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Abstract: We present a novel background-independent framework for cosmic inflation, starting
with a matrix model. In this framework, inflation is portrayed as a dynamic process responsible
for the generation of both space and time. This stands in contrast to conventional inflation, which
is characterized as a mere (exponential) expansion of an already existing spacetime, driven by the
vacuum energy associated with an inflaton field. We observe that the cosmic inflation is triggered
by the condensate of Planck energy into a vacuum and responsible for the dynamical emergence of
spacetime. The emergent spacetime picture admits a background-independent formulation so that
the inflation is described by a conformal Hamiltonian system which requires neither an inflaton field
nor an ad hoc inflation potential. This implies that the emergent spacetime may incapacitate all the
rationales to introduce the multiverse hypothesis.
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1. Introduction

History is a mirror to the future. If we do not learn from the mistakes of history, we are
doomed to repeat them.1 In the middle of the 19th century, Maxwell’s equations for electro-
magnetic phenomena predicted the existence of an absolute speed, c = 2.998× 108 m/s,
which apparently contradicted the Galilean relativity, a cornerstone on which the Newto-
nian model of space and time rested. Since most physicists, by then, had developed deep
trust in the Newtonian model, they concluded that Maxwell’s equations can only hold in a
specific reference frame, called the ether. However, by doing so, they reverted back to the
Aristotelian view that Nature specifies an absolute rest frame. It was Einstein who realized
the true implication of this quandary: It was asking us to abolish Newton’s absolute time as
well as absolute space. The ether was removed by Einstein’s special relativity by radically
modifying the concept of space and time in the Newtonian dynamics. Time lost its absolute
standing and the notion of absolute simultaneity was physically untenable. Only the
four-dimensional spacetime has an absolute meaning. The new paradigm of spacetime has
completely changed the Newtonian world with dramatic consequences.

The physics of the last century was devoted to the study of two pillars: general
relativity and quantum field theory, and these two cornerstones of modern physics can be
merged into beautiful equations, the so-called Einstein equations given by

Rµν −
1
2

gµνR = 8πGNTµν, (1)

where the right-hand side is the energy–momentum tensor whose contents are described by
(quantum) field theories. Although the groundbreaking theories of relativity and quantum
mechanics have utterly changed the way we think about Nature and the Universe, new
open problems have emerged which have not been resolved yet within the paradigm of
20th century physics. For example, a short list of these includes the cosmological constant
problem, the hierarchy problem, dark energy, dark matter, cosmic inflation and quantum
gravity. In particular, recent developments in cosmology, particle physics and string theory
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have led to a radical proposal that there could be an ensemble of universes that might
be completely disconnected from ours [1]. Certainly, it would be perverse to claim that
nothing exists beyond the horizon of our observable universe. The observable universe
is one causal patch of a much larger unobservable universe. However, resorting to the
concept of the string landscape or multiverse in an attempt to address certain notorious
issues in theoretical physics through the anthropic argument is a challenging approach [2].
“And it’s pretty unsatisfactory to use the multiverse hypothesis to explain only things we
don’t understand”.2 Reflecting on history, the current situation strongly echoes the era of
the hypothetical luminiferous ether in the late 19th century. The historical lesson implies
that we may need another turn of the spacetime picture to defend the integrity of physics.

In physical cosmology, cosmic inflation in the early universe is the exponential expan-
sion of space. Suppose that spacetime evolution is determined by a single scale factor a(t)
and its Hubble expansion rate H ≡ ȧ

a according to the cosmological principle and driven
by the dynamics of a scalar field ϕ, called the inflaton [3,4]. Then, the Einstein Equation (1)
reduces to the Friedmann equation

H2 =
8πGN

3

(1
2

ϕ̇2 + V(ϕ)
)

. (2)

The evolution equation of the inflaton in the Friedmann universe is described by

ϕ̈ + 3Hϕ̇ +
δV
δϕ

= 0. (3)

The Friedmann Equation (2) tells us that in the early universe, with V(ϕ) ≈ V0 and ϕ̇ ≈ 0,
there was an inflationary epoch of the exponential expansion of space, i.e., a(t) ∝ eHt where

H =
√

8πGNV0
3 is called the inflationary Hubble constant. In order to successfully fit to data,

one finds [5]
V0 ≥ (2× 1015GeV)4 ≈ (10−3MP)

4 (4)

where MP = 1/
√

8πGN is the Planck mass.
Let us critically examine the inflationary scenario. According to this scenario [3,4],

inflation is described by the exponential expansion of the universe in a supercooled false
vacuum state that is a metastable state without any fields or particles but with a large energy
density. It should be emphasized that the inflation scenario so far has been formulated
in the context of effective field theory coupled to general relativity. Thus, in this scenario,
the existence of space and time is a priori assumed from the beginning, although the
evolution of spacetime is determined by Equation (1). In other terms, the inflationary
scenario does not delineate the generation or creation of spacetime but merely signifies the
expansion of preexisting spacetime. It does not delve into the dynamic origin of spacetime.
Nevertheless, there has to be a definite beginning so that the quantum gravity era cannot be
avoided in the past even if inflation takes place [6]. This implies that the current inflationary
scenario is insufficient in describing the initial stage of our universe, and it necessitates
the incorporation of new physics to explore the past boundaries of inflating regions.3

One plausible explanation is the occurrence of a quantum creation as a beginning of the
universe [12,13].

The Friedmann Equation (2) reveals that cosmic inflation is triggered by the potential
energy associated with an inflaton, whose energy scale is in proximity to the Planck energy.
Near the Planck energy, quantum gravity effects become strong and the effective field
theory description may break down. If one identifies the slowly varying inflaton field
ϕ(t) with a particle trajectory x(t) and ϕ̇(t) with its velocity v(t) = ẋ(t), the evolution
Equation (3) tells us that the frictional force, 3Hv(t), resulting from the inflating spacetime,
is (almost) balanced with an external force F(x) = − dV

dx , i.e.,

3Hẋ(t) ≈ F(x), (5)
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because ẍ ≈ 0 during inflation. This implies that the cosmic inflation as a dynamical system
corresponds to a non-Hamiltonian system.4

Recent advancements in string theory have unveiled a remarkable and radical perspec-
tive on the nature of gravity. One notable example is the AdS/CFT correspondence, which
depicts a surprising scenario wherein U(N) gauge theory in lower dimensions defines a
nonperturbative formulation of quantum gravity in higher dimensions [14–16]. In partic-
ular, the AdS/CFT duality shows a typical example of emergent gravity and emergent
space because gravity in higher dimensions is defined by a gravityless field theory in lower
dimensions. Now, numerous examples from string theory illustrate that spacetime is not
fundamental but rather emerges only at large distances, constituting a classical approxima-
tion [17,18]. Consequently, the governing principle in quantum gravity dictates that space
and time are an emergent entity. Since the emergent spacetime, we believe, is a significant
new paradigm for quantum gravity, we aim to apply the emergent spacetime picture to
cosmic inflation. We will propose a background-independent formulation of the cosmic
inflation.5 This means that we do not assume the prior existence of spacetime but define a
spacetime structure as a solution of an underlying background-independent theory such as
matrix models. The inflation in this picture corresponds to a dynamical process to generate
space and time which is very different from the standard inflation simply describing an
(exponential) expansion of a preexisting spacetime. It turns out that spacetime is emergent
from the Planck energy condensate in a vacuum that generates an extremely large Universe.
Our observable patch within the cosmic horizon is a very tiny part ∼ 10−26 of the entire
spacetime. Originally, the multiverse hypothesis was motivated by an attempt to explain
the anthropic fine-tuning such as the cosmological constant problem [19] and boosted
by the chaotic and eternal inflation scenarios [3,4] and the string landscape derived from
the Kaluza–Klein compactification of string theory [20–22], which are all based on the
traditional spacetime picture. Since emergent spacetime is radically different from any
previous physical theories, all of which describe what happens in a given spacetime, the
multiverse picture must be reexamined from the standpoint of emergent spacetime. The
cosmic inflation from the emergent spacetime picture will certainly open a new prospect
that may cripple all the rationales used to introduce the multiverse hypothesis [23,24].

Given that the concept of the multiverse introduces profound conceptual challenges,
compelling us to reconsider the very foundations of science [2], it becomes imperative to
carefully contemplate the true nature of the multiverse. Is it merely a speculative illusion
stemming from an incomplete physics, akin to the ether in the late 19th century, or does it
hold significant relevance even within a more complete theoretical framework? The main
purpose of this paper is to illuminate how the emergent spacetime picture brings about
radical changes in physics, especially regarding to physical cosmology. In particular, a
background-independent theory such as matrix models provides a concrete realization of
the idea of emergent spacetime which has a sufficiently elegant and explanatory power
to defend the integrity of physics against the multiverse hypothesis [23,24]. The emergent
spacetime is a completely new paradigm so that the multiverse debate in physics circles
has to seriously take it into account.

This paper is organized as follows. In Section 2, we compactly review the background-
independent formulation of emergent gravity and emergent spacetime in terms of matrix
models [25–29]. See also closely related works [30–38]. The background-independent
formulation of emergent gravity crucially relies on the fact that noncommutative (NC) space
arises as a vacuum solution of a large N matrix model in the Coulomb branch and this vacuum
on the Coulomb branch admits a separable Hilbert space as quantum mechanics [39]. The
gravitational metric is derived from a nontrivial inner automorphism of the NC algebra
Aθ , in which the NC nature is essential to realize the emergent gravity. An important
point is that the matrix model does not presuppose any spacetime background on which
fundamental processes develop. Rather, the background-independent theory provides a
mechanism of spacetime generation such that any spacetime structure including the flat
spacetime arises as a solution of the theory itself.
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In Section 3, we note that the Planck energy condensate in a vacuum must be a dy-
namical process. We show that the cosmic inflation arises as a solution of a time-dependent
matrix model, describing the dynamical process of the vacuum energy condensation. It
turns out that the cosmic inflation corresponds to the dynamical mechanism for the in-
stantaneous condensation of vacuum energy to enormously spread out spacetime. It is
remarkable to see that the inflation can be described by time-dependent matrices only with-
out introducing any inflaton field as well as an ad hoc inflation potential. Our work is not
the first to address physical cosmology using matrix models. There have been interesting
earlier attempts [40–42]. In particular, the cosmic inflation was addressed in very interesting
works [43–45] using the Monte Carlo analysis of the type IIB matrix model in Lorentzian
signature and it was found that three out of nine spatial directions start to expand at some
critical time after which exactly (3 + 1)-dimensions dynamically become macroscopic.

In Section 4, we discuss why the cosmic inflation triggered by the Planck energy
condensate into vacuum must be a single event [23,24] and the emergent spacetime pre-
cludes the formation of pocket universes appearing in the eternal (or chaotic) inflation.
We also discuss a speculative mechanism to end the inflation by some nonlinear damp-
ing through interactions between the inflating background and ubiquitous local fluctua-
tions. Finally, we discuss possible ways to understand our real world R3,1 that is unfortu-
nately beyond our current approach because R3,1 does not belong to the family of (almost)
symplectic manifolds.

In Appendix A, we briefly review the mathematical foundation of locally conformal
symplectic and cosymplectic manifolds that correspond to a natural phase space describing
the cosmic inflation of our universe. In Appendix B, we give a brief exposition of a harmonic
oscillator with time-dependent mass to illustrate how a nonconservative dynamical system
with friction can be formulated by a time-dependent Hamiltonian system, which may
be useful to understand the cosmic inflation as a dynamical system. In Appendix C, we
propose a background-independent formulation of string theory in terms of matrix string
theory [46–49]. We argue that the pseudoholomorphic curve [50] can be generalized to the
Hitchin equations describing a Higgs bundle [51,52] by the matrix string theory.

2. Emergent Spacetime from Matrix Model

Let us start with a zero-dimensional matrix model with a bunch of N × N Hermitian
matrices, {ϕa ∈ AN |a = 1, · · · , 2n}, whose action is given by [53]

S = −1
4

2n

∑
a,b=1

Tr [ϕa, ϕb]
2. (6)

We require that the matrix algebra AN is associative, from which we obtain the Jacobi
identity

[ϕa, [ϕb, ϕc]] + [ϕb, [ϕc, ϕa]] + [ϕc, [ϕa, ϕb]] = 0. (7)

We also assume the action principle, from which we yield the equations of motion:

2n

∑
b=1

[ϕb, [ϕa, ϕb]] = 0. (8)

We emphasize that we have not introduced any spacetime structure to define the action (6).
It is enough to suppose the matrix algebra AN consisted of a bunch of matrices which are
subject to a few relationships given by Equations (7) and (8).

First, suppose that the vacuum configuration of AN is given by

⟨ϕa⟩vac = pa ∈ AN , (9)
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which must be a solution of Equations (7) and (8). In particular, we are interested in the
matrix algebra AN in the limit N → ∞. An obvious solution in the limit N → ∞ is given
by the Moyal–Heisenberg algebra6

[pa, pb] = −iBab, (10)

where (B)ab = −l−2
s (1n ⊗ iσ2) is a 2n× 2n constant symplectic matrix and ls is a typical

length scale set by the vacuum. A general solution will be generated by considering all
possible deformations of the Moyal–Heisenberg algebra (10). It is assumed to take the form

ϕa = pa + Âa ∈ AN , (11)

obeying the deformed algebra given by

[ϕa, ϕb] = −i(Bab − F̂ab), (12)

where
F̂ab = ∂a Âb − ∂b Âa − i[Âa, Âb] ∈ AN (13)

with the definition ∂a ≡ adpa = −i[pa, ·]. For the general matrix ϕa ∈ AN to be a solution
of Equations (7) and (8), the set of matrices F̂ab ∈ AN , called the field strengths of NC U(1)
gauge fields Âa ∈ AN , must obey the following equations

D̂a F̂bc + D̂b F̂ca + D̂c F̂ab = 0, (14)
2n

∑
b=1

D̂b F̂ab = 0, (15)

where
D̂a F̂bc ≡ adϕa F̂bc = −i[ϕa, F̂bc] = −[ϕa, [ϕb, ϕc]]. (16)

The algebra AN admits a large amount of inner automorphism denoted by Inn(AN).
Note that any automorphism of the matrix algebraAN is inner. Suppose thatA′

Ñ
= {ϕ′a|a =

1, · · · , m} is an another matrix algebra composed of m elements of Ñ × Ñ Hermitian
matrices. We will identify two matrix algebras, i.e., AN ∼= A′Ñ if m = 2n and Ñ = N and
there exists a unitary matrix U ∈ Inn(AN) such that ϕ′a = UϕaU−1, ∀a = 1, · · · , 2n. It is
important to note that the NC algebra AN generated by the vacuum operators pa admits
an infinite-dimensional separable Hilbert space

H = {|n⟩|n = 1, · · · , N → ∞}, (17)

that is the Fock space of the Moyal–Heisenberg algebra (10). As is well known from
quantum mechanics [55], there is a one-to-one correspondence between the operators in
Hom(V) and the set of N × N matrices over C where V is an N-dimensional complex
vector space. In our case, V = H is a Hilbert space and N = dim(H) → ∞. Thus, the
matrix algebra AN can be realized as a Hilbert space representation of the NC ⋆-algebra

Aθ = {ϕ̂a(y) ∈ Hom(H)|a = 1, · · · , 2n}, (18)

which is generated by the set of coordinate generators obeying the commutation relation

[ya, yb]⋆ = iθab. (19)

The ⋆-algebra (19) is related to the Moyal–Heisenberg algebra (12) where pa = Babyb and
(θ)ab = (B−1)ab = l2

s (1n ⊗ iσ2) is a 2n× 2n constant symplectic matrix. Let us denote the
NC ⋆-algebra Aθ generated by (19) as R2n

θ .
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Given a Hermitian operator ϕ̂a(y) ∈ Aθ, we have a matrix representation inH as follows:

ϕ̂a(y) =
∞

∑
n,m=1

|n⟩⟨n|ϕ̂a(y)|m⟩⟨m| =
∞

∑
n,m=1

(ϕa)nm|n⟩⟨m| (20)

using the completeness of H, i.e., ∑∞
n=1 |n⟩⟨n| = 1H. The unitary representation of the

operator algebra Aθ can thus be understood as a linear transformation acting on an
N-dimensional Hilbert spaceHN :

Aθ : HN → HN . (21)

That is, we have the identification [56,57]

AN ∼= End(HN) ∼= Aθ . (22)

As a result, the inner automorphism Inn(AN) of the matrix algebra AN is translated
into that of the NC ⋆-algebra Aθ , denoted by Inn(Aθ). Its infinitesimal generators consist
of an inner derivation D defined by the map [25–28]

Aθ → D : O 7→ adO = −i[O, ·]⋆ (23)

for any operator O ∈ Aθ . Using the Jacobi identity of the NC ⋆-algebra Aθ , one can easily
verify the Lie algebra homomorphism:

[adO1 , adO2 ] = −iad[O1,O2]⋆
(24)

for any O1,O2 ∈ Aθ . In particular, we are interested in the set of derivations determined
by NC gauge fields in Equation (18):

{V̂a ≡ adϕ̂a
∈ D|ϕ̂a(y) = pa + Âa(y) ∈ Aθ , a = 1, · · · , 2n}. (25)

In a large-distance limit, i.e., |θ| → 0, one can expand the NC vector fields V̂a using the
explicit form of the Moyal ⋆-product. The result takes the form

V̂a = Vµ
a (y)

∂

∂yµ +
∞

∑
p=2

V
µ1···µp
a (y)

∂

∂yµ1
· · · ∂

∂yµp
∈ D. (26)

Thus, the NC vector fields in D generate an infinite tower of the so-called polyvector
fields [27]. Note that the leading term gives rise to the ordinary vector fields that will be
identified with a frame basis associated to the tangent bundle TM of an emergent manifold
M. If the leading term in Equation (26) already generated the gravitational fields of spin 2,
the higher-order terms would correspond to higher-spin fields with spin ≥ 3.

