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Abstract: We study a string-inspired cosmological model from the symmetries point of view. We start
by deducing the form that each physical quantity must take so that the field equations, in the string
frame, admit self-similar solutions. In the same way, we formalize the use of power-law solutions (less
restrictive than the self-similar ones) by studying the wave equation for the dilaton through the Lie
group method. Furthermore, we show how to generate more solutions by using this approach. As
examples, we calculate exact solutions to several cosmological models in the four-dimensional NS-NS
(Neveu-Schwarz-Neveu-Schwarz) sector of low-energy effective string theory coupled to a dilaton
and an axion-like H-field within the string frame background, with FRW and the Bianchi Type II
metrics. We also study the existence of Noether symmetries, which allow us to determine the form of
the physical quantities in the framework of FRW geometry and to find exact cosmological solutions.
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1. Introduction

It is widely accepted that the classical or the modified gravitational theories break down near
the initial singularity, when high energy phenomena are involved. In this way, it is necessary to
develop new theories or models that are able to explain such phenomena. One such theory is the
superstring theory, becoming a good candidate to unify all of the fundamental interactions, including
the gravity [1,2]. We know five superstring models, the so-called: I, I IA, I IB, E8 × E8 heterotic and
SO(32) heterotic, and there is now evidence that all of them are related, being different manifestations
of a more fundamental theory known as M-theory [3].

The cosmological implications of superstring theory are currently attracting a great deal of
attention. The starting point in any analysis is the low energy limit, since the theory predicts a classical
gravitational interaction [4]. This gravitational theory differs from general relativity, in that it predicts
the existence of a scalar field, known as the dilaton φ, and its potential V, the graviton, that is, the
metric tensor and the antisymmetric tensor field strength Hµνλ, which is a three-form, known as the
Kalb–Ramond field.

The study of the cosmological consequences of superstring theory is quite important since the
interactions of these fields permit us to obtain great deviations from the conventional gravitational
models, i.e., the standard hot Big-Bang model (SHBB). This is why it is important to study whether
the string models lead us to realistic cosmological scenarios that can explain the initial inflation, as
well as other cosmological puzzles, as the large-scale structure formation or whether the cosmological
solutions isotropize and/or homogenize towards the future.

Another important issue of the theory is motivated by the pre-Big-Bang scenarios [5], that is by
the search of cosmological solutions that verify the symmetry a(t)→ a−1(−t) [6], being a(t) the scale
factor of the metric. Such a property is known as T-duality.As it has been pointed out in [6], if we do
not take into account the potential V, then the resulting field equations (FE) are invariant under the
transformation a(t)→ â(t) = a−1(−t). However, if we assume a non-zero potential, V 6= 0, in general,
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the FE are not invariant under the above symmetry, even if the solutions are invariant. In this paper,
we do not consider this important part of the theory, focusing our attention in finding (and formalizing)
exact solutions. Therefore, it would be necessary to have a fundamental method according to which
the form (or forms) of the potential, as well as the other physical quantities could be fixed, and if it
is possible, to calculate exact solutions to the proposed models. We have several geometric methods,
such as: the matter collineation (self-similar solutions), Lie groups and Noether symmetries.

The study of self-similar (SS) models is quite important, since, as it has been pointed out by
Rosquist and Jantzen [7], they correspond to equilibrium points, and therefore, a large class of
orthogonal spatially-homogeneous models are asymptotically self-similar at the initial singularity and
are approximated by exact perfect fluid or vacuum self-similar power-law models. Exact self-similar
power-law models can also approximate general Bianchi models at intermediate stages of their
evolution. This last point is of particular importance in relating Bianchi models to the real Universe.
At the same time, self-similar solutions can describe the behavior of Bianchi models at late times i.e., as
t→ ∞, playing a dominant role in the dynamics of Bianchi cosmological models (see Chapter X of [8]
devoted to the study of string cosmological models through the dynamical system approach and the
references therein). From the geometrical point of view, self-similarity is defined by the existence of
a homothetic vectorH in the spacetime, which satisfies the equation LHgµν = 2αgµν [9]. The geometry
and physics at different points on an integral curve of a homothetic vector field (HVF) differ only by
a change in the overall length scale, and in particular, any dimensionless scalar will be constant along
the integral curves. In this sense, the existence of an HVF is a weaker condition than the existence
of a Killing vector field (KVF), since the geometry and physics are completely unchanged along the
integral curves of a KVF.

The existence of self-similar solutions (which implies that the scale factor follows a power-law
solution) is just a manifestation of scaling symmetries. It is opportune to point out that scaling
is not the most general form of symmetry. Symmetry methods are arguably the most systematic
way of dealing with exact solutions of differential equations (partial, as well as ordinary). In recent
years, they have been successfully applied to various fields: gas dynamics, fluid mechanics, general
relativity, etc. Amongst symmetries of a differential equation, those forming a one-parameter group of
transformations can be determined algorithmically through the so-called Lie algorithm. Quite often,
as in the string cosmological models, the field equations of the model contain arbitrary functions,
whose functional forms cannot be fixed by any known laws. Since having symmetries is just a generic
property, i.e., all equations do not admit symmetries, then symmetries can be used to classify such
functions. This is known in the literature as group modeling [10]. The advantage of using such a
technique is that it is systematic. Therefore, by studying the forms of the unknown functions for which
the field equations admit symmetries, it is possible to uncover new integrable models. The importance
of the power-law solutions in the framework of the string-inspired cosmological models has been
pointed out for several authors, as for example Nojiri et al., in [11], and Elizalde et al., in [12].

Another method for determining the physical quantities is the use of Noether symmetries. The idea
of using Noether symmetries as a cosmological tool is not new in this kind of study; for example, in [13],
the authors proposed that the Noether point symmetry approach can be used as a selection rule for
determining the form of the potential, that is they take into account the geometry of the field equations as
a selection criterion, in order to fix the form of the potential. Dynamically speaking, Noether symmetries
are considered to play a central role in physical problems, because they provide first integrals, which
can be utilized in order to simplify a given system of differential equations and, thus, to determine the
integrability of the system. There are several approaches to study these symmetries; the geometrical
one (see, for instance, [14] and the references therein), the dynamical Noether symmetry approach
based on the Lie group method [15,16] and the approach developed in [17,18]. In this paper, we shall
follow the method proposed by Capozziello et al., in [14].

