noted that from the birth law in this case it follows that at n = 0, ṅ is also equal
to zero; that is, in order for the birth of particles from the vacuum to begin, there must be
a contribution from the term at β or geometry for which C2 ̸= 0.

As stated above, the conformal invariance of the action and, as a consequence,
the equations of motion allow one to arbitrarily choose the gauge.

Let us suppose that we found somehow the specific solution for the set of dynamical
variables {â, n̂, φ̂}. Then, the general solution is {a, n, φ}, where a = â Ω, n̂ = n Ω3,
φ̂ = φ Ω with arbitrary smooth function Ω(t). One can use such a freedom to choose the
most appropriate gauge.

The free choice of gauge forces us to think about which of them is physical, that is,
which is most consistent with the accumulated observational data. In the fourth section,
we considered Equation (21), which follows from the conformal invariance of the action of
gravity, for two special cases—dust and radiation. For dust, we found that the effective
mass of particles, a factor of n, depends on the external scalar field, and in the general case
is not constant. In this regard, we can assume that the gauge φ = const is physical.

Below we will write the set of equations for two different gauges: φ = φ0 = const and
â = 1. The latter does not mean at all that the “real” Universe is static. It is chosen because
in such a case the set of equations looks simplest. However, in our opinion, the gauge
φ = φ0 may be considered physical since the mass of the dust particles become constant.

Transition from the “comfortable” gauge â = 1 to the physical gauge φ = φ0 can be
easily achieved in the following way. Since a φ = â φ̂, we have a φ = φ̂(η) and a(η)2dη2 =
dt2, where η is the conformal time, and t is the cosmological time.

Let us consider the gauge φ = φ0:

0 = T00 = ε + β λ1

{
Λ φ4

0 + φ2
0

ȧ2 + k
a2

}
+ β λ̇1 φ2

0
ȧ
a
+ λ1

(
γ1 φ0 n + γ2 n

4
3

)
, (51)
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φ0λ̈1 + 3λ̇1 φ0
ȧ
a
+ λ1

(
4Λ φ3

0 −
1
3

φ0 R
)
+ λ1

γ1

β
n = − 1

β

∂ε

∂φ
, (52)

β φ0

(
−1

6
φ0 R + Λ φ3

0

)
+ γ1 φ0n + γ2 n

4
3 =

1
a3

d
dt

(
a3 n

)
, (53)

∂ε

∂n
+ λ̇1 + λ1 γ1 φ0 +

4
3

λ1 γ2 n
1
3 = 0, (54)

4ε − 3n
∂ε

∂n
− φ0

∂ε

∂φ
= 0. (55)

For k = 0, there is a particular solution with n = n0 = const:

ȧ
a
=

3n0

βφ2
0
− γ1 φ0 −

4
3

γ2 n
1
3
0 , (56)

β φ2
0

Λ φ2
0 + 2

(
3n0

βφ2
0
− γ1 φ0 −

4
3

γ2 n
1
3
0

)2
+ γ1 φ0 n0 + γ2 n

4
3
0 =

= 3n0

(
3n0

βφ2
0
− γ1 φ0 −

4
3

γ2 n
1
3
0

)
, (57)

ε(n0, φ0) = βφ2
0

(
3n0

βφ2
0
− γ1 φ0 −

4
3

γ2 n
1
3
0

)
∂ε

∂n
(n0, φ0). (58)

Here we can draw an analogy with the solution with k = 0 obtained in the work of [23].
Transition to conformal time:

dη2 =
dt2

a(t)2 , ds2 = a2(η)

{
dη2 − dr2

1 − kr2 − r2dΩ2
}

, (59)

This allows us to choose a gauge a(η) = 1 in which η = t. The equations of motion for this
gauge are as follows:

Tηη = β
(

φ λ̇1 φ̇ + λ1 φ̇2 + λ1 φ2
(

k + Λφ2
))

+ ε + λ1

(
γ1 φ n + γ2 n

4
3

)
= 0, (60)

1
β

∂ε

∂φ
+ 2λ1 φ̈ + 2λ̇1 φ̇ + φλ̈1 + λ1 φ

(
2k + 4Λφ2

)
+

γ1

β
λ1 n = 0, (61)

∂ε

∂n
+ λ̇1 + λ1 γ1 φ +

4
3

λ1 γ2 n
1
3 = 0, (62)

ṅ = β
(

φ φ̈ + k φ2 + Λ φ4
)
+ γ1 φ n + γ2 n

4
3 , (63)

4ε − 3n
∂ε

∂n
− φ

∂ε

∂φ
= 0. (64)

Let us consider the special case λ1 = const:

ε = −λ1

(
Φ − β φ φ̈ + β φ̇2

)
, (65)

∂ε

∂n
= −λ1

∂Φ1

∂n
, (66)

ṅ = Φ, (67)

4ε − 3n
∂ε

∂n
− φ

∂ε

∂φ
= 0. (68)
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Only four equations are used here because, as noted earlier, not all of the original
equations are independent. From the condition T = 0 in this case it follows:

ε = −λ1

(
γ1 φ n + γ2 n

4
3

)
+ Cφ4, (69)

where C is some constant. Wherein field φ satisfies the equation:

φ̇2 = −k φ2 −
(

C
βλ1

+ Λ
)

φ4. (70)

For k = 0:
φ =

σ√
−
(

C
βλ1

+ Λ
) 1

η + C0
, (71)

where σ = ±1 is a sign of φ̇; for k = ±1 we have, respectively:

σ arctg

 1√
−
(

C
βλ1

+ Λ
)

φ2 − 1

 = η + C0, k = 1, (72)

σ arcth

 1√
−
(

C
βλ1

+ Λ
)

φ2 + 1

 = η + C0, k = −1, (73)

where C0 is a constant depending on the initial conditions.
The scale factor a(η) changes as follows under the conformal transformation a = Ω â;

therefore, when going to the gauge â = 1, a = Ω. If initially φ = φ0 = const, then
φ̂ = φ0 Ω = φ0 a; that is, the scalar field calculated in the gauge â = 1, proportional to
the scale factor in the gauge φ = φ0 = const. In particular, the result obtained above for
λ1 = const is consistent with that calculated earlier, since, when moving to the gauge
φ = φ0 = const, the scalar curvature remains constant:

R = −6
a′′ + a k

a3 = 12
(

Λ +
C

βλ1

)
φ2

0, (74)

where the prime denotes the derivative with respect to η and a(η) = 1
φ0

φ̂(η) with function
φ̂(η) defined by the Equations (71), (72) or (73) depending on k.

Let us consider the transition to the variable t from η for the case k = 0:

a =
1
φ0

σ√
−
(

C
βλ1

+ Λ
) 1

η + C0
∝ exp

{
σ φ0

√
−
(

C
βλ1

+ Λ
)

t

}
, (75)

where we have chosen the minus sign in the relation: dt = −a(η)dη. Thus, if σφ0 > 0, we
obtain exponential growth for the scale factor a(t). Moreover, from Equation (70), it follows
that the same is true for k = ±1 when φ̂ → ∞, which is equivalent to t → ∞. This is due
to the fact that with λ1 = const in the gauge φ = φ0 for the homogeneous and isotropic
space-time with the metric (44), our model actually reduces to general relativity with the
cosmological constant.

7. Discussion

The conformal invariance of the term in the action of matter, from which the particle
creation law is obtained, leads to restrictions on the invariants of external fields responsible
for the creation processes on which the function Φ depends. In the absence of classical
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external fields, when the only source of particle creation is gravity, the square of the Weyl
tensor is the most basic option. Due to this fact, conformal invariance of the gravity action
leads to a case in which the total action is equivalent to the matter action up to redefining
Lagrange multiplier λ1.

When an external scalar field is introduced into the creation law, the following
combination is chosen: φ□φ − 1

6 φ2 R + Λ φ4, since it yields a nontrivial equation of
motion and is conformally invariant when multiplied by

√
|g|.

In addition to the above, contributions to the creation law proportional to the particle
number density are also possible. In cosmology, the γ1 term can be interpreted as a dark
matter. It is not real matter, but the “memory” of the process of the particle production.
The conditions for its existence are n ̸= 0 (> 0). Thus, the real particles should already be
produced. The dark matter will exist even after the particle creation stops. The γ2 term
becomes the hot universe, even without real photons and real temperature. Both of them
are just images, but they are gravitating.

This interpretation is possible due to the fact that, in the hydrodynamic part of the
energy–momentum tensor, the terms with γ1 and γ2 are not associated with any matter,
but indicate the influence on gravity of the particle creation process itself, which can be
used to explain the “missing” mass in the Universe. Moreover, their contribution is in many
ways similar to the contribution from dust and radiation, which unites our model with the
one presented in the article [12], where the matter creation also makes a contribution to the
energy–momentum tensor similar to an ideal fluid.

As mentioned in the introduction, the phenomenological description of particle
creation in cosmology is best suited to the early Universe. However, the solution obtained
in our model for λ1 = const (75) shows that it is also applicable for the present phase of the
evolution of the Universe.

In the absence of a scalar field, the matter under consideration within this model,
when the action of gravity is conformally invariant, can only be radiation. For cosmological
solutions, by which we mean homogeneous and isotropic geometry, without a scalar field
the creation of particles cannot begin from the vacuum. On the other hand, if n ̸= 0 or
φ ̸= 0, then, unlike the models discussed in the articles [19–21], particle production is
possible even in homogeneous and isotropic geometry, where the square of the Weyl tensor
is zero.

From the conformal invariance of the gravity action for the model with an external
scalar field it follows that, for dust, the energy density is proportional to the scalar field,
while for radiation, it does not depend on the scalar field. Therefore, the gauge φ = const
seems to be the most consistent with the observational data.
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