Since we have started with a large N matrix model, it is natural to expect that the IKKT-
type matrix model (6) is dual to a higher-dimensional gravity or string theory according to
the large N duality or gauge/gravity duality [58]. The emergent gravity is realized via the
gauge/gravity duality as follows [27]:

AN =⇒ Aθ =⇒ D. (27)

The gauge theory side of the duality is described by the set of large N matrices that consists
of an associative, but NC, algebra AN . By choosing a proper vacuum such as Equation (9),
a matrix in AN is regarded as a linear representation of an operator acting on a separable
Hilbert space H. That is, the matrix algebra AN is realized as a linear representation of
an operator algebra Aθ on the Hilbert space H, i.e., AN ∼= End(H). Consequently, the
algebra AN is isomorphically mapped to the NC ⋆-algebra Aθ , as Equation (20) has clearly
illustrated. The gravity side of the duality is defined by associating the derivation D of the
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algebra Aθ with a quantized frame bundle X̂(M) of an emergent spacetime manifoldM.
The noncommutativity of an underlying algebra is, thus, crucial to realize the emergent
gravity. This is the reason why we need the Moyal–Heisenberg vacuum (10) instead of
the conventional Coulomb branch vacuum [39]. After all, in order to describe a quantum
geometry properly, it is necessary to distinguish two types of vacuum in the Coulomb
branch: diagonalizable vs. nondiagonalizable vacua.

At this stage it is important to understand how (local) coordinates which have been
used to define the vector fields in D arise from matrices in AN . The crux is the isomor-
phism (22) between the matrix algebra AN and the NC ⋆-algebra Aθ in the limit N → ∞.
Here, the quantity |θ| in (19) plays a role similar to h̄ in quantum mechanics. Therefore, we
will obtain a classical algebra C∞(M) generated by smooth functions onM from the NC
⋆-algebra Aθ when we take a commutative limit, |θ| → 0. Then, given an open set U ⊂M,
one can use some local functions (y1, · · · , y2n) : U → R2n to define a coordinate chart
around p ∈ U. Since the underlying functions are smooth, one can introduce infinitesimal
quantities such as tangent vectors ∂

∂yµ |p and covectors dyµ|p at p ∈ U associated with
the given coordinate system. Note that, if we had chosen a diagonalized vacuum (see
footnote 6) instead of the nondiagonalizable vacuum (10), the existence of such continuous
variables and infinitesimal values would not be guaranteed even in the limit N → ∞.

Recognizing the intrinsic locality is crucial when grasping the emergence of geometry
through the duality chain in Equation (27). It is necessary to consider patching or gluing
together the local constructions to form a set of global quantities. For this purpose, the
concept of sheaf may be essential because it makes it possible to reconstruct global data
starting from open sets of locally defined data [59]. We provide a succinct overview of this
feature, as it has already been comprehensively discussed in Ref. [27]. Its characteristic
feature becomes transparent when the commutative limit, i.e., |θ| → 0, is taken into account.
In this limit, the NC ⋆-algebra Aθ reduces to a Poisson algebra P(i) = (C∞(Ui), {−,−}θ)
defined on a local patch Ui ⊂ M in an open covering M =

⋃
i∈I Ui.7 The Poisson algebra

P(i) arises as follows. Let L → M be a line bundle over M whose connection is denoted
by A. We assume that the curvature F of the line bundle L is a nondegenerate, closed two-
form. Therefore, we identify the curvature two-form F = dA with a symplectic structure
of M. On an open neighborhood Ui ⊂ M, it is possible to represent F (i) = B + F(i)

where F(i) = dA(i) and B is the constant symplectic two-form already introduced in
Equation (10). Consider a chart (Ui, ϕ(i)) where ϕ(i) ∈ Diff(Ui) is a local trivialization
of the line bundle L over the open subset Ui obeying ϕ∗(i)(F

(i)) = B. A local chart is
guaranteed to exist thanks to either the Darboux theorem or the Moser lemma in symplectic
geometry [60,61] and the local coordinate chart obeying ϕ∗(i)(F

(i)) = B is called Darboux
coordinates. Thus, the line bundle L→ M corresponds to a dynamical symplectic manifold
(M,F ) where F = B + dA. The dynamical system is locally described by the Poisson
algebra P(i) = (C∞(Ui), {−,−}θ) in which the vector space C∞(Ui) is formed by the set of
Darboux transformations ϕ(i) ∈ Diff(Ui) equipped with the Poisson bracket defined by the
Poisson bivector θ = B−1 ∈ Γ(Λ2TM).

Consider a collection of local charts to make an atlas {(Ui, ϕ(i))} on M =
⋃

i∈I Ui
and complete the atlas by gluing these charts on their overlaps. To be precise, suppose
that (Ui, ϕ(i)) and (Uj, ϕ(j)) are two coordinate charts and F(i) = dA(i) and F(j) = dA(j)

are local curvature two-forms on Ui and Uj, respectively. We choose the coordinate maps
ϕ(i) ∈ Diff(Ui) and ϕ(j) ∈ Diff(Uj) such that ϕ∗(i)(B + F(i)) = B and ϕ∗(j)(B + F(j)) = B. On

an intersection Ui ∩Uj, the local data (A(i), ϕ(i)) and (A(j), ϕ(j)) on Darboux charts (Ui, ϕ(i))
and (Uj, ϕ(j)), respectively, are glued together by [62,63]

A(j) = A(i) + dλ(ji), (28)

ϕ(ji) = ϕ(j) ◦ ϕ−1
(i) , (29)
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where ϕ(ji) ∈ Diff(Ui ∩Uj) is a symplectomorphism on Ui ∩Uj generated by a Hamiltonian
vector field Xλ(ji) satisfying ι(Xλ(ji))B + dλ(ji) = 0. We sometimes denote the interior prod-
uct ιX by ι(X) for a notational convenience. Similarly, we can glue the local Poisson algebras
P(i) to form a globally defined Poisson algebra P =

⋃
i∈I P

(i). The global vector fields
Va = Vµ

a (y) ∂
∂yµ ∈ Γ(TM), a = 1, · · · , 2n, in Equation (26) can be obtained by applying a

similar globalization to the derivation D, which form a linearly independent basis of the
tangent bundle TM of a 2n-dimensional emergent manifoldM. As a consequence, the
set of global vector fields X(M) = {Va|a = 1, · · · , 2n} results from the globally defined
Poisson algebra P [27].

The vector fields Va ∈ X(M) are related to an orthonormal frame, the so-called
vielbeins Ea ∈ Γ(TM), in general relativity by the relation

Va = λEa, a = 1, · · · , 2n. (30)

The conformal factor λ ∈ C∞(M) is determined by imposing the condition that the vector
fields Va preserve a volume form

ν = λ2v1 ∧ · · · ∧ v2n, (31)

where va = va
µ(y)dyµ ∈ Γ(T∗M) are coframes dual to Va, i.e., ⟨va, Vb⟩ = δa

b . This means
that the vector fields Va obey the conditions

LVa ν =
(
∇ ·Va + (2− 2n)Va ln λ

)
ν = 0, ∀a = 1, · · · , 2n, (32)

where LX = ιXd + dιX is the Lie derivative with respect to a vector field X. Note that a
symplectic manifold always admits such volume-preserving vector fields (see Appendix B
in [27]). Together with the volume-preserving condition (32), the relation (30) completely
determines a 2n-dimensional Riemannian manifoldM whose metric is given by [25–27]

ds2 = Gµν(x)dxµ ⊗ dxν = ea ⊗ ea

= λ2va ⊗ va = λ2va
µ(y)v

a
ν(y)dyµ ⊗ dyν, (33)

where ea = ea
µ(x)dxµ = λva ∈ Γ(T∗M) are orthonormal one-forms on M. After all,

the 2n-dimensional Riemannian manifoldM is emergent from the commutative limit of
polyvector fields V̂a = Va +O(θ2) ∈ D derived from NC U(1) gauge fields.

So far, we have discussed the emergence of spaces only. However, the theory of
relativity dictates that space and time must be coalesced into the form of Minkowski
spacetime in a locally inertial frame. Hence, if general relativity is realized from an NC
⋆-algebra Aθ , it is necessary to put space and time on an equal footing in the NC ⋆-algebra
Aθ . If space is emergent, so should time be. Thus, an important problem is how to realize
the emergence of “time”. However, any physical theory that we know does not treat time
as a dynamical variable. Therefore, we assert that the concept of emergent time needs to be
understood differently from emergent spaces (we will later discuss a perplexing problem
that arises when we promote time to a “dynamical” variable). Quantum mechanics imparts
a valuable insight, emphasizing the intricate relationship between the definition of (particle)
time and the dynamics inherent in the system. In quantum mechanics, the time evolution
of a dynamical system is defined as an inner automorphism of NC algebra Ah̄ generated
by the NC phase space

[xi, xj] = 0, [xi, pj] = ih̄δi
j, i, j = 1, · · · , n. (34)

The time evolution for an observable f ∈ Ah̄ is simply an inner derivation ofAh̄ given by

d f
dt

=
i
h̄
[H, f ], (35)
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where H is a Hamiltonian operator of the dynamical system and will be identified with
a temporal gauge field A0, i.e., H = −A0, in matrix quantum mechanics. The integral of
Equation (35) is simply a unitary transformation of the observable f ∈ Ah̄:

f (t) = U(t) f (0)U(t)†, (36)

where U(t) = e
iHt

h̄ is a unitary operator. For a quantum dynamical system that has a
classical analogue, Equation (36) implies that unitary transformations in the quantum
theory are an analogue of canonical (or contact) transformations in the classical theory (see
Section 26 Unitary transformations in [55]).

Given a symplectic form ω = ∑n
i=1 dxi ∧ dpi on phase space, one can introduce a

Hamiltonian vector field XH defined by ιXH ω = dH. The one-parameter family of canonical
transformations can then be thought of as “Hamiltonian flow” on phase space:(

Xi(x, p; t) = xi + tXH(xi), Pi(x, p; t) = pi + tXH(pi)
)
. (37)

According to this active viewpoint, the canonical transformation takes one point in the
phase space, (xi, pi), to another point in the same phase space,

(
Xi(x, p; t), Pi(x, p; t)

)
.

Correspondingly, the point at time t can be understood as a one-parameter family of
deformations (or changes) generated by a smooth function H = H(x, p). We will define
the concept of emergent time based on this perspective.

A remarkable picture, as observed by Feynman [64], Souriau and Sternberg [65], is
that the physical forces such as the electromagnetic, weak and strong forces, can be realized
as the deformations of an underlying vacuum algebra such as Equation (34). For example,
the most general deformation of the Heisenberg algebra (34) within the associative algebra
Ah̄ is given by

xi → xi, pi → pi + Ai(x, t), H → H + A0(x, t), (38)

where (A0, Ai)(x, t) must be electromagnetic gauge fields. Then, the time evolution of a
particle system under a time-dependent external force is given by

d f
dt

=
∂ f
∂t

+
i
h̄
[H, f ]. (39)

Note that the construction of the NC algebra AN or Aθ bears a close parallel to
quantum mechanics. The former is based on the NC space (19), while the latter is based on
the NC phase space (34). The NC U(1) gauge fields in Equation (11) act as deformations of
the vacuum algebra (10) in the matrix algebraAN , similarly to Equation (38) in the quantum
algebra Ah̄. Therefore, we can apply the same philosophy to the NC algebra AN or Aθ to
define a dynamical system based on the Moyal–Heisenberg algebra (10). In other words, we
can consider a one-parameter family of deformations of zero-dimensional matrices which
is parameterized by the coordinate t. Then, the one-parameter family of deformations
characterized by (11) can be regarded as the time evolution of a dynamical system. For this
purpose, we extend the NC algebra Aθ to A1

θ ≡ Aθ

(
C∞(R)

)
= C∞(R)⊗Aθ whose generic

element takes the form
f̂ (t, y) ∈ A1

θ . (40)

The matrix representation (20) is then replaced by

f̂ (t, y) =
∞

∑
n,m=1

|n⟩⟨n| f̂ (t, y)|m⟩⟨m| =
∞

∑
n,m=1

fnm(t)|n⟩⟨m| (41)

where fnm(t) := [ f (t)]nm are elements of a matrix f (t) in A1
N ≡ AN

(
C∞(R)

)
= C∞(R)⊗

AN as a representation of Equation (40) on the Hilbert space (17). As the Heisenberg
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Equation (39) in quantum mechanics suggests, the evolution equation for an observable
f̂ (t, y) ∈ A1

θ in the Heisenberg picture is defined by

d f̂ (t, y)
dt

=
∂ f̂ (t, y)

∂t
− i[Â0(t, y), f̂ (t, y)]⋆ ≡ D̂0 f̂ (t, y) (42)

where we denoted the local Hamiltonian density by

Ĥ(t, y) ≡ −Â0(t, y) ∈ A1
θ . (43)

Note that
−i[ϕa, f̂ (t)] = ∂a f̂ (t, y)− i[Âa(t, y), f̂ (t, y)]⋆ ≡ D̂a f̂ (t, y), (44)

where the representation (41) has been employed. Then, one can see that the inner auto-
morphism Inn(Aθ) of Aθ can be lifted to the automorphism of A1

θ given by

Â0(t, y)→ Û(t, y) ⋆
∂Û−1(t, y)

∂t
+ Û(t, y) ⋆ Â0(t, y) ⋆ Û−1(t, y), (45)

Âa(t, y)→ Û(t, y) ⋆
∂Û−1(t, y)

∂ya + Û(t, y) ⋆ Âa(t, y) ⋆ Û−1(t, y), (46)

where Û(t, y) = eiλ̂(t,y)
⋆ with λ̂(t, y) ∈ A1

θ. It is obvious that the above automorphism is
nothing but the gauge transformation for NC U(1) gauge fields in (2n + 1)-dimensions [66].

Our leitmotif is that a consistent theory of quantum gravity should be background-
independent, so that it should not presuppose any spacetime background on which fun-
damental processes develop. Hence, the background-independent theory must provide a
mechanism of spacetime generation such that every spacetime structure including the flat
spacetime arises as a solution of the theory itself. A zero-dimensional matrix model such
as Equation (6) is the most natural candidate for such a background-independent theory
because it does not have to assume the prior existence of spacetime to define the theory.