Therefore, the aim of this paper is to study the string-inspired cosmological model by using
several symmetry methods in order to determine the form of the physical quantities, as for example the
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potential or the dilaton field. In particular, we are interested in studying whether self-similar solutions
exist and how must each physical quantity behave in order that the FE admit such a class of solutions.
We formulate and prove very general theorems, valid for all of the Bianchi models, as well as for the
flat FRW one. In the same way, we formalize the use of power-law solutions (less restrictive than
the self-similar ones) by studying the wave equation for the dilaton through the Lie group method.
We also show how to use this approach in order to generate more solutions. Furthermore, we study
the existence of Noether symmetries in order to determine the form of the potential, as well as to find
exact solutions in the framework of the flat FRW geometry.

The paper is organized as follows. In Section 2, we introduce the low energy equations of
motion in the string frame. We concentrate on four-dimensional cosmological models and describe the
complete set of field equations taking into account a homogeneous H-field. In Section 3, we state and
proof a theorem, where we determine the exact form that each physical quantity may take in order
that the FE admit exact self-similar solutions through the matter collineation approach. In Section 4,
we formalize the use of power-law solutions (that is, the scale factor(s) behave(s) as ai(t) = ta, a ∈ R)
by studying the wave equation for the dilaton through the Lie group method. We also show how to
generate other solutions by using this approach. In Section 5, we study some examples by considering
two metrics, the flat FRW and Bianchi Type II. For each metric, and working in the string frame, we find
exact solutions to several cosmological scenarios where we take into account the interaction between
the different fields, that is the dilaton with the potential, the H-field and the graviton. In Section 6, we
explore the Noether symmetry approach to determine the form of the physical quantities in the case of
the FRW geometry. In the particular case being studied, we are able to calculate a complete general
solution of the field equations. Section 7 is devoted to summarizing the conclusions. In the Appendix,
we prove that the matter conservation is verified.

2. Field Equations

The action in four-dimensional spacetime from the low energy limit of string theory [19–24]
is deduced by assuming a Ricci-flat compactification of the internal (D − 4)-dimensional space
decoupled from our four-dimensional spacetime [25–27] and adding the matter Lagrangian Lm, which
is decoupled from the dilaton field in the string frame; therefore, we start by considering the following
action for strings in D-dimensions [4,6]:

S =
1

2κ2

∫
d4x
√
−ge−φ

[
R + (∇φ)2 −V − 1

12
H2
]
+
∫

d4x
√
−gLmatter (1)

being κ2 = 8πG a coupling constant. φ is the dilaton field determining the strength of the gravitational
coupling, R is the scalar curvature and Hαβδ, the Kalb–Ramond field, is the completely antisymmetric
tensor field strength defined by H = dB, where B is a rank-two antisymmetric tensor. Lmatter stands
for the Lagrangian for the matter (a perfect fluid in this case). We also consider the potential V, and we
assume that V = V(φ).

The variation of this action with respect to the gµν, Bµν and φ, respectively, yields the field equations:

Rν
µ −

1
2

gν
µR =eff Tν

µ (2)

∇µ

(
e−φHµνλ

)
= 0 (3)

2�φ + R− (∇φ)2 −V + ∂φV − 1
12

H2 = 0 (4)

∇ν

(
(m)Tν

µ

)
= 0 (5)
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with H2 = HµνλHµνλ and where Hµνλ = ∂[µBνλ], � = gab∇a∇b is the d’Alembert´operator. We have defined:

effTν
µ =(m) Tν

µ +(φ) Tν
µ +(H) Tν

µ +(V) Tν
µ (6)

with:

(m)Tν
µ = κ2eφTν

µ (7)

(φ)Tν
µ = −1

2
gν

µ (∇φ)2 +
(

gν
µgλκ − gλ

µ gνκ
)
∇λ∇κφ (8)

(H)Tν
µ =

1
12

(
3HµλκHνλκ − 1

2
gν

µH2
)

(9)

(V)Tν
µ = −1

2
gν

µV (10)

note that Tµν is the energy-momentum tensor derived from the matter Lagrangian (Lmatter).
Equation (4) may be replaced by the following one:

�φ− (∇φ)2 −V − ∂φV +
1
6

H2 + T = 0 (11)

since:
R = −T − 3�φ + 2 (∇φ)2 + 2V − 1

12
H2 (12)

In four dimensions, every three-form can be dualized to a pseudoscalar. Thus, an appropriated
ansatz for the H-field is:

Hµνλ = eφεµνλκh,κ (13)

where εµνλκ is the antisymmetric four-form (obeying ∇ρεµνλκ = 0) and h = h(t) is the Kalb–Ramond
axion field. Then, the FE Equation (3) is satisfied automatically, and from the Bianchi identity dH = 0
for the antisymmetric field strengths, Hαµν becomes the equation of motion for the scalar field h as
(see [4,28–31]):

�h +∇µφ∇µh = 0 (14)

thus h evolves as a massless scalar field coupled to the dilaton.
In this paper, we consider that the matter content is described by a perfect fluid (PF), whose

energy-momentum tensor is defined by:

Tµν = (ρ + p) uµuν + pgµν (15)

where ρ is the energy density of the fluid, p the pressure, and they are related by the equation of state
p = γρ, (γ ∈ (−1, 1]), and uµ = (1, 0, 0, 0) is the four-velocity.

3. Self-Similarity Solutions: Matter Collineation Approach

Our purpose will be to determine the exact form that must follow each physical quantity in order
for the field equations to admit self-similar (power-law) solutions. We shall use two tactics, the matter
collineations approach, which guarantees us the existence of self-similar solutions, while with the
Lie groups method (LGM), we study the existence of power-law solutions (less restrictive than the
self-similar condition). Nevertheless, the LGM allows us to obtain more solutions, as we shall show in
the next section. We begin by studying the field equations through the matter collineation approach
following the method developed in a previous paper (see [32]).

In general relativity, the term self-similarity can be used in two ways. One is for the properties
of space-times; the other is for the properties of matter fields. These are not equivalent in general.
The self-similarity in general relativity was defined for the first time by Cahill and Taub [33] and
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Eardley [34] (see, for general reviews, [9,35]). Self-similarity is defined by the existence of a homothetic
vector field V in the spacetime, which satisfies:

LV gµν = 2αgµν (16)

where gµν is the metric tensor, LV denotes Lie differentiation along the vector field V ∈ X(M) and α is
a constant. This is a special type of conformal Killing vector. This self-similarity is called homothety.
If α 6= 0, then it can be set to be unity by a constant rescaling of V. If α = 0, i.e., LV gij = 0, then V is
a Killing vector.

Homothety is a purely geometric property of spacetime, so that the physical quantity does not
necessarily exhibit self-similarity, such as LV Z = kZ, where k is a constant and Z is, for example,
the pressure, or the energy density, and so on. From Equation (16), it follows that LV Rα

µνλ = 0,
and hence, LV Rµν = 0 and LV Gµν = 0. A vector field V that satisfies the above equations is called
a curvature collineation, a Ricci collineation and a matter collineation, respectively. It is noted that
such equations do not necessarily mean that V is a homothetic vector. For example, if we consider the
Einstein equations Gµν = 8πGTµν, where Tµν is an effective stress-energy tensor, then if the spacetime
is homothetic, the energy-momentum tensor of the matter fields must satisfy LV Tij = 0; nevertheless,
in this work, we are not interested in finding the set of vector fields V ∈ X(M) that verify such an
equation, otherwise, knowing that the homothetic vector field (HVF)H (see for example [9]), that is
LHgµν = 2gµν, thenH is also a matter collineation, i.e., LHTµν = 0, then we use this fact to determine
the behavior of the main physical quantities in order that the field equations admit self-similar solutions
(see [35]).

Therefore, we calculate:
LHTeff

µν = 0 (17)

whereH is a homothetic vector field (HVF), i.e., it verifies the equation: LHgµν = 2gµν, for some metric
and where Teff

µν is the effective stress-energy tensor. For this purpose, we have shown in [32] that it is
enough to calculate LH (i)Tµν = 0, for each component of the stress-energy tensor. For simplicity, and
without lost of generality, we consider an FRW metric; thus, the HVF yields (see, for instance, [36]):

H = t∂t + (1− a1)
(
x∂x + y∂y + z∂z

)
(18)

where a1 ∈ R is a numerical constant, while for example, the HVF for the BII metric yields:

H = t∂t + (1− a1) x∂x + (1− a2) y∂y + (1− a3) z∂z (19)

with a1, a2, a3 ∈ R. We may do such simplification because, as we have shown in [32], all of the physical
quantities are homogeneous, that is they only depend on time t, then, the unique equation of L(i)

H Tµν = 0,
that is interesting for us, is the one corresponding to the temporal coordinate t∂t. For this reason, the
theorems that we are going to state are absolutely general for all of the Bianchi types and the FRW one.

We determine the exact form that each physical quantity must take in order that the FE admit SS
solutions in the string frame. To do that, we study the effective stress-energy tensor through the matter
collineation approach.

Theorem 1. The FE (Equations (2)–(5)) admits SS solutions if the physical quantities take the following form:

ρ = ρ0t−(2+φ0), φ = φ0 ln t, h = h0t−φ0 + h1, V = Λe−
2

φ0
φ

where ρ0, φ0, h0, h1, Λ are constants.
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Proof. We split the effective stress-energy tensor into the following components:

(m)Tν
µ = eφTν

µ (20)

(φ)Tν
µ =

1
2

gν
µ

[
2∇2φ− (∇φ)2

]
−∇µ∇νφ (21)

(H)Tν
µ =

1
12

(
3HµλκHνλκ − 1

2
gν

µH2
)

(22)

(V)Tν
µ = −1

2
gν

µV (23)

In the string frame, we calculate the following equations (L(i)
H Tµν = 0);

tρφ′ + tρ′ + 2ρ = 0, L(m)
H Tµν = 0 (24)

t
(

φ′′
(
3H− φ′

)
+ 3φ′

(
a′′

a
− H2

))
+ 6φ′H− φ′2 = 0, L(φ)

H Tµν = 0 (25)

th′φ′ + th′′ + h′ = 0, L(H)
H Tµν = 0 (26)

Vφtφ′ + 2V = 0, L(V)
H Tµν = 0 (27)

Note that our matter collineation vector field is the homothetic one, this means that the scale
factor behaves as a = a0ta1 , a0 = 1 and a1 ∈ R+. Thus, from Equation (25), we get:

φ =
∫ 3ta′ ±

√
9t2a′2 − 2a2C1

ta
dt (28)

and taking into account that the scale factor must behave as a = a0ta1 , then we get:

φ = C1 + C2 ln t, C1, C2 ∈ R (29)

but within the framework of SS solutions, we choose the particular solution φ = φ0 ln t, by setting
C1 = 0, without lost of generality. From Equation (27), we get:

Vφtφ′ + 2V = 0 =⇒ V = Λe−
2

φ0
φ (30)

where Λ = V0 is an integration constant, while from Equation (26):

th′′ + (φ0 + 1) h′ = 0 =⇒ h = h0t−φ0 + h1, h1, h0 ∈ R (31)

where we may set h1 = 0, within the SS framework. To end, we calculate the behavior of the energy
density, finding that:

tρ′ + (2 + φ0) ρ = 0 =⇒ ρ = ρ0t−(2+φ0) (32)

Therefore it is possible to find SS solutions if the main quantities behave as follows:

ρ = ρ0t−(2+φ0), φ = φ0 ln t, h = h0t−φ0 + h1, V = Λe−
2

φ0
φ (33)

as it is required. The constants ρ0, φ0, h0, h1 and Λ are determined by solving the FE.

4. Lie Groups

We have proven how each physical quantity must behave under the hypothesis of self-similarity.
In the next section, we shall see that sometimes this condition results in being very restrictive, and for
this reason, we may only be interested in finding power-law solutions. In order to try to generalize the
self-similar results, we go next to work under the hypothesis of the power-law solution for the scale
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factor(s) (less restrictive than the self-similar hypothesis). To do that, we study through the Lie group
method the wave equation for the dilaton.

Roughly speaking, a symmetry, X = ξ(x, y)∂x + η(x, y)∂y, of a differential equation is an invertible
transformation that leaves it form-invariant. By applying the standard Lie procedure (see, for instance, [16,37,38]),
we need to solve the following overdetermined system of linear partial differential equations for η and
ξ (from the extended infinitesimal or prolonged transformations), which allows us to determine the set
of the symmetries admitted by Equation (4).

Equation (4) is of the general form.