Then, how can Minkowski spacetime also emerge as a solution of an underlying
background-independent theory? We emphasize again that the NC nature of the vac-
uum solution, e.g., Equation (10), is essential to realize the large N duality via the duality
chain (27). A profound feature is that the background-independent theory is intrinsically
dynamical because the space of all possible solutions is generated by generic deforma-
tions of a primitive vacuum such as Equation (10) [27]. We contend that the dynam-
ics governed by the Moyal–Heisenberg vacuum (9) is characterized by the NC algebra
A1

N = AN
(
C∞(R)

)
= C∞(R)⊗AN . One may regard A1

N as a one-parameter family of
deformations of the algebra AN . In this case, we can generalize the duality chain (27) to
realize the “time-dependent” gauge/gravity duality as follows:

A1
N =⇒ A1

θ =⇒ D1. (47)

It is well known [67] that in the case of A1
N or A1

θ , the module of its derivations can be
written as a direct sum of the submodules of horizontal and inner derivations:

D1 = Hor(A1
N)⊕D(A1

N)
∼= Hor(A1

θ)⊕D(A1
θ) (48)

where horizontal derivation is a lifting of smooth vector fields on R onto A1
N or A1

θ and is
locally generated by a vector field

g(t, y)
∂

∂t
∈ Hor(A1

θ). (49)
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The inner derivation D(A1
θ) is defined by lifting the NC vector fields in Equation (25) onto

A1
θ and generated by

{V̂a(t) ≡ adϕ̂a
∈ D(A1

θ)|ϕ̂a(t, y) = pa + Âa(t, y) ∈ A1
θ , a = 1, · · · , 2n} (50)

and {
V̂0(t)−

∂

∂t
≡ adÂ0

∈ D(A1
θ)|Â0(t, y) ∈ A1

θ

}
. (51)

It might be remarked that the definition of the time-like vector field V̂0(t) is motivated by
the quantum Hamilton’s Equation (42), i.e.,

V̂0(t) :=
d
dt

. (52)

Consequently, the module of the derivations of the NC algebra A1
θ is given by

D1 =
{

V̂A(t) =
(
V̂0, V̂a

)
(t)|V̂0(t) =

∂

∂t
+ adÂ0

, V̂a(t) = adϕ̂a
, A = 0, 1, · · · , 2n

}
. (53)

In the commutative limit, |θ| → 0, the time-dependent polyvector fields V̂A(t) in D1

take the following form

V̂0(t) =
∂

∂t
+ Aµ

0 (t, y)
∂

∂yµ +
∞

∑
p=2

A
µ1···µp
0 (t, y)

∂

∂yµ1
· · · ∂

∂yµp
, (54)

V̂a(t) = Vµ
a (t, y)

∂

∂yµ +
∞

∑
p=2

V
µ1···µp
a (t, y)

∂

∂yµ1
· · · ∂

∂yµp
. (55)

Let us truncate the above polyvector fields to ordinary vector fields given by

X(M) =
{

VA = VM
A (t, y)

∂

∂XM |A, M = 0, 1, · · · , 2n
}

(56)

where V0
A = δ0

A and XM = (t, yµ) are local coordinates on an emergent Lorentzian manifold
M of (2n + 1)-dimensions. The orthonormal vielbeins on TM are then obtained by the
prescription

(V0, Va) = (E0, λEa) ∈ Γ(TM). (57)

The dual orthonormal basis on T∗M is defined by the relation ⟨vA, VB⟩ = δA
B and it is

given by vA = (v0, va) =
(

dt, va
µ

(
dyµ − Aµ

0 (t, y)
))

where va
µVµ

b = δa
b . From Equation (57),

we have
(e0, ea) = (v0, λva) ∈ Γ(T∗M). (58)

The conformal factor λ ∈ C∞(M) is similarly determined by the volume-preserving
condition

LVA νt =
(
∇ ·VA + (2− 2n)VA ln λ

)
νt = 0, ∀A = 0, 1, · · · , 2n. (59)

The above condition explicitly reads as

∂ρ

∂t
+ ∂µ(ρAµ

0 ) = 0 & ∂µ(ρVµ
a ) = 0, (60)

where ρ = λ2 det va
µ and

νt ≡ dt ∧ ν = λ2dt ∧ v1 ∧ · · · ∧ v2n (61)
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is a (2n + 1)-dimensional volume form onM. If the structure equation of vector fields
VA ∈ Γ(TM) is defined by

[VA, VB] = −gAB
CVC, (62)

the volume-preserving condition (59) can equivalently be written as [26,39]

gBA
B = VA ln λ2. (63)

In the end, the Lorentzian metric on a (2n + 1)-dimensional spacetime manifoldM is given
by [25,27]

ds2 = GMN(X)dXM ⊗ dXN = ηABeA ⊗ eB

= −v0 ⊗ v0 + λ2va ⊗ va = −dt2 + λ2va
µva

ν(dyµ −Aµ)(dyν −Aν) (64)

where Aµ := Aµ
0 (t, y)dt.

It should be noted that the time evolution (52) for a general time-dependent system
is not completely generated by an inner automorphism since Hor(A1

θ) is not an inner
derivation but instead an outer derivation. This happens since the time variable t is single.
Thus, one may extend the phase space by introducing a conjugate variable H of t so that the
extended phase space becomes a symplectic manifold. Then, it is well known [60,61] that
the time evolution of a time-dependent system can be defined by the inner automorphism
of the extended phase space whose extended Poisson bivector is given by

ϑ = θ +
∂

∂t

∧ ∂

∂H
(65)

where
θ =

1
2

θµν ∂

∂yµ

∧ ∂

∂yν
(66)

is the original Poisson bivector related to the NC space (19). As a result, one can see [26]
that the temporal vector field (52) is realized as a generalized Hamiltonian vector field
defined by

V0 = XH = −ϑ(dH − dA0) =
∂

∂t
+ XH (67)

where XH = θ(dA0) is the original Hamiltonian vector field which is a classical part of the
inner derivation adÂ0

= XH +O(θ2) ∈ D(A1
θ). However, we must bear the cost associated

with the extension of the phase space. In the extended phase space, the time t is now
promoted to a dynamical variable, whereas it was simply an affine parameter describing a
Hamiltonian flow in the old phase space. Then, the extended Poisson structure (65) raises a
serious issue as to whether the time variable for a general time-dependent system might
also be quantized; in other words, time also becomes an operator obeying the commutation
relation [t, H] = −i. Then, it becomes difficult to defend the causality of physical theories.
We want to refrain from addressing this abstruse issue since it persists as a challenging
open problem, even within the realm of quantum mechanics.

We address the time issue through a more pragmatic approach.8 In mechanical systems,
time is defined through a contact structure [68,69]. Suppose that (M, B ≡ θ−1) is the original
symplectic manifold. Now, we consider a contact manifold (R×M, B̃) where B̃ = π∗2 B is
defined by the projection π2 : R×M → M, π2(t, x) = x [61]. We define the concept of
spacetime in emergent gravity through the contact manifold (R×M, B̃) in the sense that the
derivations in Equation (53) can be obtained by quantizing the contact manifold (R×M, B̃).
Indeed, it is shown in Appendix A that the time-like vector field V0 in Equation (67) arises
as a Hamiltonian vector field of a cosymplectic manifold whose particular class is a contact
manifold. Note that the emergent geometry described by the metric (64) respects the (local)
Lorentz symmetry. One can see that the Lorentzian manifoldM becomes the Minkowski
spacetime on a local Darboux chart in which all fluctuations die out, i.e., va

µ → δa
µ, Aµ → 0,

so λ→ 1. We have to emphasize that the vacuum algebra responsible for the emergence of
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the Minkowski spacetime is the Moyal–Heisenberg algebra (10). Many surprising results
will immediately come from this dynamical origin of the flat spacetime [23,25,26], which is
absent in general relativity.

We close this section by observing that the quantized version of the contact manifold
(R×M, B̃) is described by a matrix quantum mechanics (MQM) whose action is given by

S =
1

g2
YM

∫
dtTr

(1
2
(D0ϕa)

2 +
1
4
[ϕa, ϕb]

2
)

, (68)

where D0ϕa = ∂ϕa
∂t − i[A0, ϕa]. The equations of motion for the matrix action (68) are

given by
D2

0ϕa + [ϕb, [ϕa, ϕb]] = 0, (69)

which must be supplemented with the Gauss constraint

[ϕa, D0ϕa] = 0. (70)

We interpret the matrix model (68) as a Hamiltonian system of the IKKT matrix model
whose action is given by Equation (6). Note that the original BFSS matrix model [70]
contains nine adjoint scalar fields, while Equation (68) has an even number of adjoint scalar
fields. For the former case, we do not know how to realize the adjoint scalar fields as a
matrix representation of NC U(1) gauge fields on a Hilbert space such as (41). It may
even be nontrivial to construct the Hilbert space because the M-theory is involved with a
3-form instead of symplectic 2-form. For the latter case, on the other hand, the previous
Moyal–Heisenberg vacuum (9) is naturally extended to the vacuum configuration of A1

N
given by

⟨ϕa⟩vac = pa, ⟨A0⟩vac = −E , (71)

where the vacuum moduli pa ∈ A1
N satisfy the commutation relation (10) and E is a

constant vacuum energy density proportional to the identity matrix. We consider all
possible deformations of the vacuum (71) and parameterize them as

ϕ̂A(t, y) = pA + ÂA(t, y) ∈ A1
θ , (72)

where p0 = i ∂
∂t − E and the isomorphism (41) between A1

N and A1
θ was used. Note that

[ϕ̂A, ϕ̂B]⋆ = −i
(

BAB − F̂AB
)
, (73)

where
F̂AB = ∂A ÂB − ∂B ÂA − i[ÂA, ÂB]⋆ ∈ A1

θ (74)

and

BAB =

(
0 0
0 Bab

)
.

Plugging the fluctuations (72) into Equation (68) leads to a (2n + 1)-dimensional NC U(1)
gauge theory with the action [54,57]

S =
1

g2
YM

∫
dtTr

(1
2
(D0ϕa)

2 +
1
4
[ϕa, ϕb]

2
)

= − 1
4G2

YM

∫
d2n+1y

(
F̂AB − BAB

)2, (75)

where G2
YM = (2π)n|Pfθ|g2

YM is the (2n + 1)-dimensional gauge coupling constant. By
applying the duality chain (47) to time-dependent matrices in A1

N , it is straightforward to
derive the module D1 in Equation (53) from the large N matrices or NC U(1) gauge fields
in the action (75). A Lorentzian spacetime described by the metric (64) corresponds to a
classical geometry derived from the NC module D1 [27].
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3. Cosmic Inflation from Time-Dependent Matrices

From now on, we will focus on the matrix quantum mechanics (MQM) to address the
background-independent formulation of cosmic inflation. Let us rewrite the action (68) in
the form

S =
1

4g2

∫
dt ηACηBDTr[ϕA, ϕB][ϕC, ϕD], (76)

where ϕ0 ≡ iD0 = i ∂
∂t + A0(t), ϕA(t) = (ϕ0, ϕa)(t), and ηAB = diag(−1, 1, · · · , 1), A, B =

0, 1, · · · , 2n. With the definition of the symbol ηAB, it is easy to see that the matrix action (76)
has a global automorphism given by

ϕA → ϕ′A = ΛA
BϕB + cA (77)

if ΛA
B is a rotation in SO(2n, 1) and cA are constants proportional to the identity matrix.

It will be shown later that the global symmetry (77) is responsible for the Poincaré sym-
metry of flat spacetime emergent from a vacuum in the Coulomb branch of MQM and
so will be called the Poincaré automorphism. We remark that the time t in the action (76)
is not a dynamical variable but an affine parameter. The concept of emergent time was
defined in the previous section by considering a one-parameter family of deformations of
zero-dimensional matrices which is parameterized by the coordinate t. The one-parameter
family of deformations can then be regarded as the time evolution of a dynamical system.
In this context, the one-dimensional matrix model (76) can be interpreted as a Hamilto-
nian system of a zero-dimensional (e.g., IKKT) matrix model [27]. A close analogy with
quantum mechanics implies that the concept of emergent time is derived from the time
evolution of the dynamical system. Although spatial coordinates and time are introduced
in different ways, Equation (77) implies that they are connected by Lorentz transformations
and coalesced into the form of Minkowski spacetime in a locally inertial frame.

The duality chain (47) implies that the gravitational variables such as vielbeins in
general relativity arise from the commutative limit of NC U(1) gauge fields. Then, one may
ask where the Minkowski spacetime comes from. Let us look at the metric (64) to identify
the origin of the Minkowski spacetime. Definitely, the Lorentzian manifoldM becomes
the Minkowski spacetime when all fluctuations die out, i.e., va

b → δa
b , Aa → 0 (and so

λ → 1). Therefore, the vacuum geometry for the metric (64) was originated from the
vacuum configuration (71). In other words, the (2n + 1)-dimensional Minkowski spacetime
emerges from the vacuum condensate (71) since the corresponding vielbeins and the metric

are given by E(0)
A = V(0)

A =
(

∂
∂t , ∂

∂ya

)
and ds2 = −dt2 + dy · dy [25,26]. The Minkowski

spacetime originates from a coherent vacuum satisfying the Moyal–Heisenberg algebra (10),
and the condensate (9) in the NC Coulomb vacuum induces a nontrivial vacuum energy
density. We can calculate it using the action (75):

ρvac =
1

4G2
YM
|Bab|2. (78)

A striking fact is that the vacuum responsible for the generation of flat spacetime is not
empty. Rather, the flat spacetime had originated from the uniform vacuum energy (78)
known as the cosmological constant in general relativity. This is a tangible difference from
Einstein gravity since Equation (1) enforces Tµν = 0 for the flat spacetime. Consequently,
the emergent gravity reveals a remarkable picture in that a uniform vacuum energy such as
Equation (78) does not gravitate (i.e., does not couple to gravity). As a result, the emergent
gravity presents a striking contrast to general relativity. This important conclusion may
be strengthened by applying the Lie algebra homomorphism (24) to the commutators in
Equation (73), which reads as

−iad[ϕa ,ϕb ]
≡ V̂F̂ab−Bab

= V̂F̂ab
= [V̂a, V̂b] ∈ D1 (79)
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for a constant field strength Bab. To stress clearly, the gravitational fields emergent from NC
U(1) gauge fields must be insensitive to the constant vacuum energy such as Equation (78).
In the end, the emergent gravity clearly dismisses the notorious cosmological constant
problem [23,25,26].

We observed that the MQM admits a global automorphism given by Equation (77).
Let us see what the consequence of the Poincaré automorphism (77) is for the emergent
spacetime geometry. The Poincaré automorphism leads to the transformation V(0)

A →
V
′(0)
A = ΛA

BV(0)
B . However, this transformation does not change λ2 because det Λ =

1. The geometry for the transformed vacuum p′A is determined by the metric (64) that
is still the Minkowski spacetime R2n,1. Therefore, we see that the vacuum responsible
for the generation of flat spacetime is not unique but degenerates up to the Poincaré
automorphism.9 After all this, the global Poincaré symmetry of the Minkowski spacetime
emerges from the Poincaré automorphism (77) of MQM.

It should be remarked that the background-independent theory does not mean that
the physics is independent of the background. Background independence here means
that, although a physical phenomenon occurs in a particular background with a specific
initial condition, an underlying theory itself describing such a physical event should not
presuppose any kind of spacetime or material backgrounds. Therefore, the background
itself should arise from a vacuum solution of the underlying theory. In particular, the
background-independent theory must integrate geometry and matter, as the matter cannot
be defined without a preestablished spacetime framework. Complex spacetime structures
are derived through the general deformations of the fundamental vacuum. These de-
formations correspond to physical processes that happen upon a particular (spacetime)
background. Hence, they are regarded as a dynamical system. Motivated by a close anal-
ogy with quantum mechanics, we argued that the deformations of spacetime structure
supported on a vacuum solution must be understood as the time evolution of the dynami-
cal system. According to this picture, the fundamental action (76) describes a dynamical
system, from which an emergent (2n + 1)-dimensional Lorentzian spacetimeM with the
metric (64) is derived.

Note that the Newton constant GN according to the emergent gravity picture has to be
determined by field theory parameters only, such as the gauge coupling constant GYM and
θ = B−1 defining the NC U(1) gauge theory. In order to estimate the dynamical energy
scale for the vacuum condensate (9), consider a simple dimensional analysis leading to the
result [25,26]

GN h̄2

c2 ∼ G2
YM|θ|, (80)

where |θ| := |Pfθ| 1n . To be specific, when considering the four-dimensional case in which
MP = (8πGN)

−1/2 ∼ 1018 GeV and G2
YM ∼

1
137 , the vacuum energy (78) due to the

condensate (9) is roughly given by

ρvac =
1

4G2
YM
|Bab|2 ∼ G2

YM M4
P ∼ 10−2M4

P. (81)

Of course, its precise value may be given when the NC scale |θ| = M−2
nc is known.

In Equation (81), we roughly identified the NC scale Mnc with the Planck energy MP.
However, this order of estimate is not so bad when we compare the value with that in
Ref. [5] (see the last paragraph in Section III): ρ1/4

vac = V1/4
60 = 3.8× 1016 GeV for 60 e-

foldings. Then, the inflationary Hubble parameter corresponds to H60 = 2.9× 10−5MP.
Emergent gravity reveals that the enigmatic vacuum energy ρvac ∼ M4

P, rather surprisingly,
serves as the true origin of flat spacetime. If spacetime geometry emerges from a vacuum
configuration of some fundamental ingredients in an underlying quantum gravity theory,
the Planck mass MP is a natural dynamical scale for the emergence of gravity and spacetime.
Therefore, it may not be a surprising result but rather an inevitable consequence that the
Planck energy density (81) in a vacuum was the genetic origin of spacetime.
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The metric (64) clearly indicates that the Planck energy condensate in a vacuum
resulted in an extremely extended spacetime. Since we have started with a background-
independent theory in which any spacetime structure has not been assumed in advance,
the spacetime was not existent at the beginning but simply emergent from the vacuum
condensate (9). Therefore, the Planck energy condensation into a vacuum must be regarded
as a dynamical process. Since the dynamical scale for the vacuum condensate is about
that of the Planck energy, the time scale for the condensation will be roughly that of the
Planck time tP ∼ 10−44 s. The inflation scenario asserts that our Universe, at the beginning,
underwent an explosive inflation era that lasted roughly ∼10−33 s. Thus, it is natural to
consider the cosmic inflation as a dynamical process for the instantaneous condensation
of vacuum energy to enormously spread out spacetime [23]. Now, we will explore how
the cosmic inflation is triggered by the condensate of Planck energy in a vacuum and
corresponds to the dynamical emergence of spacetime.