φ′′ = f(t, φ, φ′) (34)

f(t, φ, φ′) = −2Kφ′θ + R + φ′2 − 1
2e2φh′2 −V +Vφ, with θ = ui

;i, ui = (1,0,0,0) (see below for details).
We are going now to apply all of the standard procedures of Lie group analysis to this equation (see [37]
for details and notation). A vector field X:

X = ξ(t, φ)∂t + η(t, φ)∂φ (35)

is a symmetry of Equation (34) if:

−ξ ft− η fφ + ηtt +
(
2ηtφ− ξtt

)
φ′+

(
ηφφ− 2ξtφ

)
φ′2− ξφφφ′3+

+
(
ηφ− 2ξt− 3φ′ξφ

)
f −
[
ηt +

(
ηφ− ξt

)
φ′− φ′2ξφ

]
fφ′ = 0

(36)

Thus, our approach consists of imposing a particular symmetry and deducing the exact form that
acquires the unknown functions, that is φ, V and h, by solving the system of PDEs (Equation (36)).
The imposed symmetry induces a change of variables, which usually reduces Equation (34) to
an integrable ODE. However, sometimes, it is not possible to find a solution of such an ODE; for
this reason, the knowledge of one symmetry X might suggest the form of a particular solution as
an invariant of the operator X, i.e., a solution of dt/ξ(t, φ) = dφ/η(t, φ). This particular solution is
known as an invariant solution (generalization of similarity solution).

Therefore, we study the equation:

2�φ+ R− (∇φ)2−V + ∂φV− 1
12

H2 = 0 (37)

that we rewrite as follows:

2φ′′+ 2Kφ′θ−R− φ′2 +
1
2

e2φh′2 +V−Vφ = 0 (38)

where θ = ui
;i, ui = (1,0,0,0). We use the notation φ′ = d

dtφ, Vφ = d
dφV, etc. Compare Equation (38) to

Equation (60) for the FRW model and to Equation (82) for the Bianchi Type II model.

Theorem 2. The FE (Equations (2)–(5)) admit power-law solutions if the physical quantities take the following form:

φ = φ0 ln t, h = h0t−φ0 + h1, V = Λe−
2

φ0
φ

Proof. By studying through the LG method Equation (38), we get:

2ξφφ + ξφ = 0 (39)

8Kθξφ− 2ηφ + 4ηφφ− 8ξtφ = 0 (40)

3
(

2V− 2R− 2Vφ + e2φh′2
)

ξφ + 4K
(
θξt + ξθ′

)
− 4ηt + 8ηtφ− 4ξtt = 0 (41)
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2e2φ
(
h′h′′ξ + h′2

(
ξt− ηφ + η

))
+ 4Kθηt + 4ηtt− 2ηVφφ

+2Vφ

(
η− 2ξt + ηφ

)
+ 2V

(
2ξt + ηφ

)
− 2R′ξ− 2R

(
2ξt− ηφ

)
= 0

(42)

Now, we impose the symmetry [ξ = at, η = 1] , a ∈ R, which brings us to get the following
restrictions on the potential, V, and the other quantities θ, R and h. From Equation (41), we obtain:

θξt + ξθ′ = 0 θ =
c
t
, c ∈ R

and splitting Equation (42):

2e2φ
(

h′h′′ξ + h′2
(
ξt− ηφ + η

))
= 0 (43)

−2ηVφφ + 2Vφ

(
η− 2ξt + ηφ

)
+ 2V

(
2ξt + ηφ

)
= 0 (44)

−2R′ξ− 2R
(
2ξt− ηφ

)
= 0 (45)

so:

h′′at+ h′ (a+ 1) = 0 (46)

Vφφ +Vφ (2a− 1)− 2aV = 0 (47)

R′t+ 2R = 0 (48)

Therefore, we have obtained the following solutions:

θ =
c
t
, R = rt−2, V = C1e−2aφ +C2eφ, h = C3t−

1
a −C4 (49)

where c, r, φ0, Ci ∈ R. By taking into account physical and dimensional considerations, we reach the
following results:

θ =
c
t
, R = rt−2, V = V0e−

2
φ0

φ, h = h0t−φ0 + h1 (50)

For example, by setting C2 = 0, we conclude that a particular solution for the potential function is
given by:

V = V0e−
2

φ0
φ (51)

where V0 is an integration constant; in this way, we obtain a decreasing potential, and to obtain V ≈ t−2,
since Gµν ≈ t−2 and therefore, each component of the FE must behave as ≈ t−2. Now, by introducing
these results into Equation (38), it reads:

2φtt + 2Kφtt−1− φ2
t +

h2
0φ2

0
2

e2φt−2(φ0+1) +

(
1+

2
φ0

)
V0e−

2
φ0

φ− rt−2 = 0 (52)

where the symmetry [at, 1] induces the following change of variables,

x = φ− φ0 ln t, y =
1

tφ′− φ0
(53)

getting in this way an Abel equation:

y′ =
(

le−
2

φ0
x
+

h0

4
e2x + A1

)
y3 + A2y2− 1

2
y (54)
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with l = 1/2 + 1/φ0, A1 = Kφ0 − r/2− φ2
0/2− φ0 and A2 = K − 1− φ0, which has no solution.

Therefore, the invariant solution, induced by the symmetry, of Equation (52) is:

φ = φ0 ln t (55)

which is a particular solution of Equation (52). Therefore, the invariant solution coincides with the homothetic one.

In order to show how useful this tactic is, we may consider another symmetry, for example [a, 1] ,
a ∈ R. Therefore, following the same steps as in the above proof, we get from Equation (41):

θ′ = 0 θ = const

and splitting Equation (42), we get:

2e2φ
(

h′h′′ξ + h′2
(
ξt− ηφ + η

))
= 0, h′′a+ h′ = 0

−2ηVφφ + 2Vφ

(
η− 2ξt + ηφ

)
+ 2V

(
2ξt + ηφ

)
= 0, Vφφ−Vφ = 0

−2R′ξ− 2R
(
2ξt− ηφ

)
= 0, R′ = 0

in this way, we get the following invariant solution:

φ =
1
a

t, θ = const, R = const, V = C1 +C2eφ, h = C3e−
1
a t−C4

where a, r, φ0, Ci ∈ R, and from physical considerations, we set:

φ = φ0t, θ = const, R = r, V = V0, h = h0e−φ0t = h0e−φ

where the solution θ = const, lead us to obtain:

θ = c =
a′

a
, a = ea1t, q =

d
dt
(H−1)− 1 = −1

note that this solution verifies the T−duality symmetry property
(
a(t)→ a−1(−t)

)
. Now, we try to

find a general solution for the dilaton from the WEEquation (38); thus:

2φ′′+ 2Kcφ′− r− φ′2 +
1
2

e2φh0e−t/a +V0 = 0

where φ = φ0t is a particular solution. For simplicity, in the FRW case, see below for details, we
find that:

ρ′+(1+γ) ρa1 = 0, ρ = ρ0e−(1+γ)a1t

and therefore, we obtain as the solution:

φ = t, θ = const, a = ea1t, R = const, V = V0, h = h0e−t, ρ = ρ0e−t

where (1+γ) a1 = 1, that is: a1 =
1

1+γ , with γ ∈ (−1, 1]. Therefore, this solution is inflationary, q = −1,
verifies the T−duality property and has a constant potential, V = V0.