First, let us understand, intuitively, Equations (2) and (3) to obtain some clear insight
from the old wisdom (see I.1 in [71]). Suppose that a test particle with mass m is placed
in the condensate with the energy density (81). Consider a ball of radius r(t) and the
test particle placed on its surface. According to Gauss’s law, the particle will be subject
to the gravitational potential energy V(r) = −GN M(r)m

r caused by the condensate (81),

where M(r) = 4πr(t)3ρvac
3 is the total mass inside the ball.10 In order to preserve the total

energy E of the particle, the ball has to expand so that the kinetic energy K(r) = 1
2 mṙ(t)2

generated by the expansion compensates the negative potential energy. That is, the energy
conservation implies the following relation

H2 =
8πGNρvac

3
− k

r(t)2 , (82)

where H = ṙ(t)
r(t) is the expansion rate and k ≡ − 2E

m . Comparing the above equation with
the Friedmann Equation (2) after the identification r(t) = Ra(t), we see that Equation (82)
corresponds to ρvac = V(ϕ) ≈ V0 and ϕ̇ ≈ 0 with k = 0. We actually assumed the spatially
flat universe, k = 0, for the Friedmann Equation (2). In our approach, with a background-
independent theory, the condition k = 0 is automatic since the very beginning should be
absolutely nothing! This conclusion is consistent with the metric (64) which describes a
final state of cosmic inflation. Hence, we may claim that the background-independent
theory for cosmic inflation predicts a spatially flat universe, in which the constant k must
be exactly zero.

From the above simple argument (82) with k = 0, we see that the size of the ball
exponentially expands, i.e.,

a(t) = a0eHt (83)

where

H =

√
8πGNρvac

3
(84)

is a constant. Let us introduce fluctuations around the inflating solution (83) by considering
ρvac → ρvac + δρ and ϕ̇ ̸= 0, where δρ is the mechanical energy due to the fluctuations of
the inflaton ϕ(t). Then Equation (82) is replaced by

H2 =
8πGN

3
(ρvac + δρ), (85)

and the dynamics of the inflaton is described by Equation (3). The argument leading to
Equation (85) implies that the cosmic inflation corresponds to a dynamical process of the
Planck energy condensation into a vacuum. Hence, the cosmic inflation as a dynamical sys-
tem is typically a time-dependent solution and must be described by the non-Hamiltonian
dynamics, as we already remarked in Equation (5). Now, we will demonstrate how the
cosmic inflation can be described by the conformal Hamiltonian dynamics [72,73] which
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appears in, for example, simple mechanical systems with friction. In Appendix A, we
briefly review generalized symplectic manifolds that correspond to a natural phase space
describing the conformal Hamiltonian dynamics.

Let us consider the simplest case, namely when the symplectic manifold is R2n with
coordinates (qi, pi) and ω = dqi ∧ dpi = da where a = 1

2 (q
idpi − pidqi). A conformal vector

field X is defined by
ιXω = κa + dH, (86)

where H : R2n → R is the Hamiltonian and κ is a nonzero constant. Note that Equation (86)
implies

LXω = κω. (87)

Therefore, the vector field X is a Lie algebra generator of conformal infinitesimal transfor-
mations. It is easy to solve Equation (86) for the vector field X and the result is given by

X =
κ

2

(
qi ∂

∂qi + pi
∂

∂pi

)
+ XH , (88)

where XH is a usual Hamiltonian vector field obeying ιXH ω = dH. Thus, Hamilton’s
equations are given by

dqi

dt
= X(qi) =

κ

2
qi +

∂H
∂pi

, (89)

dpi
dt

= X(pi) =
κ

2
pi −

∂H
∂qi . (90)

The equations of motion for the Hamiltonian H = 1
2 p2

i + U(q) are equal to the differential
equations

q̈i − κq̇i +
∂V
∂qi = 0, (91)

where V(q) = U(q) + κ2

8 q2
i . To be specific, the integral curves for U(q) = 1

2 ω2q2
i are given

by11

qi(t) = e
κ
2 tqi(κ = 0; t), pi(t) = e

κ
2 t pi(κ = 0; t), (92)

where qi(κ = 0; t) = Ai sin(ωt + θ) and pi(κ = 0; t) = Bi cos(ωt + θ) describe the usual
harmonic oscillator with a closed orbit when κ = 0. The flow generated by a conformal
vector field can be directly obtained by integrating Equation (87). Let ϕt denote the flow of
X. By the Lie derivative theorem [61], we have d

dt (ϕ
∗
t ω) = ϕ∗t LXω = κϕ∗t ω. Therefore, we

see that the conformal flow has the property

ϕ∗ω = eκtω. (93)

This means that the volume of phase space exponentially expands (contracts) if
κ > 0 (κ < 0).

The mathematical parallel between quantum mechanics and NC spacetime offers
insights into formulating cosmic inflation as a dynamical system. First note that the NC
space (19) in commutative limit becomes a phase space with the symplectic form

B =
1
2

Bµνdyµ ∧ dyν. (94)

Hamiltonian systems generated by divergenceless Hamiltonian flows are characterized
by the invariance of phase space volume under time evolution, which is known as the
Liouville theorem [60,61]. However, the cosmic inflation indicates that the volume of
spacetime phase space has to exponentially expand as seen from the above mechanical
analogue. Hence, a generalized Liouville theorem is necessary to describe the exponential
expansion of spacetime. We have already observed how a non-Hamiltonian dynamics
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can be formulated in terms of a conformal Hamiltonian dynamics characterized by the
flow obeying Equation (87). See Appendix A for a mathematical exposition of general
time-dependent nonconservative dynamical systems.

Let us apply the conformal Hamiltonian dynamics to the cosmic inflation. Recall
that we have considered an atlas {(Ui, ϕ(i))} on M =

⋃
i∈I Ui as a collection of local

Darboux charts and complete it by gluing these local charts on their overlap. On each
local chart, we have a local symplectic structure Ωi =

1
2 Bµνdyµ

(i) ∧ dyν
(i) where {yµ

(i)} are

Darboux coordinates on a local patch Ui ⊂ M. The phase space coordinates {yµ

(i)}Ui of a
conformal Hamiltonian system undergo a nontrivial time evolution even in a local Darboux
frame [74,75]. For example, the equations of motion (89) and (90) illustrate such a nontrivial
time evolution even when H = 0. The dynamics in this case consists of the orbits of a
conformal vector field X obeying the condition (87). The situation at hand is essentially the
same as the mechanical system with negative friction. To be specific, write Ωi = da(i) on a

local patch Ui ⊂ M where a(i) = − 1
2 p(i)µ dyµ

(i) and p(i)µ = Bµνyν
(i). Define a conformal vector

field X as
ιXΩi = κa(i) + dHi, (95)

where Hi : Ui → R is a local Hamiltonian and κ is a positive constant. Using the fact that
dΩi = 0, Equation (95) can be written as

LXΩi = κΩi. (96)

The vector field X obeying Equation (95) is given by

X =
κ

2
yµ

(i)
∂

∂yµ

(i)

+ XHi , (97)

where XHi is the ordinary Hamiltonian vector field satisfying ι(XHi )Ωi = dHi. The confor-
mal vector field (97) contains the Liouville vector field Z(i) ≡ 1

2 yµ

(i)
∂

∂yµ
(i)

[72,73].

Let us consider a spacetime dynamics generated by the Liouville vector field. We
will set Hi = 0 for simplicity. The time evolution of local Darboux coordinates is then
determined by the equations

dyµ

(i)

dt
= X(yµ

(i)) =
κ

2
yµ

(i). (98)

The solution is given by
yµ

(i)(t) = e
κ
2 tyµ

(i)(0). (99)

We may glue the local solutions (99) to have a global form

pa(t) = Babyb(t) = e
κ
2 t pa. (100)

Then the time-dependent canonical one-form is given by

a(t) = −1
2

pa(t)dya(t) = −1
2

eκt padya (101)

and thus
Ω(t) = da(t) = eκtB. (102)

The exterior derivative above acts only on R2n. One can show that the result (102) is the
integral form of Equation (96). More generally, the result (102) is a particular case of the
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general Moser flow ϕt generated by a time-dependent vector field Xt for a locally conformal
symplectic manifold [76]. The Moser flow satisfies

ϕ∗t Ωt = exp
( ∫ t

0
ϕ∗s

(
bs(Xs)

)
ds
)
·Ω, (103)

where the one-form b is the Lee form of Ω [77]. The result (102) is simply obtained from
Equation (103) when b(X) is a constant κ.

We have advanced the concept of cosmic inflation by postulating that the vacuum
configuration (71) serves as a final state accumulating the vacuum energy. Therefore, the
cosmic inflation corresponds to a dynamical system describing the transition from the initial
state referring to “absolutely nothing" to the final state. With this perspective in mind,
let us consider a symplectic manifold

(
M, Ω(t)

)
whose symplectic two-form is given by

Equation (102). It can be shown that this symplectic manifold arises from a time-dependent
vacuum given by

⟨ϕa(t)⟩vac = pa(t) = e
κ
2 t pa, ⟨A0(t)⟩vac = 0. (104)

Recall that the temporal gauge field in Equation (104) corresponds to our previous setting
Hi = 0 according to the identification (43). Though we have turned off the temporal
gauge field for a simple argument, it is necessary to turn it on in order to implement the
vacuum (104) as a solution of the action (76). We will consider it later. Let us first determine
the vacuum geometry emergent from the vacuum configuration (104). Note that

⟨[ϕa(t), ϕb(t)]⟩vac = −ieκtBab = −iΩab(t), (105)

and so we regard Ω(t) = 1
2 Ωab(t)dya ∧ dyb as the symplectic structure of the inflating

vacuum (104). The vacuum (104) leads to the vector fields (omitting the symbol indicating
the vacuum for a notational simplicity)

VA(t) = (V0(t), Va(t)) =
(

∂

∂t
, e

κ
2 tVa(0)

)
, (106)

where Va(0) = δ
µ
a

∂
∂yµ . Thus, the dual one-forms are given by

v0(t) = dt, va(t) = e−
κ
2 tva(0) (107)

where va(0) = δa
µdyµ. It is easy to calculate the Lie algebra (62) for the time-dependent

vector fields VA(t):

gAB
C =

{
g0a

b = −ga0
b = − κ

2 δb
a , a, b = 1, · · · , 2n;

0, otherwise.
(108)

Thus, λ2 = enκt according to Equation (63). The invariant volume form of the vacuum
manifold is then given by

νt = λ2dt ∧ v1(t) ∧ · · · ∧ v2n(t) = dt ∧ dy1 ∧ · · · ∧ dy2n. (109)

After applying the above results to the metric (64), we see that the vacuum configura-
tion (104) determines the spacetime geometry with the metric

ds2 = −dt2 + e2Htdy · dy (110)

where H = 1
2 (n− 1)κ > 0 is a positive Hubble parameter. This is the de Sitter space in flat

coordinates which covers half of the de Sitter manifold. Definitely, the inflation metric (110)
describes a homogeneous and isotropic Universe known as the Friedmann–Robertson–
Walker metric in physical cosmology.
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The vector fields VA(t) in Equation (108) form a solvable Lie algebra and the de
Sitter space is its Lie group. The Lie algebra has the generators V0 = − κ

2 L0(2n+1), Va =
1
2 (L0a + La(2n+1)), which is indeed a subalgebra of the de Sitter algebra where LAB (A,B =
0, 1, · · · , 2n + 1) are the Lie algebra generators of SO(2n + 1, 1) Lorentz symmetry. From
this point of view, energy and momentum do not commute, unlike in the Minkowski
spacetime, and are no longer conserved, as translations are no longer a symmetry of the
space.12 Instead, energy generates scale transformations in momentum. This is the reason
why the isometry of the de Sitter space is enhanced to SO(2n + 1, 1) which combines
SO(2n, 1) Lorentz transformations and translations together [80]. In the limit κ → 0, we
recover the Minkowski spacetime.

In order to achieve a background-independent formulation of emergent spacetime,
it is desirable to realize the inflationary universe as a solution of the matrix model (76).
Now, we will show that the cosmic inflation arises as a time-dependent solution describing
the dynamical process of Planck energy condensate into a vacuum without introducing
any inflaton field as well as an ad hoc inflation potential. First, let us show that the
dynamical process for the vacuum condensate is described by the time-dependent vacuum
configuration given by

⟨ϕa(t)⟩vac = pa(t) = e
κt
2 pa, ⟨Â0(t)⟩vac = â0(t, y), (111)

where the temporal gauge field is given by an open Wilson line [81–83]

â0(t, y) =
κ

2

∫ 1

0
dσ

dya(σ)

dσ
pa(σ) (112)

along a path parameterized by the curve ya(σ) = ya
0 + ζa(σ) where ζa(σ) = θabkbσ with

0 ≤ σ ≤ 1 and ya(σ = 0) ≡ ya
0 and ya(σ = 1) ≡ ya. The constant κ will be identified with

the inflationary Hubble constant H. Note that the second term in Equation (69) identically
vanishes for the background (111). Therefore, it is enough to impose the condition

D0ϕa = e
κt
2

(κ

2
pa − i[Â0, pa]

)
= 0 (113)

to satisfy both (69) and (70). In terms of the NC ⋆-algebra A1
θ , Equation (113) reads as

∂â0(t, y)
∂ya =

κ

2
pa. (114)

Using the formula
∂

∂ya

∫ 1

0
dσ

dyb(σ)

dσ
K
(
y(σ)

)
= δb

a K(y) (115)

for some differentiable function K(y), one can easily check that the temporal gauge field in
Equation (112) satisfies Equation (114).

We want to address some physical significance of the nonlocal term (112). It is essential
to highlight that the temporal gauge field (112) corresponds to a background Hamiltonian
density in the comoving frame.13 It will be shown that, although the temporal gauge
field (112) is nonlocal, the gravitational metric determined by the time-dependent vacuum
configuration (111) still takes a local expression as it should be. It was already noticed in [84]
that nonlocal observables in emergent gravity are, in general, necessary to describe some
gravitational metric. Indeed the appearance of such nonlocal terms should not be surprising
since there exist no local gauge invariant observables in NC gauge theories [81–83].

Now, let us determine the metric (64) for the inflating background (111). The (2n + 1)-
dimensional vector fields defined by Equation (53) take the following form

V0(t) =
∂

∂t
− κ

2
ya ∂

∂ya , Va(t) = e
κt
2

∂

∂ya . (116)
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Higher-order derivative terms in Equations (54) and (55) identically vanish since only the
vacuum background (111) was considered. Note that the vector fields take the local form
again as the result of applying Equation (115) and the open Wilson line (112) leads to a
conformal vector field Z ≡ 1

2 ya ∂
∂ya known as the Liouville vector field [72,73]. Then, the

dual orthogonal one-forms are given by

v0(t) = dt, va(t) = e−
κt
2 (dya + aa) = e−κtdya

t (117)

where
aa =

κ

2
yadt, ya

t ≡ e
κt
2 ya. (118)

One can see that the vector fields in Equation (116) satisfy [V0, Va] = κVa, and thus

gAB
C =

{
g0a

b = −ga0
b = −κδb

a , a, b = 1, · · · , 2n;
0, otherwise.

(119)

From this result, we obtain λ2 = e2nκt since gBA
B = VA ln λ2 [26,39]. One can see that the

volume-preserving condition (60) is satisfied since ρ = enκt, Aa
0 = − κ

2 ya and Vµ
a = e

κt
2 δ

µ
a .

In the end, the time-dependent metric for the inflating background (111) is given by

ds2 = −dt2 + e2Htdyt · dyt, (120)

where we have identified the inflationary Hubble constant H ≡ (n− 1)κ. By comparing
this result with Equation (110), one can see that the temporal gauge field (112) enhances the
inflation by the factor two, i.e., H → 2H. We emphasize that the temporal gauge field (112)
is crucial to satisfy Equations (69) and (70).

We demonstrated that cosmic inflation arises as a time-dependent solution of a
background-independent theory. This theory delineates the dynamical evolution of the
Planck energy condensate in a vacuum, without introducing an inflaton field or an ad
hoc inflation potential. Let us generalize the cosmic inflation by also including arbitrary
fluctuations around the inflationary background (111). Such a general inflationary uni-
verse in (2n + 1)-dimensional Lorentzian spacetime can be realized by considering a
time-dependent NC algebra given by

tA1
θ ≡

{
ϕ̂0(t, y) = i

∂

∂t
+ Â0(t, y), ϕ̂a(t, y) = e

κt
2
(

pa + Âa(t, y)
)}

. (121)

We denote the corresponding time-dependent matrix algebra by tA1
N which consists of

time-dependent solutions of the action (76). Then, the general Lorentzian metric describing
a (2n+ 1)-dimensional inflationary universe can be obtained by the following duality chain:

tA1
N =⇒ tA1

θ =⇒ tD1. (122)

The module tD1 of derivations of the NC algebra tA1
θ is given by

tD1 =
{

V̂A(t) = (V̂0, V̂a)(t)|V̂0(t) =
∂

∂t
+ adÂ0(t,y)

, V̂a(t) = e
κt
2

( ∂

∂ya + adÂa(t,y)

)}
, (123)

where the adjoint operations are defined by Equation (23). In the classical limit of the
module (123), we obtain a general inflationary universe described by

ds2 = −dt2 + e2Ht(1 + δλ)2va
bva

c(dyb
t −Ab)(dyc

t −Ac), (124)

where va
b := va

b(t, y), δλ := δλ(t, y) and Ab := δab
0(t, y)dt. If all fluctuations are turned off

for which va
b = δa

b and δλ = Ab = 0, we recover the inflation metric (120).
Let us bring this section to a close by delving into the physical implications arising

from the results we have garnered. Recall that an NC space such as R2
θ does not admit a state
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defined on a single point of the plane but, rather, the state lies in a region of the plane. Thus,
there must be a basic length scale, below which the notion of space (and time) does not make
sense. Let us fix such a typical length scale at t = 0 as |ya(t = 0)| ∼ LP or ls =

√
α′ using the

scaling freedom noted in footnote 9. Since we have started with a background-independent
theory in which a spacetime structure has to be created from a solution at the beginning
t = 0, it should be reasonable to identify LP with the Planck length. Since ya(t = 0) are
operators acting on a Hilbert space, this means that the inflationary vacuum (111) creates
a spacetime of the Planck size. After the creation, the universe undergoes the inflation
epoch described by a solution of the time-dependent matrix model, unlike the traditional
inflationary models that suppose just the exponential expansion of a preexisting spacetime.
This picture is similar to the birth of inflationary universes in Refs. [12,13] in which the
universe is spontaneously created by quantum tunneling from nothing into a de Sitter
space. Here, “nothing” means a state devoid of any spacetime structure. According to the
standard inflation scenario, the universe expanded by at least a factor of e60 ∼ 1026 during
the inflation. After 60 e-foldings at t = tend = 10−36 ∼ 10−33 s, Htend ≳ 60 and the size of
the universe at the end of inflation amounts to |ya(t = tend)| = eHtend |ya(t = 0)| ≳ 1026LP.
Since 1 eV = (6.6× 10−16 s)−1, this roughly informs us of the energy scale of the inflationary
Hubble constant H ≳ 1011 ∼ 1014 GeV [3–5].