5. Examples

Once we have determined which is the behavior of each physical quantity, we go next to study
some particular examples working in the string frame. We have chosen this frame for working
since in the presence of matter, the frame change of metric makes the dilaton field φ couple with
matter fields differently depending on their spins and the matter energy-momentum tensors to be
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non-trivial functions of the dilaton field. Thus, we use the fundamental string frame as it is in the
action Equation (1) [39].

As the first example, we consider flat homogeneous an isotropic FRW metric, while for the second
one, we take into account the homogeneous, but anisotropic Bianchi Type II metric. We consider some
different cosmological scenarios by taking into account the different fields, the dilaton, the potential,
a homogeneous H-field (Hµνλ) and the matter field. We start by considering only the dilaton and go
next to study more complex situations. We shall work only in the string frame, outlining the FE and
calculating the exact self-similar solutions to each model.

5.1. Models with the Flat FRW Metric

For the usual flat FRW metric:

ds2 = −dt2 + a2(t)
3

∑
i=1

(
dxi
)2

(56)

with a(t) = ta1, a1 ∈ R (since we are working under the SS hypothesis), we find the following FE in the
string frame:

3H2 = eφρ− 1
2

φ2
t + 3Hφt +

1
4

e2φh2
t +

1
2

V(φ) (57)

2H′+ 3H2 = −eφp+ φtt + 2Hφt−
1
2

φ2
t −

1
4

e2φh2
t +

1
2

V(φ) (58)

htt + ht (3H + φt) = 0 (59)

2φtt + 6Hφt− φ2
t −R+V− ∂φV +

1
2

e2φh2
t = 0 (60)

with:

H =
a′

a
, and R = 6

(
H2 +

a′′

a

)
(61)

and the conservation equation for the matter field:

ρ′+(1+γ) ρθ = 0 (62)

where θ = ui
;i, ui = (1, 0, 0, 0). Recall that the main physical quantity behaves as follows:

a = ta1, ρ = ρ0t−(φ0+2), φ = φ0 ln t, h = h0t−φ0 + h1, V = Λe−
2

φ0
φ (63)

note that from Equation (62) and ρ = ρ0t−(φ0+2), we obtain the following relationship between the
coefficients: a1 (1+γ) = (φ0 + 2) . We would like to emphasize that it is also possible to enlarge this
study to the non-flat FRW models, but with the drawback that in these cases, the self-similar solution
is only valid for the value of the equation of state (EoS) γ = −1/3.

We have found the following exact solutions for the next string cosmological models:

(1) We begin by taking into account only the dilaton field; thus, the effective stress-energy tensor
is defined by: effTµν = (φ)Tµν, neglecting the influence of other fields. In this case, the field
equations are greatly simplified:

3H2 = −1
2

φ2
t + 3Hφt (64)

2H′+ 3H2 = φtt + 2Hφt−
1
2

φ2
t (65)

2φtt + 6Hφt− φ2
t −R = 0 (66)



Universe 2016, 2, 3 11 of 26

We found the following solution:

a(t) = t
√

3/3, φ =
(√

3− 1
)

ln |t| (67)

This solution has been found by many authors (see, for instance, [40,41]). In this paper, we are
only interested in studying the solutions for t ∈ R+. We see that the deceleration parameter is:
q =
√

3− 1 > 0, so the solution is not inflationary. Note that φ0 > 0; thus, the function eφ is
unbounded as t ∈ R+.

(2) Now, we consider the effective stress-energy tensor defined by: effTµν = (φ)Tµν + (V)Tµν; that is,
our model considers the dilaton and the potential. The solution is the following one:

a = ta1, φ = φ0 ln t, V = Λe−
2

φ0
φ (68)

where:

a1 =
φ0

2− φ0
, Λ =

φ2
0
(
φ2

0 + 2φ0− 2
)

(φ0− 2)2

note that a = ta1 (as t ∈ R+) has only physical meaning if φ0 ∈ (0, 2) . As we can see, the potential
is positive, that is the constant Λ > 0 iff φ0 ∈ (0.732, 2) and Λ < 0 iff φ0 ∈ (−2.732050808, 0)∪
(0, 0.732) , ruling out of our analysis the case φ0 = 0, since Λ = 0 as φ0 = 0. The deceleration
parameter is: q = 2 (1/φ0− 1) noting that q < 0 if φ0 ∈ (1, 2) . Since we are only interested in the
case t ∈ R+, we conclude that the solution has physical meaning when φ0 ∈ (0.732, 2) , in such a
way that Λ > 0, and the solution is inflationary if φ0 ∈ (1, 2). Note that when φ0 ∈ (0.732, 2), then
the function eφ is unbounded.

(3) If we consider the dilaton and the Kalb–Ramond field, i.e., the effective stress-energy tensor is
defined by effTµν = (φ)Tµν + (H)Tµν, then we find the following solution:

a(t) = t1/3, φ =

(
2
3

)
ln |t| , h = it∓

2
3 , ¡! (69)

noting that h0 ∈ C, that is h0 is a pure imaginary number. We may observe that the equation for h,
Equation (59), leads us to get the result a1 = 1/3, for the scale factor parameter. We consider that
the solution lacks any physical interest since h0 ∈ C.

(4) For this model, the effective stress-energy tensor is defined as follows: effTµν = (φ)Tµν + (H)Tµν + (V)Tµν.
The solution is the following one:

a = ta1 , φ = φ0 ln t, h = h0t−φ0 , V = Λe−
2

φ0
φ (70)

with:

a = t1/3, φ = φ0 ln |t| , h0 =
2
√

3− 6φ0

3φ0
, Λ = φ0

(
φ0−

2
3

)
from the expression for the parameter h0, we deduce that φ0 ∈ (−∞, 1/2) \ {0} , otherwise h ∈ C,
as in the above case, that is if φ0 > 1/2, then h ∈ C. With regard to the potential, we note that
V > 0⇐⇒ φ0 ∈ (−∞, 0)∪ (2/3, ∞) and, therefore, V > 0 if φ0 ∈ R−. The deceleration parameter
is positive: q = 2; thus, the solution is not inflationary. The scalar function h is growing since
φ0 < 0; and therefore, the function eφ is bounded in this model.

(5) In this case, we consider the following fields: effTµν = (m)Tµν + (φ)Tµν + (H)Tµν; that is, we are
considering the matter field, the dilaton and the H-field. We have found the following solution:

a = t1/3, φ = (γ− 1) ln |t| , h0 =

√
18γ2− 36γ+ 6

3 (γ− 1)
, ρ0 =

5
3
− γ (71)
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noting that h0 ∈ R iff γ ∈ (−1, 0.183) = I. In this interval, I, φ0 < 0 and h0 < 0,∀γ ∈ I, while
the energy density is also positive, ρ0 > 0. Since we are taking into account the H-field, then
we always obtain, a1 = 1/3, from Equation (59), and therefore, the solution obtained is as not
inflationary, since q > 0. In this solution, since φ0 < 0, ∀γ ∈ I, then the function eφ is bounded,
which is a desirable property for a physical solution.

(6) We study the case where the effective stress-energy tensor is defined by the matter field coupled
to the dilaton and its potential, i.e., effTµν = (m)Tµν + (φ)Tµν + (V)Tµν. The solution found is the
following one:

a = ta1 , φ = (3a1 (γ+ 1)− 2) ln t = φ0 ln t

Λ =

(
a1
(
3γ2 + 1

)
− 2γ

)
(3a1 (γ+ 1)− 2)

γ+ 1
(72)

ρ0 = −
3a2

1 (γ+ 1) + a1 (3γ− 1)− 2
γ+ 1

We observe that all of the parameters depend on (γ, a1). In order to analyze the solution, we
assume that γ ∈ (−1, 1) and a1 ∈ (0, 2), since we are only interested in the case t ∈ R+. In the
figure (see Figure 1) we have plotted the regionR of the space (γ, a1) where the energy density is
positive (the colored region). The red line stands for the border of this region, that is the set of
points of (γ, a1) where ρ0 = 0, outside ofR, ρ0 < 0; and therefore, the solution lacks any physical
meaning. Inside of R, we have marked four subregions, such that R = ∪4

i=1Ri (see Figure 1).
In the following table, we describe the behavior of each quantity in each subregionRi:

ρ φ V

R1 > 0 < 0 < 0
R2 > 0 > 0 > 0
R3 > 0 > 0 < 0
R4 > 0 < 0 > 0

(73)

Thus, subregions of physical interest are those where φ < 0, in order to get eφ bounded, which
correspond toR1 andR4, noting furthermore that inR4, we have obtained Λ > 0. We see that
when a1 > 1, the solution is inflationary, since the deceleration parameter, q = a−1

1 − 1 < 0, but if
a1 < 1, then the solution is not inflationary. Therefore, we may find a set of values for the free
parameters (γ, a1), such that ρ0 > 0, Λ > 0 and φ0 < 0, in such a way that eφ is bounded.

As an example, if we set a1 = 0.6, then we find that ρ0 = 0, if γ = 0.527; therefore, the solution is
only valid in the interval: γ ∈ (−1, 0, 527) = I. In this interval I, we find that the parameters Λ
and φ0 vanish at γ = 0.1; thus Λ and φ0 are negative if γ ∈ (−1, 0.1) and positive if γ ∈ (0.1, 0.527).
To end, we note that q > 0, since a1 = 0.6.

(7) In the last model, we consider, effTµν = (m)Tµν + (φ)Tµν + (H)Tµν + (V)Tµν, finding the following
solution:

a1 =
1
3

, φ0 = γ− 1, h0 = h0

Λ =
(1−γ)

(
2
(
−3γ2 + 6γ− 1

)
+ 3h2

0 (γ− 1)2
)

6 (γ+ 1)
(74)

ρ0 = −
3h2

0 (γ− 1)2 + 8γ− 12
6 (γ+ 1)

As is observed, since we are taking into account the H-field, then we have obtained that the
parameter of the scale factor is: a1 = 1/3. As in the above model, we have plotted the region
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(R) of the space (γ, h0) (the space of free parameters) where the energy density is positive (the
colored region in Figure 2) and inside ofR have marked in yellow color the set of points, such
that Λ < 0 (see Figure 2). We have assumed γ ∈ (−1,1) and h0 ∈ (−2,2). The red line stands
for the border of R, that is the set of values of the free parameters (γ, h0) where ρ0 = 0. As is
observed, φ0 < 0, for all γ ∈ (−1,1), in such a way that the function eφ is bounded at late times,
but the solution is not inflationary, q > 0, since a1 = 1/3.

Figure 1. FRW model described by: effTµν = Tµν + (φ)Tµν + (V)Tµν. Plot of the region R (colored
area), where the energy density is positive, γ ∈ (−1, 1] and a1 ∈ (0, 2]. See (73) for an explanation of
the subregionsRi.

Figure 2. FRW model with effTµν = (m)Tµν + (φ)Tµν + (H)Tµν + (V)Tµν. Plot of the regionR (colored
area) where ρ0 > 0 where γ ∈ (−1, 1] and h0 ∈ [−2, 2]. Yellow color means Λ < 0, while in the blue
area, Λ > 0.
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5.2. Models with a Bianchi Type II Metric

A Bianchi Type II (BII) metric is defined by (see [36] for details):

ds2 = −dt2 + a2(t)dx2 +
(

b2(t) + K2z2a2(t)
)

dy2 + 2Ka2(t)zdxdy + d2(t)dz2 (75)

where the scale factors (a(t), b(t), d(t)) are functions on time t and K ∈ R. If K = 0, then the metric
collapses to a Bianchi Type I (BI) metric. We emphasize that in order to obtain self-similar solutions,
the scale factors must behave as a(t) = ta1 , b(t) = ta2 , d(t) = ta3 , and the parameters of the scale
factors must verify the following relationship: a2 + a3 = 1 + a1 (see [36,42]).