Since the vacuum (111) is in high nonequilibrium (i.e., time-dependent), it is expected
that it undergoes evolutionary processes towards its final state (71) through interactions
with its environment, such as ubiquitous fluctuations. This dissipation process of inflation
energy is known as the reheating mechanism in physical cosmology. To accurately ascertain
the duration of inflation, the precise mechanism involved in reheating must be understood;
unfortunately, this surpasses our current knowledge. Nevertheless, we will speculate in
Section 4 about a plausible picture for the reheating mechanism.

4. Discussion

String theory has been developed upon two distinct spacetime frameworks, namely
the Kaluza–Klein (KK) theory and emergent gravity. Despite their conceptual divergence,
these models represent exclusive perspectives on the nature of spacetime. On the one hand,
KK gravity is defined in higher dimensions as a more superordinate theory and gauge
theories in lower dimensions are derived from the KK theory via compactification. Since
the KK theory is just Einstein gravity in higher dimensions, the prior existence of spacetime
is a priori assumed. On the other hand, in the emergent gravity picture, gravity in higher
dimensions is not a fundamental force but a collective phenomenon emergent from more
fundamental ingredients defined in lower dimensions. In the emergent gravity approach,
the existence of spacetime is not a priori assumed, but the spacetime structure is defined by
the theory itself. This picture leads to the concept of emergent spacetime. In some sense,
emergent gravity is the inverse of the KK paradigm, schematically summarized by [24]

(1⊗ 1)S ⇄ 2⊕ 0 (125)

where→means the emergent gravity picture, while← indicates the KK picture.
Recent developments in string theory have revealed growing evidence for emergent

gravity and emergent spacetime. The AdS/CFT correspondence and matrix models are
typical examples supporting the emergence of gravity and spacetime [14–16]. An intriguing
aspect is that the emergence of gravity requires the emergence of spacetime too. If spacetime
is emergent, everything supported on the spacetime should be emergent too, ensuring
internal consistency within the theoretical framework. In particular, matters cannot exist
without spacetime, and thus, must be emergent together with the spacetime. Eventually,
the background-independent theory has to make no distinction between geometry and
matter [27]. This is the reason why the emergent spacetime picture cannot coexist peacefully
with the KK paradigm. Since the emergent spacetime is a new fundamental paradigm
for quantum gravity and radically different from any previous physical theories, all of
which describe what happens in a given spacetime, there is a compelling need to critically
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reassess the underpinnings of quantum gravity through the lens of emergent spacetime.
Quantum gravity is considered necessary for a complete understanding of cosmic inflation
because inflationary theory involves the extreme conditions of the early universe where
both quantum mechanics and gravity play significant roles.

It is well known [66,85–88] that NC field theories arise as a low-energy effective theory
in string theory, in particular, on D-branes upon turning on a constant B-field. A remarkable
aspect of the NC field theory is that it can be mapped to a large N matrix model as depicted
in the isomorphism (22). The relation between NC gauge theories and matrix models is
quite general since any Lie algebra or Moyal-type NC space such as (19) always admits
a separable Hilbert space, and NC gauge fields become operators acting on the Hilbert
space [57]. The matrix representation of NC gauge fields implies that they can be embedded
into a background-independent formulation in terms of a matrix model. The background-
independent variables are identified as the degrees of freedom inherent in the underlying
matrix model. The relation between a matrix model and an NC gauge theory is based on
the observation [54,57] that the NC space (19) is a consistent vacuum solution of a large
N gauge theory in the Coulomb branch. The matrices are original dynamical variables of
the matrix model which are manifestly background-independent and NC gauge fields are
derived from fluctuations in the NC Coulomb branch.

We have shown that the cosmic inflation arises as a solution of a time-dependent
matrix model, describing the dynamical process of the vacuum energy condensation.
Remarkably, the inflation can be described by time-dependent matrices only without
introducing any inflaton field as well as an ad hoc inflation potential. In order to describe
the cosmic inflation, it is necessary to generalize symplectic manifolds, as we have discussed
the rationales in Section 3. The corresponding generalized symplectic manifolds for the
cosmic inflation include locally conformal symplectic (LCS) or more generally locally
conformal cosymplectic (LCC) manifolds, whose mathematical foundation will be reviewed
in Appendix A. The LCS manifold allows a nontrivial conformal vector field defined by
Equation (96) even when an underlying Hamiltonian function identically vanishes. The
so-called Liouville vector field Z ≡ 1

2 yµ ∂
∂yµ is still nontrivial [72] and it generates the

exponential expansion of spacetime described by the metric (110).14 If the one-form a in
Equation (95) is proportional to the Lee form b, X is called a Hamiltonian vector field of an
LCS manifold. See the definition (A10). The Hamiltonian vector field in this case shows a
peculiar property different from the symplectic case: If b is not exact, XH = 0 only if H = 0
(see Proposition 2.1 in [74]). Therefore, we see that the vector fields of an LCS manifold
are in stark contrast to those of a symplectic manifold, in which XH = 0 if and only if
H = constant. Due to this property, while the constant vacuum energy (i.e., a cosmological
constant) does not couple to gravity if gravity is described by a symplectic manifold, the
vacuum energy rightly couples to gravity during the inflation if the cosmic inflation is
described by an LCS (or more generally LCC) manifold. This is a desirable property since
the cosmic inflation is triggered by the condensate of vacuum energy. Physically, the reason
is obvious since all quantities during the inflation are time-dependent due to the existence
of the nontrivial Liouville vector field.

It may be instructive to understand the above situation more closely in comparison
with the equilibrium case described by the metric (64). First, note that the invariant volume
form (61) can be written as

νt = λ2−2nνg, (126)

where νg = e0 ∧ · · · ∧ e2n =
√
−Gd2n+1x is the volume form of the metric. Therefore, the

vector fields VA do not necessarily preserve the Riemannian volume form νg although
they preserve the volume form νt. However, since λ2 → 1 at spatial infinity according
to Equation (63), νt|∞ = νg|∞ for the asymptotic volume forms denoted by νt|∞ and νg|∞.
Therefore, the flow generated by VA leads to only local changes in the spacetime volume,
while it preserves the volume element at asymptotic regions. Conversely, the conformal
vector field (97) changes the spacetime volume everywhere. Accordingly, it definitely gives
rise to the exponential expansion of the spacetime volume. After all, we see that a natural



Universe 2024, 10, 150 24 of 43

phase space for the cosmic inflation has to contain an LCS manifold instead of a standard
symplectic manifold. Including time, it becomes an LCC manifold [75]. Our result shows
that the matrix model (68) contains the LCC manifold as a solution.

An important question is whether the emergent spacetime picture can also lead to the
eternal (or chaotic) inflation. The answer is certainly no. The reason is the following. We
showed that the inflationary vacuum (111) arises as a solution of the (BFSS-like) matrix
model (76). In order to define the matrix model (76), however, we have not introduced any
spacetime structure. Hence, the vacuum (111) corresponds to the creation of spacetime
unlike the traditional inflationary models that describe just the exponential expansion of a
preexisting spacetime. More precisely, the inflationary vacuum (111) describes a dynamical
process of the Planck energy condensate responsible for the emergence of spacetime. In
general relativity, the Minkowski spacetime with the metric gµν = ηµν must be a completely
empty space because the Einstein Equation (1) requires Tµν = 0. However, in emergent
gravity, it is not an empty space but the vacuum condensate of the Planck energy as
Equation (81) clearly indicates. An important point is that the Planck energy condensate
results in a highly coherent vacuum called the NC space, and the NC space is identical to the
NC phase space in quantum mechanics which necessarily brings about the Heisenberg’s
uncertainty relation, ∆x∆p ≥ h̄

2 . Thus, the NC space (19) also leads to the spacetime
uncertainty relation. Therefore, any further accumulation of energy over the vacuum (111)
must be subject to the spacetime exclusion principle known as the UV/IR mixing [89].
Consequently, it is not possible to further accumulate the Planck energy density over the
inflationary vacuum (111). This means that it is impossible to superpose a new inflating
subregion over the inflationary vacuum. Rather, it was argued [90] that the UV/IR mixing
due to the spacetime uncertainty principle gives rise to a late-time acceleration of the
universe, also known as the dark energy.

In sum, the cosmic inflation triggered by the Planck energy condensate into a vacuum
must be a single event [23] and the emergent spacetime precludes the formation of pocket
universes appearing in the eternal (or chaotic) inflation. In the end, we have a beautiful
picture: the NC spacetime is necessary for the emergence of spacetime and the exclusion
principle of NC spacetime guarantees the stability of spacetime.

We certainly live in a universe where the inflationary epoch lasted for only a very tiny
period in very early times, although it is currently in an accelerating phase driven by dark
energy. Therefore, there should be some relaxation mechanism for the (first-order) phase
transition from the inflating universe to a radiation-dominated universe. We showed that
the former is described by the metric (124), whereas the latter is described by (64), and both
arise as solutions of the background-independent matrix model (68). In inflation scenarios
in terms of scalar fields, the relaxation mechanism is known as the reheating in which the
scalar field switches from being overdamped to being underdamped and begins to oscillate
at the bottom of the potential to transfer its energy to a radiation-dominated plasma at a
sufficiently high temperature to allow standard big bang nucleosynthesis [3,4]. For this
purpose, most inflationary theories have introduced a very ad hoc potential for the scalar
field (inflaton). In our case, however, we have introduced neither an inflaton field nor an
inflation potential. Therefore, the important question is how to end the inflation of our
universe in the emergent gravity.

We do not know the precise mechanism for the graceful exit. Thereby, we will briefly
speculate a plausible scenario only. Let us start with a naive observation. The Lorentzian
metric (124) describes general scalar–tensor perturbations on the inflating spacetime. Since
the fluctuations have been superposed on the inflating background, we suspect that there
may be some nonlinear damping mechanism through the interactions between the back-
ground and the density fluctuations. To be precise, there may be a cosmic analogue of
the Landau damping in plasma physics originally applied to longitudinal oscillations of
an electron plasma. The Landau damping in plasma occurs due to the energy exchange
between an electromagnetic wave and particles in the plasma with a velocity approximately
equal to the phase velocity of the wave. It leads to exponentially decaying collective oscilla-
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tions.15 The Landau damping may be intuitively understood by considering how a surfer
gains energy from a sea wave. For the wave to be damped, the wave velocity and the surfer
velocity must be similar, and then the surfer is trapped by the wave. If the surfer is slightly
slower than the wave mode, the mode loses energy compared to the surfer. A similar
situation may happen in the inflating spacetime (124). Local fluctuations (cf., surfers) on
the inflating spacetime (cf., the wave mode) are given by Equation (121). Note that these
local fluctuations carry an additional localized energy and this local energy will cause a
slight delay in the drift of local lumps compared to the inflating background. Moreover,
these drift delays will occur everywhere since (quantum) fluctuations are ubiquitous. Then,
this is precisely the condition for the Landau damping to occur. If this is true, the inflating
mode will transfer its inflation (potential) energy to ubiquitous local fluctuations, ending
the inflation through an exponential damping and entering into a radiation-dominated era
via the reheating at a sufficiently high temperature for the standard Big Bang.

The above speculation may not be so absurd, considering the fact that the cosmic
inflation is described by a conformal Hamiltonian system [72,73] which also appears in
dynamical systems with friction and the transition of such dynamical systems in nonequi-
librium into equilibrium is induced by interactions with environment. For the cosmic
inflation, ubiquitous fluctuations over the inflating spacetime will play a role in the envi-
ronment. This speculation may be further supported by the fact that the underlying theory
for emergent gravity is Maxwell’s electromagnetism on NC spacetime and the Landau
damping can be realized even at a nonlinear level [91]. Therefore, it will be interesting to
verify whether the naive idea can work or not. Probably, the cosmic Landau damping may
be closely related to the instability of de Sitter space as suggested by Polyakov [78,79].

Our real world, R1,3 ∼= R×R3, is as mystic as ever because the spatial 3-manifold
does not belong to the family of (almost) symplectic manifolds. Let us enumerate potential
pathways leading to our tangible reality—the four-dimensional Lorentzian spacetimeM:

A. Analytic continuation or Wick rotation from R4.
B. Kaluza–Klein compactificationM× S1.
C. Contact manifold (R3, η).
D. Nambu structure (R3, C).

Here, η = dz − ydx is a contact form on R3 and C = 1
3! Cµνλdxµ ∧ dxν ∧ dxλ is a

nondegenerate, closed three-form on R3. In case (A), the Lorentzian metric is obtained
from Equation (33) with n = 2 by the Wick rotation y4 = iy0. It is also straightforward to
compactify the (4 + 1)-dimensional Lorentzian metric (64) onto S1 to obtain the result (B).
Since the time is also defined as a contact structure, case (C) has two contact structures
as with the matrix string theory discussed in Appendix C. It may be interesting to briefly
explore some clues for the cosmic inflation in context (C). Let N = R×R3 and t ∈ R be the
time coordinate and ft = f (t) be a positive monotonic function. Define a time-dependent
closed two-form on N by

Bt = dλt = ft(dT ∧ η + dη) (127)

where λt = ftη and T = ln ft. Since B2
t = 2e2TdT ∧ η ∧ dη is vanishing nowhere, Bt is a

symplectic structure on N. Consider a time-dependent Hamiltonian H : N → R such that
dH = −eTdT and denote the Hamiltonian vector field of H by XH . Let R be the Reeb vector
field associated with the contact form η (see Appendix A for the definition). Then, it is easy
to show that

ιRBt = dH, (128)

that is, R = XH . A very interesting property is that

Z =
∂

∂T
(129)

is the Liouville vector field of the symplectic form Bt, i.e., LZBt = Bt or ιZBt = λt. This
condition can be written as LZλt = λt. One can regard the Liouville vector field Z as



Universe 2024, 10, 150 26 of 43

the Reeb vector field associated with the contact form dT. Since ιZ(B2
t ) = 2e2Tη ∧ dη,

the one-form λt gives rise to a contact form on every three-dimensional submanifold
M ⊂ N transverse to Z. Thus, we expect that the conformal vector field Z will generate an
inflationary metric given by

ds2 = −dT2 + e2Tdx · dx. (130)

It will be interesting to have a microscopic derivation of the above inflation metric from
the matrix string theory (A79). The approach in [43] may be useful for this case. Given
our current lack of understanding in formulating emergent gravity based on the Nambu
structure (D), the realization of this concept remains a distant aspiration. It may be of
M-theory origin because it is involved with the 3-form C instead of the symplectic 2-form B.
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Appendix A. Locally Conformal Cosymplectic Manifolds

In this Appendix, we briefly review locally conformal cosymplectic (LCC) manifolds.
It was shown in [75] that an LCC manifold can be seen as a generalized phase space of a
time-dependent Hamiltonian system. We will apply the results in Refs. [74,75] to emergent
gravity and argue that the LCC manifold is a natural phase space describing the cosmic
inflation of our universe.

First, let us consider locally conformal symplectic (LCS) manifolds. An LCS manifold
is a triple (M, Ω, b) where b is a closed one-form and Ω is a nondegenerate (but not closed)
two-form satisfying

dΩ− b ∧Ω = 0. (A1)

The dimension of M will be assumed to be at least 4 and the one-form b is called the Lee
form [77]. A symplectic manifold corresponds to the case with b = 0. If the Lee form b is
exact, the manifold is globally conformal symplectic (GCS). Locally, by choosing b = dλ(α)

for a local function λ(α) : Uα → R on an open neighborhood Uα, Equation (A1) is equivalent
to d(e−λ(α)

Ω) = 0, so the local geometry of LCS manifolds is exactly the same as that of
symplectic manifolds. Thus, an LCS form on a manifold M is a nondegenerate two-form
Ω that is locally conformal to a symplectic form. In other words, on an LCS manifold
(M, Ω, b), there exists an open covering {Uα} of M and a smooth positive function fα on
each Uα such that fαΩ|Uα is symplectic on Uα. Two LCS forms Ω and Ω′ are said to be
(conformally) equivalent if there exists some positive function f such that Ω′ = f Ω, where
the Lee form of Ω′ is just b′ = b + d ln f . An interesting example [92] is the Hopf manifolds
that are diffeomorphic to S1 × S2n−1 and have a locally conformal Kähler metric, while
they admit no Kähler metric.