The FE for Metric (75) are as follows:

a′

a
b′

b
+

a′

a
d′

d
+

d′

d
b′

b
− K2

4
a2

b2d2 = eφρ + φtθ −
1
2

φ2
t +

1
4

e2φh2
t +

1
2

V (76)

b′′

b
+

d′′

d
+

d′

d
b′

b
− 3K2

4
a2

b2d2 = −eφ p + φtt +

(
d′

d
+

b′

b

)
φt −

1
2

φ2
t −

1
4

e2φh2
t +

1
2

V (77)

K2a2

b2d2 −
b′′

b
− d′

d
b′

b
+

a′′

a
+

a′

a
d′

d
=

(
a′

a
− b′

b

)
φt (78)

d′′

d
+

a′′

a
+

a′

a
d′

d
+

K2

4
a2

b2d2 = −eφ p + φtt +

(
d′

d
+

a′

a

)
φt −

1
2

φ2
t −

1
4

e2φh2
t +

1
2

V (79)

b′′

b
+

a′′

a
+

a′

a
b′

b
+

K2

4
a2

b2d2 = −eφ p + φtt +

(
a′

a
+

b′

b

)
φt −

1
2

φ2
t −

1
4

e2φh2
t +

1
2

V (80)

and the conservation equations:

htt + ht (θ + φt) = 0, θ =

(
a′

a
+

b′

b
+

d′

d

)
(81)

2φtt + 2θφt − φ2
t − R + V − ∂φV +

1
2

e2φh2
t = 0 or (82)

φtt + θφt − φ2
t + V + ∂φV − e2φh2

t + eφ (ρ + 3p) = 0 (83)

where:

R = 2
(

a′′

a
+

b′′

b
+

d′′

d
+

a′

a
b′

b
+

a′

a
d′

d
+

d′

d
b′

b
− 1

4
a2K2

b2d2

)
(84)

and the matter conservation equation:

ρ′ + (1 + γ) ρθ = 0 (85)

with θ = uµ
;µ, uµ = (1, 0, 0, 0). We recall that the physical quantities must behave as follows:

ρ = ρ0t−(φ0+2), φ = φ0 ln t, h = h0t−φ0 , V = C1e−
2

φ0
φ (86)

We go next to study the same models as the studied ones for the FRW metric, finding the
following solutions.

(1) In the first of the models, that is effTµν = (φ)Tµν, we have found the next solutions:

i Under the self-similar condition (SSC) a2 + a3 = 1 + a1, we have obtained:

K = 0,

a2 =
1
2

(
1 + a1 +

√
− (a1 + 1) (3a1 − 1)

)
, (87)
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a3 =
1
2

(
1 + a1 −

√
− (a1 + 1) (3a1 − 1)

)
,

φ0 = 2a1

As is observed, this solutions belongs to the BIclass, i.e., there is no solution Type BII.
Note that:

∑ ai = 2a1 + 1 = φ0 + 1, q =
−2 (a1 − 1)

2a1 + 1

so the solution is inflationary iff a1 > 1, but eφ is unbounded (t ∈ R+).
ii Since the above solution is not of Type BII, we relax the hypothesis of self-similarity and try to

find a power-law solution, finding in this case:

K = 0,

a2 =
1
2

(
1− a1 + φ0 +

√
−3a2

1 + 2a1 + 2φ0a1 + 1− 2φ0 − φ2
0

)
,

a3 =
1
2

(
1− a1 + φ0 −

√
−3a2

1 + 2a1 + 2φ0a1 + 1− 2φ0 − φ2
0

)
(88)

which is of type BI. Note that if φ0 = 2a1, then we recover the above solution. Therefore,
there are no solutions of Type BII.

(2) In the second model, described by: effTµν = (φ)Tµν + (V)Tµν, we have obtained the following
solutions:

i By considering the SSC, a2 + a3 = 1 + a1, we get two solutions:

• The first of them is of type FRW:

a1 = a2 = a3 = 1, K = 0, Λ = φ0 = 1 (89)

• The second one is given by (Type BII):

a2 = a3 =
1
2
(a1 + 1) , K2 =

− (a1 − 1) (3a1 − 1) (a1 + 1)
5 + 3a1

,

Λ =
(a1 + 1) (3a1 − 1) (3a1 + 1)2

(5 + 3a1)
2 , φ0 =

6a1 + 2
5 + 3a1

(90)

As we may observed, all of the parameters are positive (a1 > 0, when t ∈ R+); thus,
the function eφ is unbounded at late times (t ∈ R+), and therefore, the solution has a
limited physical interest.

ii If we work without the SSC, then we get an FRW-like solution, i.e.,

K = 0, a1 = a2 = a3, φ0 =
2a1

a1 + 1
, Λ =

2a2
1
(
3a2

1 − 1
)

(5 + 3a1)
2 (91)

which lacks any physical interest.

(3) When, effTµν = (φ)Tµν + (H)Tµν, we get:

(a) Under the SSC, we have obtained the following unphysical solution:

a1 = 0, a2 = a3 =
1
2
= φ0 h = i ∈ C, K =

1
2

i ∈ C (92)

note that a1 = 0, so there is no BII solution for this model.
(b) If we do not consider the SSC, then the obtained solution coincides with the obtained one in

the case of the FRW model.
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(4) If effTµν = (φ)Tµν + (H)Tµν + (V)Tµν, we find that working under SSC, the solution lacks any
physical interest, since:

a1 = 0, a2 = a3 =
1
2

, Λ = φ0

(
φ0 −

2
3

)
, K =

√
−φ0

2
, h =

1
φ0

√
1− 5

2
φ0 (93)

note that a1 = 0.

If we try to find a power-law solution, then we obtain an FRW-like solution given by:

a = t1/3, φ = φ0 ln t, h =
2
√

3− 6φ0

3φ0
, Λ = φ0

(
φ0 −

2
3

)
(94)

with a1 = a2 = a3 = 1
3 and φ0 < 1

2 , such that V > 0 ⇐⇒ φ0 < 0. Note that this is the same
solution as the obtained one working with the FRW metric. Therefore, there is no BII solution for
this model.

(5) In the model described by effTµν = (m)Tµν + (φ)Tµν + (H)Tµν, we have obtained the following
solutions. The first of them, obtained under the SSC, has no physical meaning, since a1 = 0,
while the rest of the permeates behave as follows:

a2 = a3 =
1
2

, K =

√
1
2
(1− γ), h =

√
1
2 (1− 7γ + 4γ2)

(1− γ)
, ρ0 =

3
2
− γ (95)

If we do not consider the SSC, then we get an FRW-like solution. Therefore, there is no BII
solution for this model.