An LCS manifold can be seen as a generalized phase space of Hamiltonian dynamical
systems since the form of Hamilton’s equations is preserved by homothetic canonical trans-
formations. Let us recapitulate how the LCS manifolds naturally arise from the Hamiltonian
dynamics of particles. Consider a dynamical system with n degrees of freedom so that its
phase space is a 2n-dimensional differentiable manifold M endowed with an open cover-
ing of coordinate neighborhoods {Uα}α∈I with local coordinates

(
qi
(α)

, p(α)i
)
, i = 1, · · · , n.

Then, we know that the dynamics consists of the orbits of a Hamiltonian vector field XH . Ev-
ery point of M has an open neighborhood Uα with the local Darboux coordinates

(
qi
(α)

, p(α)i
)
.
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One can restrict the Hamiltonian H and a nondegenerate two-form ω to each Uα to have
a local Hamiltonian Hα = Hα

(
qi
(α)

, p(α)i
)

and a symplectic structure ωα = dqi
(α)
∧ dp(α)i .

Similarly the globally defined Hamiltonian vector field XH is restricted to Uα which is
precisely given by XHα . Then, the orbits are defined by Hamilton’s equations

dqi
(α)

dt
=

∂Hα

∂p(α)i

,
dp(α)i

dt
= − ∂Hα

∂qi
(α)

. (A2)

When one takes the coordinate chart definition of symplectic manifolds, there is no
compulsory reason to require the two-form ω to be closed. Indeed, the Hamiltonian
formulation of particle dynamics consists of asking the local forms ωα and local functions
Hα to glue on to a global symplectic form ω and a global Hamiltonian H. However, since
the dynamical information is given by a global vector field, it is more natural to only require
that the transition functions

qi
(β) = qi

(β)

(
qi
(α), p(α)i

)
, p(β)

i = p(β)
i

(
qi
(α), p(α)i

)
(A3)

on an overlap Uα ∩Uβ ̸= ∅ preserve the form of Hamilton’s equations (A2). This happens
not only if Equation (A3) implies

ωβ = dqi
(β) ∧ dp(β)

i = dqi
(α) ∧ dp(α)i = ωα, Hβ = Hα, (A4)

where Hα : Uα → R, α ∈ I, but also if it implies

ωβ = λβαωα, Hβ = λβα Hα, (A5)

where λβα = constant ̸= 0. Since ι(XHα)ωα = dHα, from Equation (A5) we obtain

XHα = XHβ
, (A6)

so the integral curves of XHα and XHβ
are the same. Furthermore, Equation (A5) implies

the cocycle condition
λγβλβα = λγα (A7)

as the gluing condition. We know that the cocycle condition (A7) implies the existence of
the local functions σα : Uα → R satisfying

λβα =
eσα

eσβ
. (A8)

Thus, Equation (A5) shows that

ω = eσα ωα, H = eσα Hα (A9)

are globally defined on M. Moreover, a Hamiltonian vector field is globally defined,
i.e., XH = XHα , as was indicated in Equation (A6). Hence, we have a basic line bundle
L over M and a Hamiltonian H as a cross-section of L (a “twisted Hamiltonian”) instead
of a simple function. Therefore, (M, ω) is an LCS manifold that can be considered a
natural phase space of Hamiltonian dynamical systems, more general than the symplectic
manifolds.

As discussed in Section 2, the realization of emergent geometry is intrinsically local
too. The emergent geometry is constructed by gluing local Darboux charts and their local
Poisson algebras. Therefore, the construction of an LCS manifold as a generalized phase
space for particle dynamics should also be applied to the emergent geometry. Therefore,
we will briefly review infinitesimal automorphisms of an LCS manifold (M, Ω, b). The
infinitesimal automorphism (IA) will be denoted by AΩ. Let C∞(M) denote the associative
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algebra of smooth functions on M and f : M → R be a globally defined function. The
Hamiltonian vector field X f of f ∈ C∞(M) with respect to the LCS form Ω is defined by

ι(X f )Ω = d f − f b. (A10)

As we observed above, there is a well-defined line bundle L over M in which local functions
fα ≡ e−σα f on a patch Uα ⊂ M correspond to sections of L→ Uα. If we take the Lee form
on Uα as b|Uα = dσα, Equation (A10) refers to the usual (local) Hamiltonian vector field
X fα

= X f defined by
ι(X fα

)Ωα = d fα (A11)

where Ωα = e−σα Ω. Using the Cartan formula for the Lie derivative

LX = dιX + ιXd, (A12)

one can immediately deduce from Equations (A1) and (A10) that

LX f Ω = b(X f )Ω, (A13)

LX f b = db(X f ). (A14)

Therefore, unlike the symplectic case, the Hamiltonian vector field X f is, in general, not an
IA of LCS manifolds.

Using the Hamiltonian vector fields defined by Equation (A10), we define the Poisson
bracket as

{ f , g}Ω = ι(X f )ι(Xg)Ω = −Ω(X f , Xg) = eσα ι(X fα
)ι(Xgα)Ωα = eσα{ fα, gα}Ωα

. (A15)

Then, we can calculate the double Poisson bracket

{{ f , g}Ω, h}Ω = Xh
(
Ω(X f , Xg)

)
− b(Xh)Ω(X f , Xg). (A16)

Using this result, it is easy to check the Jacobi identity of the Poisson bracket:

{{ f , g}Ω, h}Ω + {{g, h}Ω, f }Ω + {{h, f }Ω, g}Ω =
(
dΩ− b ∧Ω

)
(X f , Xg, Xh) = 0. (A17)

Let P = (C∞(M), {−,−}Ω) be the Poisson–Lie algebra of (M, Ω) and X(M) the Lie algebra
of vector fields on M. The result (A15) shows that the mapping H : P→ X(M) given by
f 7→ X f is a Lie algebra homomorphism because one can derive the relation

X{ f ,g}Ω
= [X f , Xg] (A18)

from the Jacobi identity (A17). However, if (M, Ω) is a (connected) LCS manifold that is not
GCS, then H must be a monomorphism, i.e., an injective homomorphism. See Proposition
2.1 in [74] for the proof. This means that X f = 0 implies f = 0. This is in stark contrast to
symplectic manifolds, in which X f = 0 just implies f = constant. Since we claim that the
phase space for cosmic inflation is a locally conformal (co)symplectic manifold, this reveals
a remarkable property that vacuum energy couples to gravity and triggers cosmic inflation,
as we noted before. However, it does not mean that the cosmological constant couples to
gravity because physical quantities during inflation are not constant but time-dependent.

Denote the IA of (M, Ω) by XΩ(M) whose elements obey LXΩ = 0. Then, we have
LXb = 0 by Equation (A1) which implies the condition b(X) = constant. In particular,
if X, Y ∈ XΩ(M), then b(X) = constant, b(Y) = constant and db(X, Y) = 0 yields
b([X, Y]) = 0 using the formula

db(X, Y) = X
(
b(Y)

)
−Y

(
b(X)

)
− b([X, Y]). (A19)
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Hence, the application l : XΩ(M)→ R defined by l(X) = b(X) is a Lie algebra homomor-
phism, called the Lee homomorphism of XΩ(M). The kernel ker(l) is the Lie algebra of the
horizontal elements of XΩ(M), denoted by Xhor

Ω (M). The IA X ∈ XΩ(M) with l(X) ̸= 0 is
called transversal IA and an LCS manifold M is called the first kind if it has a transversal
IA. Otherwise, M is of the second kind and the Lee homomorphism is trivial. Note that,
if (M, Ω) is of the first kind and f : M → R is a function such that d f |x0 = b(x0), then
(M, e− f Ω) has the Lee form b− d f with a vanishing point, so it becomes an LCS manifold
of the second kind.

There is a special vector field A defined by ιAΩ = b. Then, it is easy to see

ιAb = 0, LAb = 0, LAΩ = 0. (A20)

We do have X f ∈ XΩ(M) if and only if b(X f ) = 0 according to Equation (A13) or,
equivalently, b(X f ) = ιX f ιAΩ = −ιA(d f − f b) = −A( f ) = 0. Let us fix an element
B ∈ l−1(1) ⊂ XΩ(M). Then, every element Y in XΩ(M) has a unique decomposition

Y = X + l(Y)B, X ∈ Xhor
Ω (M). (A21)

Now, put a ≡ −ιBΩ, so a(B) = 0 and a(A) = ιBιAΩ = b(B) = 1. Since LBΩ = (ιBd +
dιB)Ω = 0, this yields a particular expression for Ω given by

Ω = da− b ∧ a = dba, (A22)

where db is the Lichnerowicz differential defined by dbβ = dβ− b ∧ β for any k-form β and
satisfies d2

b = 0. Furthermore, using the formula [LX , ιY] = ι[X,Y] for vector fields X and Y,
we have LBa = 0, and hence, ιBda = 0, which means rank da < 2n. Since Ωn ̸= 0, one can
deduce from Equation (A22) the condition

b ∧ a ∧ (da)n−1 ̸= 0 (A23)

everywhere. This yields Proposition 2.2 in Ref. [74] that a manifold M of dimension
2n admits an LCS structure of the first kind if and only if it admits two one-forms a, b
such that db = 0, rank da < 2n and Equation (A23) holds at every point of M. Note
also that ιAda = ιA(Ω + b ∧ a) = b − a(A)b = 0. This means that [A, B] = 0 because
ιAda = LAa = −LAιBΩ = −ι[A,B]Ω = 0. In sum, there exist particular vector fields A and
B in XΩ(M) that obey

[A, B] = 0, a(A) = b(B) = 1, a(B) = b(A) = 0. (A24)

Thus, one can obtain on M the vertical foliation V = span{A, B}, whose leaves are the
orbits of a natural action of R2.

Suppose that (M, Ω) is an LCS manifold of the first kind and B is a basic transversal IA.
Let Xhor

Ω (M, B) be the Lie subalgebra of Xhor
Ω (M) whose automorphisms also preserve B. It

turns out that X ∈ Xhor
Ω (M, B) if and only if LXΩ = 0, b(X) = 0 and [X, B] = 0. Similarly,

consider the subset of C∞(M) that consists of functions satisfying A( f ) = B( f ) = 0 and is
denoted by C∞

V (M). Then, one can show that PV =
(
C∞
V (M), {−,−}Ω

)
is a Poisson–Lie

subalgebra of P and H : PV → Xhor
Ω (M, B) is an isomorphism. A striking fact is that a

semi-simple Lie group G cannot act transitively on a nonsymplectic LCS manifold.
Formula (A13) proves that a Hamiltonian vector field is a conformal infinitesimal

transformation (CIT) of (M, Ω). In general, a vector field X is a CIT if

LXΩ = αXΩ (A25)
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where αX is a function on M. The CIT forms a Lie algebra denoted by Xc
Ω(M). By differen-

tiating Equation (A25), one can derive that LXb = dαX , which implies

αX = b(X) + κ, κ = constant. (A26)

One can rewrite Equation (A25) as

κΩ = db(ιXΩ). (A27)

Thus, an LCS form Ω is db-exact if there is a CIT X, or it can be written in terms of a local
symplectic form Ωα = e−σα Ω as

LXΩα =
(
αX − b(X)

)
Ωα. (A28)

That is, the local form of the CIT is given by

LXΩα = κΩα. (A29)

If we write Ωα = dA(α) on an open neighborhood Uα according to the Poincaré lemma,
Equation (A29) can be written as the form [73]

ιXΩα = κA(α) + d fα, (A30)

where fα : Uα → R is a smooth function on Uα. If the conditions (A29) and (A30) hold either
locally or globally, we will call X a conformal vector field which plays an important role in
our discussion. If H1(M) = 0, the conformal vector field X has a unique decomposition
given by

X = κZ + X f , (A31)

where ιZΩ = eσα A(α) ≡ A and ιX f Ω = d f − f b. The vector field Z is called the Liouville
vector field [72]. Note that, even though f = 0 identically, the conformal vector field X = κZ
is nontrivial and it is generated by the open Wilson line (112) in our case. We observed in
Section 3 that this property leads to a remarkable consequence for the cosmic inflation.

We can extend the Lee homomorphism to l : Xc
Ω(M) → R by defining l(X) =

b(X)− αX = −κ. If X, Y ∈ Xc
Ω(M), we obtain l([X, Y]) = b([X, Y])− α[X,Y] = −κ from

L[X,Y]Ω = α[X,Y]Ω. Hence, the extended l is also a Lie algebra homomorphism. Its kernel
is denoted by ker l = Xl

Ham(M) and consists of vector fields X to obey LXΩα = 0, i.e., of
locally Hamiltonian vector fields. Note that l̃(X) for Ω̃ = eφΩ is equal to l(X) for Ω. Thus,
the Lee homomorphism l is conformally invariant. If we fix an element C ∈ l−1(1), we can
obtain for every Y ∈ Xc

Ω(M) the unique decomposition

Y = X + l(Y)C, X ∈ Xl
Ham(M). (A32)

Then, if c = −ιCΩ, we can solve LCΩ = (ιCd + dιC)Ω = αCΩ to obtain a particular
expression for Ω given by

Ω = dc− b ∧ c = dbc. (A33)

In a conservative dynamical system described by a Hamiltonian vector field, time
coordinate t is not a phase space coordinate but an affine parameter on particle trajectories.
However, for a general time-dependent system, it is useful to include the time coordinate
as an extra phase space coordinate. The corresponding (2n + 1)-dimensional manifold
is known as an almost cosymplectic manifold which is a triple (M, Ω, η) where Ω and
η are a two-form and a one-form on M such that η ∧ Ωn ̸= 0. If Ω and η are closed,
i.e., dΩ = dη = 0, then M is said to be a cosymplectic manifold. Thus, an odd-dimensional
counterpart of a symplectic manifold is given by a cosymplectic manifold, which is locally
a product of a symplectic manifold with a circle or a line. A contact manifold constitutes a
subclass of cosymplectic manifolds with Ω = dη [60,61,68]. Then, the one-form η is called a
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contact structure or a contact one-form. Given a contact one-form η, there is a unique vector
field R such that ιRη = 1 and ιRΩ = 0. This vector field R is known as the Reeb vector field
of the contact form η. Two contact forms η and η′ on M are equivalent if there is a smooth
positive function ρ on M such that η′ = ρη, since η′ ∧ (dη′)n = ρn+1η ∧ (dη)n ̸= 0. The
contact structure C(η) determined by η is the equivalence class of η.

The Darboux theorem for a contact manifold (M, η) states [60,61,68] that, in an open
neighborhood of each point of M, it is always possible to find a set of local (Darboux)
coordinates (x1, · · · , xn, y1, · · · , yn, z) such that the one-form η can be written as

η = dz−
n

∑
i=1

yidxi (A34)

and the Reeb vector field is given by

R =
∂

∂z
. (A35)

To understand the contact one-form η more closely, first let us denote by D the contact
distribution or subbundle defined by the kernel of η. If X, Y are (local) vector fields in D,
we have

dη(X, Y) = X
(
η(Y)

)
−Y

(
η(X)

)
− η([X, Y]) = −η([X, Y]). (A36)

This says that the distribution is integrable if and only if dη is zero on D. However, the
condition η ∧ (dη)n ̸= 0 means that the kernel of dη is one-dimensional and everywhere
transverse to D. Consequently, dη is a linear symplectic form on D and the largest integral
submanifolds of D are n-dimensional, so maximally non-integrable. In other words, a
contact structure is nowhere integrable. In the above Darboux coordinate system, the
contact subbundle D is spanned by

Xi =
∂

∂xi + yi
∂

∂z
, Yi =

∂

∂yi
, i = 1, · · · , n, (A37)

so they obey the bracket relations

[Xi, Y j] = −δ
j
i R, [Xi, R] = [Yi, R] = 0. (A38)

Since dη = ∑n
i=1 dxi ∧ dyi is a symplectic form with rank 2n, the kernel of dη is one-

dimensional and generated by the Reeb vector R. Therefore, every vector field X on M can
be uniquely written as X = f R + Y where f ∈ C∞(M) and Y is a section of D. A contact
structure is regular if R is regular as a vector field, that is, every point of the manifold
has a neighborhood such that any integral curve of the vector field passing through the
neighborhood passes through only once.

Given a (2n − 1)-dimensional contact manifold M with a contact form a, i.e., a ∧
(da)n−1 ̸= 0, one can construct an LCS manifold by considering a principal bundle p : V →
M with group S1 over M. Consider V = S1 ×M endowed with the form Ω = da− b ∧ a =
dba, where b is the canonical one-form on S1. Clearly, Ω is nondegenerate and b is closed
but not exact, and it obeys dΩ− b∧Ω = dbΩ = d2

ba = 0. Hence, (V, Ω) is an LCS manifold
having b as its Lee form, but it is not GCS. More generally, let p : V → M be an arbitrary
principal bundle with group S1 over a (2n− 1)-dimensional manifold M, and let a be the
connection one-form on this principal bundle and F = da be the corresponding curvature
two-form. Then, if b ∧ a ∧ Fn−1 ̸= 0, the form Ω = F− b ∧ a defines an LCS structure on V
which is not GCS.

Let X(M) and Λ1(M) be the C∞(M)-modules of differentiable vector fields and one-
forms on M, respectively. If (M, Ω, η) is a cosymplectic manifold, then there exists an
isomorphism of C∞(M)-modules

Υ : X(M)→ Λ1(M) (A39)
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defined by
Υ(X) = ιXΩ + η(X)η. (A40)

The Reeb vector field is given by R = Υ−1(η). Let f : M→ R be a smooth function on M.
The Hamiltonian vector field X f is then defined by

Υ(X f ) = d f − R( f )η + η. (A41)

In other words, X f is the vector field characterized by the identities

ι(X f )Ω = d f − R( f )η, η(X f ) = 1. (A42)

Then, one can check that the time-like vector field V0 in Equation (67) is a Hamiltonian
vector field for a cosymplectic manifold (R× M, π∗2 B, dt) where π2 : R× M → M and
(M, B) is a symplectic manifold.

An almost cosymplectic manifold (M, Ω, η) is said to be LCC if there exist an open
covering {Uα}α∈I and local functions σα : Uα → R such that

d(e−σα Ω) = 0, d(e−σα η) = 0. (A43)

The local one-forms dσα glue to a closed one-form b satisfying

dΩ− b ∧Ω = dbΩ = 0, dη − b ∧ η = dbη = 0. (A44)

Two LCC structures (Ω′, η′) and (Ω, η) are equivalent if Ω′ = f Ω and η′ = f η for a positive
function f on M where the Lee form of Ω′ is given by b′ = b + d ln f . An LCC manifold
reduces to a cosymplectic manifold if the Lee form b vanishes, while it becomes an LCS
manifold if η = 0 identically. The isomorphism (A40) can be generalized to LCC manifolds
and the corresponding Hamiltonian vector field is defined by

X f = Υ−1(d f − R( f )η + η
)
+ f S (A45)

where S is called the canonical vector field defined by

Υ(S) = b(R)η − b. (A46)

Therefore, X f is characterized by the identities

ι(X f )Ω = d f − R( f )η + f
(
b(R)η − b

)
, η(X f ) = 1. (A47)

It was shown in [75] that an LCC manifold can be seen as a generalized phase space of time-
dependent Hamiltonian systems. Hence, we argue that an LCC manifold also corresponds
to a generalized phase space for an inflationary universe and its quantization realizes a
background-independent formulation of the cosmic inflation, in particular, in the context
of emergent spacetime.

Appendix B. Harmonic Oscillator with Time-Dependent Mass

We observed that the NC spacetime R2n
θ in equilibrium is described by the Hilbert

space of an n-dimensional harmonic oscillator, while the inflating spacetime in nonequi-
librium is described by the n-dimensional harmonic oscillator with negative friction. The
corresponding harmonic oscillator of constant frequency ω and friction coefficient α satisfies
the equation

q̈i + 2αq̇i + ω2qi = 0, i = 1, · · · , n. (A48)
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The inflationary coordinates (99) correspond to the case α = − κ
2 < 0. It is known that the

above second-order equation of motion cannot be directly derived from the Euler–Lagrange
equation of any Lagrangian. However, there is an equivalent second-order equation

e2αt(q̈i + 2αq̇i + ω2qi) = 0, (A49)

for which a variational principle can be found [93]. Although Equation (A48) is traditionally
considered to be non-Lagrangian, there exists an action principle for the equation of
motion (A49) in terms of the Lagrangian

L =
1
2

m(q̇2 −ω2q2)e2αt. (A50)

The corresponding Hamiltonian is given by

H =
1

2m
(e−2αt p2 + e2αtm2ω2q2) (A51)

where pi = mq̇ie2αt.
It is interesting to note that the equation of motion (A49) can be derived from an n-

dimensional harmonic oscillator with a time-dependent mass m(t) whose action is given by

S =
1
2

∫
dt
(
m(t)q̇2 − k(t)q2) (A52)

where k(t) = m(t)ω2 with constant frequency ω. The variational principle, δS = 0, with
respect to arbitrary variations δqi leads to the equation of motion

m(t)
(

q̈i +
ṁ(t)
m(t)

q̇i + ω2qi
)
= 0. (A53)

The second-order Equation (A49) corresponds to the case

ṁ(t)
m(t)

= 2α ⇒ m(t) = m0e2αt. (A54)

Recall that the equation of motion for the inflaton field corresponds to the case with the
time-dependent mass m(t) = m0e3Ht.

There is also the first-order formalism for the dynamical system (A52). The action has
the form

S =
1
2

∫
dt
(
yẋ− xẏ− (y2 + 2αxy + ω2x2)

)
e2αt. (A55)

The equations of motion derived from the action (A55) are given by

(ẏ + 2αy + ω2x)e2αt = 0, (ẋ− y)e2αt = 0. (A56)

The above action (A55) describes a singular system with second-class constraints

ϕx = px −
1
2

ye2αt, ϕy = py +
1
2

xe2αt (A57)

with the Hamiltonian

H(x, y, t) =
1
2
(y2 + 2αxy + ω2x2)e2αt. (A58)

Even though the constraints are explicitly time-dependent, it is still possible to apply the
Hamiltonian formalism with the help of Dirac brackets and perform the canonical quanti-
zation of the system. It was shown in [93] that the classical and quantum description of the
harmonic oscillator described by the action (A52) is equivalent to the first-order approach
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given in terms of the constraint system described by the action (A55). Furthermore, it can
be proved that the dynamical system described by Equation (A49) is locally (i.e., |t| < ∞)
equivalent to the system with the equation of motion (A48).

Appendix C. NC Spacetime as a Second-Quantized String

We know that quantum mechanics is a more fundamental description of nature than
classical physics. The microscopic world is already quantum. Nevertheless, the quan-
tization is necessary to find a quantum theoretical description of nature since we have
understood our world starting with the classical description which we understand better.
After quantization, the quantum theory is described by a fundamental NC algebra such as
Equation (34). A striking feature of the NC algebra Ah̄ is that every point in Rn is unitar-
ily equivalent because translations in Rn are generated by an inner automorphism of Ah̄,
i.e., f (x + a) = U(a) f (x)U(a)† where f (x) ∈ Ah̄ and U(a) = eipiai/h̄ ∈ Inn(Ah̄). Therefore,
through the quantization, the concept of (phase) space is doomed. Instead the (phase) space
is replaced by the algebra Ah̄ and its Hilbert space representation and dynamical variables
become operators acting on the Hilbert space. Only in the classical limit, is a phase space
with the symplectic structure ω = dxi ∧ dpi emergent from the quantum algebra Ah̄ such
as (34).

Recall that the mathematical structure of NC spacetime is basically the same as the
NC phase space in quantum mechanics [94]. Therefore, essential features in quantum
mechanics must be applied to the NC spacetime too. In particular, NC algebras Aθ such
as the NC space (19) also play a fundamental role and every point in the NC space is
indistinguishable, i.e., unitarily equivalent because any two points are connected by an
inner automorphism of Aθ . This implies that there is no concept of space(time) in the
NC algebra Aθ for the same reason as quantum mechanics and a classical spacetime must
be derived from the NC algebra Aθ . After all, an important lesson is that NC spacetime
necessarily implies emergent spacetime.

Although spacetime at a microscopic scale, e.g., the Planck scale LP, is intrinsically
NC, we understand the NC spacetime through the quantization of a symplectic (or, more
generally, Poisson) manifold. Let (M, B) be a symplectic manifold. On the one hand, the
basic concept in symplectic geometry is an area defined by the symplectic two-form B that
is a nondegenerate, closed two-form. On the other hand, the basic concept in Riemannian
geometry determined by a pair (M, g) is a distance defined by the metric tensor g that is a
nondegenerate, symmetric bilinear form. One may identify this distance with a geodesic
worldline of a “particle” moving in M. Geodesic curves in M gives us all the information
about Riemannian geometry (M, g). Conversely, the area in symplectic geometry (M, B)
may be regarded as a minimal worldsheet swept by a “string” moving in M. In this picture,
the wiggly string, so a fluctuating worldsheet, corresponds to a deformation of symplectic
structure in M. This picture becomes more transparent by the so-called pseudoholomorphic
or J-holomorphic curve introduced by Gromov [95].

Let (M, J) be an almost complex manifold and (Σ, j) be a Riemann surface. By the
compatibility of J to B, we have the relation g(X, Y) = B(X, JY) for any vector fields
X, Y ∈ X(M). Let us also fix a Hermitian metric h of (Σ, j). A smooth map f : Σ → M is
called pseudoholomorphic [50] if the differential d f : TΣ→ TM is a complex linear map
with respect to j and J:

d f ◦ j = J ◦ d f . (A59)

This condition corresponds to the commutativity of the following diagram

TΣ
j
//

d f
��

TΣ

d f
��

TM
J
// TM
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Since J−1 = −J, it is also equivalent to ∂J f = 0 where ∂J f := 1
2 (d f + J ◦ d f ◦ j). For example,

suppose that the Riemann surface is (Σ, i) where i is the standard complex structure. We
can work in a chart uϵ : Uϵ → C with local coordinate z = τ + iσ where Uϵ ⊂ Σ is an open
neighborhood. Define fϵ = f ◦ u−1

ϵ . In this case, we have

∂J f =
1
2

[(∂ fϵ

∂τ
+ J( fϵ)

∂ fϵ

∂σ

)
dτ +

(∂ fϵ

∂σ
− J( fϵ)

∂ fϵ

∂τ

)
dσ

]
. (A60)

Thus, we see that ∂J f = 0 if
∂ fϵ

∂τ
+ J( fϵ)

∂ fϵ

∂σ
= 0. (A61)

Since J is B-compatible, every smooth map f : Σ→ M satisfies [96–98]

1
2

∫
Σ
||d f ||2g dvolΣ =

∫
Σ
||∂J f ||2g dvolΣ +

∫
Σ

f ∗B, (A62)

where the norms are taken with respect to the metric g and dvolΣ is a volume form on Σ. In
terms of local coordinates, (σ1, σ2) on Σ and f (σ) = (x1, · · · , x2n) on M,

||d f ||2g = gµν

(
f (σ)

)∂xµ

∂σα

∂xν

∂σβ
hαβ(σ) (A63)

and dvolΣ =
√

hd2σ. Therefore, the left-hand side of Equation (A62) is nothing but the
Polyakov action in string theory. For a pseudoholomorphic curve f : Σ → M that obeys
∂J f = 0, we thus have the identity

SP( f ) ≡ 1
2

∫
Σ
||d f ||2g dvolΣ =

∫
Σ

f ∗B. (A64)

This means that any pseudoholomorphic curves minimize the “harmonic energy” SP( f ) in
a fixed homology class and so are harmonic maps. In other words, their symplectic area
coincides with the surface area. Therefore, any pseudoholomorphic curve is a solution of
the worldsheet Polyakov action SP( f ). For instance, if M = Cn with complex coordinates
ϕi = x2i−1 +

√
−1x2i (i = 1, . . . , n) and fϵ(z, z̄) ≡ ϕi(z, z̄), Equation (A61) becomes

1
2

( ∂

∂τ
+
√
−1

∂

∂σ

)
ϕi(z, z̄) = ∂z̄ϕi(z, z̄) = 0. (A65)

In this case, pseudoholomorphic curves coincide with holomorphic curves. Moreover, such
curves are harmonic and minimal surfaces.16

The pseudoholomorphic curve also provides us with a useful tool to understand the
emergent gravity picture. To demonstrate this aspect, let us include a boundary interaction
in the sigma model (A62) such that the open string action is given by

SA( f ) ≡ 1
2

∫
Σ
||d f ||2g dvolΣ +

∫
∂Σ

f ∗A, (A66)

where the one-form A is the connection of a line bundle L → M. Using Stokes’ theorem,
the second term can be written as ∫

∂Σ
f ∗A =

∫
Σ

f ∗dA. (A67)

After combining the identities (A62) and (A67) together, we write the action

SA( f ) =
∫

Σ
||∂J f ||2g dvolΣ +

∫
Σ

f ∗F , (A68)
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where F = B + F and F = dA. If one recalls the derivation of Equation (A62), one may
immediately realize that the action SA( f ) can equivalently be written in the form of the
Polyakov action

SP(ψ) ≡
1
2

∫
Σ
||dψ||2G dvolΣ, (A69)

where the differential dψ for a smooth map ψ : Σ→ M has the norm taken with respect to
some metric G. For this purpose, let us assume that the almost complex structure J is also
compatible with the deformed symplectic structure F , i.e.,

G(X, Y) = F (X, JY), ∀X, Y ∈ X(M) (A70)

is a Riemannian metric on M. An explicit representation of the Polyakov action (A69) can
be made by introducing local coordinates ψ(σ) = (X1, · · · , X2n) on an open set Ui ⊂ M
so that

||dψ||2G = Gµν

(
ψ(σ)

)∂Xµ

∂σα

∂Xν

∂σβ
hαβ(σ). (A71)

One can then apply the same derivation of Equation (A62) to the action (A69) to derive the
identity

1
2

∫
Σ
||dψ||2G dvolΣ =

∫
Σ
||∂Jψ||2G dvolΣ +

∫
Σ

ψ∗F . (A72)

For pseudoholomorphic curves ψ : Σ→ M satisfying ∂Jψ = 0, we finally obtain the result

SP(ψ) =
1
2

∫
Σ
||dψ||2G dvolΣ =

∫
Σ

ψ∗F . (A73)

The above argument reveals a nice picture in that dynamical U(1) gauge fields in a line
bundle L over M deform an underlying symplectic structure (M, B) and this deformation
is transformed into the dynamics of gravity [27]. As we observed before, the symplectic
geometry is probed by strings, while the Riemannian geometry is probed by particles. We
note that the NC space (19) defines only a minimal area α′ = l2

s , whereas the concept of point
is doomed if h̄ in quantum mechanics introduces a minimal area in the NC phase space (34).
The minimal area (surface) in the NC space behaves like the smallest unit of spacetime blob
and acts as a basic building block of string theory. The concept of pseudoholomorphic or
J-holomorphic curves in symplectic geometry plays a role in such minimal surfaces. It is
known [50] that there is a nonlinear Fredholm theory which describes the deformations of
a given pseudoholomorphic curve f : Σ→ (M, J) and the deformations are parameterized
by a finite-dimensional moduli space. (This moduli space may be enriched by considering
pseudoholomorphic curves in an LCS manifold.) When a symplectic manifold is probed
with a string or pseudoholomorphic curve, the notion of a wiggly string in this probe
picture corresponds to the deformation of a symplectic structure. Hence, the emergence
of gravity from symplectic geometry or more precisely NC U(1) gauge fields may be
reasonable because we know from string theory that a Riemannian geometry (or general
relativity) is emergent from the wiggly string.

We can think of the integral A( f ) =
∫

Σ f ∗B in two ways if f is a pseudoholomorphic
curve. On the one hand, the pointwise compatibility between the structures (B, J) means
that A( f ) is essentially the area of the image of f , measured in the Riemannian metric g. On
the other hand, the condition that B is closed means that A( f ) is a topological (homotopy)
invariant of the map f since it depends only on the evaluation of a closed 2-form B on
the 2-chain defined by f (Σ). Hence, we can use the curves in two main ways [50]. The
first way is as geometrical probes to explore a symplectic manifold, as we advocated
above. The second way is as the source of numerical invariants known as the Gromov–
Witten invariants. Using the pseudoholomorphic curves, Gromov proved a surprising
non-squeezing theorem [95–98] stating that a ball B2n(r) of radius r in a symplectic vector
space R2n with the standard symplectic form B cannot be mapped by a symplectomorphism
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into any cylinder B2(R)×R2n−2 of radius R if R < r. It is possible to replace R2n−2 by a
(2n− 2)-dimensional compact symplectic manifold V with π2(V) = 0.

Now, we will discuss how an NC space provides us an important clue for a background-
independent formulation of string theory. The NC spacetime is defined by the quantization
of a symplectic manifold (M, B). One may try to lift the notion of the pseudoholomorphic
curve to a quantized symplectic manifold, namely, an NC space such as Equation (19).
The quantization of a symplectic manifold leads to a radical change in classical concepts
such as spaces and observables. The classical space is replaced by a Hilbert space and
dynamical observables become operators acting on the Hilbert space. Then, as we discussed
in Section 2, the NC spacetime will provide a more elegant framework for the background-
independent formulation of quantum gravity in terms of matrix models, which is still
elusive in string theory. Recall that the dynamical Lorentzian spacetime (64) emerges from
a classical solution of the matrix model (68), and the cosmic inflation described by the
metric (124) also arises as a solution of the time-dependent matrix model.

In order to grasp how a pseudoholomorphic curve looks like in NC spacetime, let
us consider the simplest case in Equation (A65). After quantization, the coordinates
of Cn denoted by ϕi(z, z̄) become operators in an NC ⋆-algebra A2

θ ≡ Aθ

(
C∞(R2)

)
=

C∞(R2) ⊗ Aθ , i.e., ϕi(z, z̄) → ϕ̂i(z, z̄) ∈ A2
θ . The worldsheet R2 may be replaced by

T2, R× S1 or S2. Let us clarify the notation A2
θ after the Wick rotation of the worldsheet

coordinate τ = it, so R2 → R1,1. Consider a generic element in the NC ⋆-algebra A2
θ

given by
f̂ (t, σ, y) ∈ A2

θ . (A74)

The matrix representation (41) is now generalized to

f̂ (t, σ, y) =
∞

∑
n,m=1

|n⟩⟨n| f̂ (t, σ, y)|m⟩⟨m| =
∞

∑
n,m=1

fnm(t, σ)|n⟩⟨m| (A75)

where the coefficients fnm(t, σ) := [ f (t, σ)]nm are elements of a matrix f (t, σ) in A2
N ≡

AN
(
C∞(R1,1)

)
= C∞(R1,1)⊗AN as a representation of the observable (A74) on the Hilbert

space (17). Then, we have an obvious generalization of the duality chain (47) as follows:

A2
N =⇒ A2

θ =⇒ D2. (A76)

The module of derivations is similarly a direct sum of the submodules of horizontal and
inner derivations [67]:

D2 = Hor(A2
N)⊕D(A2

N)
∼= Hor(A2

θ)⊕D(A2
θ), (A77)

where horizontal derivations are locally generated by a vector field

k(t, σ, y)
∂

∂t
+ l(t, σ, y)

∂

∂σ
∈ Hor(A2

θ). (A78)

It can be shown [26,27] that the matrix model for the duality chain (A76) is given by

S = − 1
g2

s

∫
d2σTr

(1
4

F2
αβ +

1
2
(Dαϕa)

2 − 1
4
[ϕa, ϕb]

2
)

, (A79)

where a = 2, · · · , 2n + 1 and σα = (t, σ), α = 0, 1 and Fαβ = ∂α Aβ − ∂β Aα − i[Aα, Aβ]. The
n = 4 case is known as the matrix string theory that is supposed to describe a nonperturba-
tive type IIA string theory in light-cone gauge [49]. The matrix string theory can also be
obtained from the BFSS matrix model via compactification on a circle [58]. To achieve this
model, the BFSS matrix model has to have nine adjoint scalar fields, ϕa(t) (a = 1, · · · , 9),
unlike the action (68) with an even number of adjoint scalar fields. The equivalence (75)
can be realized only in the case of an even number of adjoint scalar fields. In this case, the
action (68) can be understood as a Hilbert space representation of a certain NC gauge theory
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under a symplectic vacuum such as (10) with rank(B) = 2n. However, we do not know of
a corresponding NC gauge theory where Hilbert space representation precisely reproduces
the BFSS matrix model. Fortunately, the matrix string theory (A79) has eight adjoint scalar
fields for n = 4. Thus, it is possible to realize it as the Hilbert space representation of
(9 + 1)-dimensional NC U(1) gauge theory with rank(B) = 8.

It will be interesting to understand how to derive the matrix string theory (A79)
from the MQM (68) as if the latter has been derived from a contact structure of the zero-
dimensional matrix model (6). The basic idea is similar to the scheme to construct the one-
dimensional matrix model (68) through the contact structure of zero-dimensional matrices.
A difference is that we start with the one-dimensional matrix model (68) and introduce an
additional contact structure along a spatial direction whose coordinate is called σ in our case.
Ultimately, the matrix string theory (A79) can be realized as the quantization of a regular
2-contact manifold. See Ref. [74] for a general k-contact manifold. First, let us consider the
projection π2 : R1,1 ×M→ M, π2(σ

α, x) = x where M is a symplectic manifold with the
symplectic form B.17 The regular 2-contact (2n + 2)-dimensional manifold is defined by a
quartet (R1,1 ×M, B̃, ηα), α = 0, 1, where B̃ = π∗2 B, such that

η0 ∧ η1 ∧ Bn ̸= 0 (A80)

everywhere and dηα = γαB with constants γα and dB = 0. Moreover, there are uniquely
defined two Reeb vectors Rα (α = 0, 1) satisfying

ιRα ηβ = δ
β
α , ιRα B = 0, α, β = 0, 1. (A81)

The above relations imply

LRα ηβ = 0, LRα B = 0, [R0, R1] = 0. (A82)

For example, the contact forms for the matrix string theory (A79) are given by

η0 = dt− 1
2

padya, η1 = dσ− 1
2

padya, (A83)

which determines the corresponding Reeb vectors

R0 =
∂

∂t
, R1 =

∂

∂σ
. (A84)

These Reeb vectors span the space of horizontal derivations in Equation (A78).
Since there are two independent contact structures, each contact structure generates its

own Hamiltonian vector field defined by (A42). For the contact structures in Equation (A83),
they are given by

Vα =
∂

∂σα
+ Aµ

α(t, σ, y)
∂

∂yµ . (A85)

The quantization of the 2-contact manifold (R1,1 × M, B̃, ηα) is simple because it is per-
formed using the Darboux coordinates (σα, ya). It is basically defined by the quantization of
the symplectic manifold (M, B) in which σα are regarded as classical variables like the time
coordinate in the algebra A1

θ . After quantization, a generic element of the NC ⋆-algebra A2
θ

takes the form (A74). Then, the module D2 in Equation (A77) is generated by

D2 =
{

V̂A(t, σ) =
(
V̂α, V̂a

)
(t, σ)|V̂α(t, σ) =

∂

∂σα
+ adÂα

, V̂a(t, σ) = adϕ̂a

}
, (A86)

where A = 0, 1, · · · , 2n + 1 and the adjoint operations are inner derivations of A2
θ . In the

commutative limit, the module (A86) reduces to ordinary vector fields VA = (Vα, Va) ∈



Universe 2024, 10, 150 39 of 43

X(M) and it is related to the orthonormal frames by VA = λEA. Finally, the corresponding
Lorentzian metric dual to the matrix string theory (A79) is given by [26,27]

ds2 = λ2ηABvA ⊗ vB = λ2(ηαβdσαdσβ + va
µva

ν(dyµ −Aµ)(dyν −Aν)
)
, (A87)

where Aµ := Aµ
α(t, σ, y)dσα and λ2 = ν(t,σ)(V0, V1, · · · , V2n+1) is determined by the volume-

preserving condition, LVA ν(t,σ) = 0, with respect to a given volume form

ν(t,σ) = dt ∧ dσ ∧ ν = λ2dt ∧ dσ ∧ v1 ∧ · · · ∧ v2n. (A88)

Instead of the conformal frame VA = λEA, one may choose another frame, the so-
called comoving frame, similar to Equation (57):

VA = (Vα, Va) = (Eα, λEa). (A89)

The (2n + 2)-dimensional Lorentzian metric is then given by

ds2 = ηABeA ⊗ eB = ηαβdσαdσβ + λ2va
µva

ν(dyµ −Aµ)(dyν −Aν). (A90)

This comoving frame may be more convenient to incorporate the inflation metric (130).
Let us come back to our previous question about the generalization of pseudoholomor-

phic curves. In order to address this issue, let us consider the Wick rotation t = −iτ again to
return to the Euclidean space. If the quantum version of pseudoholomorphic curves exists,
Equation (A61) suggests that it will also obey the first-order partial differential equations. It
is well known [100,101] that the matrix string action (A79) admits such a first-order system.
For simplicity, assume that adjoint scalar fields mostly vanish except (ϕ2, ϕ3) ̸= 0. It is
convenient to use the complex variables

ϕ =
1
2
(ϕ2 − iϕ3), ϕ† =

1
2
(ϕ2 + iϕ3). (A91)

It is not difficult to show that the Euclidean action with ϕa = 0 for a = 4, · · · , 9 can be
written as the Bogomol’nyi type, i.e.,

S =
1
g2

s

∫
d2σTr

(1
4

F2
αβ +

1
2
(Dαϕa)

2 − 1
4
[ϕa, ϕb]

2
)

=
2
g2

s

∫
d2σTr

((
iFzz̄ − [ϕ, ϕ†]

)2
+ |Dz̄ϕ|2 − i∂α

(
εαβϕ†Dβϕ

))
. (A92)

Since the last term is a topological number, the minimum of the action is achieved in the
configurations obeying

Fzz̄ + i[ϕ, ϕ†] = 0, Dz̄ϕ = 0. (A93)

Note that the above equations recover Equation (A65) in a very commutative limit where
[ϕ†, ϕ] = 0. Therefore, it is reasonable to identify Equation (A93) with the quantum version
of pseudoholomorphic curves.

Mathematically, Equation (A93) is equivalent to the Hitchin equations describing
a Higgs bundle [51,52]. A Higgs bundle is a system composed of a connection A on a
principal G-bundle or simply a vector bundle E over a Riemann surface Σ and a holo-
morphic endomorphism ϕ of E satisfying Equation (A93). The Hitchin equations describe
four-dimensional Yang–Mills instantons on Σ×R2, which are invariant with respect to the
translation group R2. (This R2 is transverse to the Riemann surface.) Using the translation
invariance, the Yang–Mills instantons can be dimensionally reduced to the Riemann surface
Σ in which Yang–Mills gauge fields along the isometry directions become an adjoint Higgs
field ϕ. In our case, the gauge group G is U(N). In particular, we are interested in the large
N limit, i.e., N → ∞. In this limit, the action (A92) can be mapped to four-dimensional
NC U(1) gauge theory under the Coulomb branch vacuum ⟨ϕa⟩vac = pa, a = 2, 3 obeying
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the commutation relation [p2, p3] = −iB23. Then, the Hitchin equations (A93) precisely
become the self-duality equation for NC U(1) instantons on Σ (or R2)×R2

θ [102–104]. The
corresponding gravitational metric for the case n = 1 can be identified with Equation (A87)
with the analytic continuation t = −iτ. It was shown in [57,84,105] that the solution of the
Hitchin equations (A93) is dual to four-dimensional gravitational instantons which are hy-
perKähler manifolds. In particular, the real heaven is governed by the su(∞) Toda equation
and the self-duality equation for the real heaven exactly reduces to the commutative limit of
the Hitchin equations (A93). See Equation (4.31) in Ref. [84]. Thus, the Hitchin system with
the gauge group G = U(N → ∞) may be closely related to the Toda field theory. Indeed,
this interesting connection was already analyzed in [106]. In sum, Hitchin’s equations, NC
U(1) instantons, gravitational instantons and pseudoholomorphic curves may be only the
tip of the iceberg in matrix string theory (A79) that have barely shown themselves.

Let us conclude this section by drawing an invaluable insight. We have observed
that NC spacetime is much more radical and mysterious than we thought before. It
is fair to say that we have not yet fully understood the mathematical foundation of NC
spacetime. A remarkable point is that NC spacetime necessarily implies emergent spacetime
if spacetime at microscopic scales should be viewed as NC. This means that classical
spacetime is a derived concept from something deeper. A pseudoholomorphic curve is
a stringy generalization of a geodesic worldline in Riemannian geometry [50]. Recall
that the pseudoholomorphic curve is basically a minimal surface or a string worldsheet
embedded into spacetime. However, to make sense of the emergent spacetime picture,
we need a mathematically precise framework for describing strings in a background-
independent way. The background-independent theory must give up the picture that
strings are vibrating in a preexisting spacetime. In this Appendix, we have aimed at
clarifying how the pseudoholomorphic curves can be lifted to aN NC spacetime by the
matrix string theory. The matrix string theory naturally extends the first-quantized string
theory so that it also describes the nonperturbative interactions of the splitting and joining
of strings, producing surfaces with nontrivial topology [49]. That is, the matrix string theory
is a second-quantized theory in which spacetime emerges from the collective behavior of
matrix strings. Thus, we argue that the NC spacetime can be viewed as a second-quantized
string from the perspective of the background-independent formulation of quantum gravity.

Notes
1 George Santayana (1863–1952).
2 Graham Ross in Quanta magazine “At multiverse impasse, a new theory of scale” (18 August 2014) and Wired.com “Radical new

theory could kill the multiverse hypothesis”.
3 Even though our work was motivated by Ref. [6], it should be pointed out that the conclusions in [6] can be avoided in the so-called

emergent universe scenario [7–9] and some models were also presented to cure the instabilities of the emergent universe [10,11].
4 Nonetheless, the friction term does not lead to dissipative energy production. This fact can be seen by observing that Equation (3)

can be derived from the first law of thermodynamics, dE + pdV = Vdρ + (ρ + p)dV = 0, where ρ + p = ϕ̇2 and ρ̇ =
(

ϕ̈ + δV
δϕ

)
ϕ̇.

5 Here we refer to the background-independent theory in which any spacetime structure is not a priori assumed but defined by
the theory.

6 The conventional choice of vacuum in Coulomb branch is given by [ϕa, ϕb]|vac = 0 and so ⟨ϕa⟩vac = diag
(
(λa)1, (λa)2, · · · , (λa)N

)
.

However, it turns out (see Section III.C in [26]) that, in order to describe a classical geometry from a background-independent
theory, it is necessary to have a nontrivial vacuum defined by a “coherent" condensation obeying the algebra (10). For this reason,
we will choose the Moyal–Heisenberg vacuum instead of the conventional vacuum. A similar reasoning was also advocated in
footnote 2 in Ref. [54].

7 We will often use the symbol M to denote a generic manifold whereas the symbolM has been used to emphasize an emergent
manifold.

8 However, we point out that there is another approach for the emergent time where time is regarded as a dynamical variable, for
example, Ref. [43]. Therefore, our approach for the emergent time must be considered as an alternative viewpoint.

9 Note that the vacuum solution (9) is further degenerated under the scaling pa → p′a = βpa or ya → y′a = β−1ya as far as
β ∈ R \ {0} is a nonzero constant. We will use this freedom to normalize the initial length scale such that |ya(t = 0)| = LP or
ls =
√

α′.
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10 This experiment is a simple twist of the well-known solution of Gauss’s law for gravity inside the earth, in which the minus
sign in the gravitational potential energy presupposes a repulsive force rather than the usual attractive force. The repulsive
force in Newtonian gravity is given by F = kgr = −∇V(r) where kg =

4πGN mρvac
3 and V(r) = −GN M(r)m

2r is the gravitational
potential energy. Note that the change of sign and the factor 2 enhancement are due to the general relativity effect since
ä
a = − 4πGN

3 (ρvac + 3p) = − 4πGN
3 (−2ρvac).

11 Note that a = b + dλ where b = −pidqi and λ = 1
2 qi pi. Thus one can also define the conformal vector field X by ιXω = κb + dH′

where H′ = H + κλ. In this case X = κpi
∂

∂pi
+ XH′ and the equations of motion are given by dqi

dt = ∂H′
∂pi

and dpi
dt = κpi − ∂H′

∂qi . For

H′ = 1
2 (p2

i + ω2q2
i ), the general solution is qi(t) = Aie

κ
2 t sin

(√
ω2 − κ2

4 t + θ
)

, which describes a damped harmonic oscillator
when κ < 0. However the vector field defined by Equation (88) is more convenient for our purpose.

12 One important consequence is that the energy will not be positive. Polyakov has suggested [78,79] that this makes de Sitter space
unstable with respect to decay by the creation of particle–antiparticle pairs.

13 This feature is due to our choice of a coordinate frame to describe the dynamical system. The time evolution operator ϕ̂0(t, y) =
i ∂

∂t + Â0(t, y) is defined in the comoving frame. In general, one may choose an arbitrary frame in which the time evolution is
described by k(t, y) ∂

∂t ∈ Hor(A1
θ). A particularly interesting frame is the conformal coordinates with which the metric is given by

ds2 = a(η)2(−dη2 + dx · dx) where a(η) = − 1
Hη and −∞ < η < 0. The conformal coordinates can be easily transformed to the

comoving coordinates by a(η)dη = dt.
14 It may be remarked that it is not possible to realize the Liouville vector field in terms of a local Hamiltonian function. Thus, the

inflation is a dynamical system without Hamiltonian. However, we present some examples in Appendix B showing that this
situation may be cured by introducing a time-dependent Hamiltonian.

15 There is a nice exposition on the Landau damping by Werner Herr, “Introduction to Landau Damping”, available at: https:
//cds.cern.ch/record/1507631/files/CERN-2014-009.pdf (accessed on 21 December 2023). Recently the Landau damping has
even been mathematically established at the nonlinear level [91].

16 In the topological A-model that is concerned with pseudoholomorphic maps from Σ to M = T∗N, there is a vanishing theorem [99]
stating that

∫
Σ f ∗B = 0. In particular, the mappings from ∂Σ to N are necessarily constant.

17 It is possible to replace R1,1 ×M by a general (2n + 2)-dimensional manifold N as far as there is a well-defined two-dimensional
foliation V such that the corresponding space of leaves N/V = M is a Hausdorff differentiable manifold [74]. See (A24) for a
relevant discussion. We will keep the maximal simplicity for a plain argument.
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