(6) In this model, the effective stress-energy tensor takes the following form: effTµν = (m)Tµν +
(φ)Tµν + (V)Tµν, obtaining a unique solution of type BII, which is self-similar:

K2 =
1
2
(a1 − 1) (γ (2a1 + 1)− 1) ,

a2 = a3 =
1
2
(a1 + 1) ,

φ0 = 2a1 (γ + 1) + γ− 1, (96)

ρ0 =
7− a1 − 5γ− 13a1γ− 6a2

1 (γ + 1)
4 (γ + 1)

,

Λ =
4 (2a1 + 1)2 γ3 + (2a1 + 1) (7a1 − 11) γ2 + 4

(
a2

1 − 2a1 + 2
)

γ + 6a2
1 − a1 − 1

4 (γ + 1)

In Figure 3, we have plotted the region (R) of the space (γ, a1) where the energy density is
positive and K2 is defined (the colored area under the red line). The red line stands for the border
of this region, that is the set of points of (γ, a1) where ρ0 = 0 and K2 = 0, and therefore, the
solution does not belong to the Class BII. Outside ofR, ρ0 < 0, and therefore, the solution lacks
any physical meaning. Inside ofR, we have marked four subregions, such thatR = ∪4

i=1Ri (see
Figure 3). In the following table, we describe the behavior of each quantity in each subregionRi:

ρ φ V

R1 > 0 < 0 < 0
R2 > 0 > 0 > 0
R3 > 0 < 0 > 0
R4 > 0 > 0 < 0

(97)
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As we may see, we have a very similar plot as the obtained one for the FRW metric (see Figure (1)).
Therefore, we may find values for the free parameters (γ, a1) , such that ρ0 > 0, φ0 < 0 (in this
way, eφ is bounded) and Λ > 0, obtaining a solution in agreement with the observations, but
which is not inflationary, since q = 2(1− a1)/(2a1 + 1) > 0, ∀a1 < 1.

(7) For the last of the studied models, effTµν = (m)Tµν + (φ)Tµν + (H)Tµν + (V)Tµν, we have found
a unique solutions, which is the same as the obtained one for the FRW metric; thus, there is no
BII solution for this model.

Figure 3. Bianchi II model (BII) with an effective stress-energy tensor defined by: effTµν = Tµν +
(φ)Tµν + (V)Tµν. Plot of the regionR where the energy density is positive ρ0 > 0 and K2 > 0 (colored
area), with γ ∈ (−1, 1] and a1 ∈ (0, 1]. See (97) for an interpretation.

6. Noether Symmetry Approach

In this section, we show how to reach similar results by using the method of the Noether
symmetries [14], that is we are interested in determining the form of the physical quantities by
employing this tactic, and if it is possible, then to obtain a complete solution of the resulting field
equations. Due to the complexity of the method, we only study a particular case by taking into account
the dilaton φ and the potential V. Therefore, by taking into account the following action:

S =
1

2κ2

∫
d4x
√
−ge−φ

[
R + (∇φ)2 −V

]
(98)

and the usual flat FRW metric given by Equation (56), so R = 6
(

H2 + a′′/a
)

, we find that the model
is described by the Lagrangian, with Q = (a, φ) and TQ = (a, ȧ, φ, φ̇):

L = e−φ
(

6aȧ2 + a3
(

φ2
t + V

)
− 6a2 ȧφt

)
(99)

where we note that the Hessian determinant
∥∥∥∂q̇i q̇jL

∥∥∥ 6= 0. Therefore, the Euler–Lagrange equations
yield (as we already know):

2H′ + 3H2 = φtt + 2Hφt −
1
2

φ2
t +

1
2

V(φ) (100)

2φtt + 6Hφt − φ2
t − R + V − ∂φV = 0 (101)
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where H = a′/a, and the first FE is equivalent to:

θL = ȧ∂ȧL+ φ̇∂φ̇L−L = 0 (102)

that is
3H2 = −1

2
φ2

t + 3Hφt +
1
2

V(φ) (103)

The infinitesimal generator of the Noether symmetry, i.e., the lift vector X is now written as:

X = α
∂

∂a
+ β

∂

∂φ
+

dα

dt
∂

∂ȧ
+

dβ

dt
∂

∂φ̇
(104)

where α, β are functions of a and φ and where:

dα

dt
= α̇ =

(
ȧ

∂α

∂a
+ φ̇

∂α

∂φ

)
,

dβ

dt
= β̇ =

(
ȧ

∂β

∂a
+ φ̇

∂β

∂φ

)
The existence of the Noether symmetry implies the existence of a vector field X, such that:

LXL = 0 (105)

where LX stands for Lie derivative with respect to X. If we calculate LXL = 0, then it yields
(after simplifications):

α− aβ + 2a
∂α

∂a
− a2 ∂β

∂a
= 0 (106)

3α− aβ− 6
∂α

∂φ
+ 2a

∂β

∂φ
= 0 (107)

−6α + 3aβ− 3a
∂α

∂a
+ 6

∂α

∂φ
+ a2 ∂β

∂a
− 3a

∂β

∂φ
= 0 (108)

(3α− aβ)V + aβV′ = 0 (109)

obtaining the following solutions:

(1) Sol1:
α = C1a, β = 3C1, V = V0 (110)

(2) Sol2:

α = C1aneφ/2, β =
−3

n− 1
C1an−1eφ/2, V = V0enφ, n = (

√
3− 1)/2 (111)

or:

α = C2ameφ/2, β =
−3

m− 1
C2am−1eφ/2, V = V0emφ, m = −(

√
3 + 1)/2 (112)

so V = V0enφ, as we have obtained in the paper through different methods.
(3) Sol3

α = C3a +
(

C1a(
√

3−1)/2 + C2a(−
√

3−1)/2
)

eφ/2,

β = 3C3 +
((√

3 + 3
)

C1a(
√

3−3)/2 +
(

3−
√

3
)

C2a(−
√

3−3)/2
)

eφ/2, (113)

V = 0
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Therefore, we have found three different symmetries, which lead us to three different cosmological
scenarios with three potentials; constant, dynamical and vanishing.

We start by studying the solution Equation (112). Once we have calculated the symmetries, there
are several ways to obtain a complete solution, i.e., to obtain the exact expression for the scale factor
and the scalar function. The first of them consists of studying the conserved quantities, since the
existence of the symmetry X gives us a constant of motion, via the Noether theorem. The constant of
motion generated by Sol2 (Equation (112)) yields:

Q2 = iX2 θL = 2
√

3a(
√

3+1)/2e−φ/2C1

(
−
(√

3 + 3
)

ȧ + aφt

)
(114)

where the Cartan one form is given by θL = ∂ȧLda+ ∂φ̇Ldφ. If, for example, we set Q2 = 0, then we get:
φ = φ0 ln a. Thus, we see that the existence of the Noether symmetry allows us to determine a complete
integration. In the same way (see, for instance, [43,44]), we may observe that from the equation:

LXL = α∂aL+ α̇∂ȧL+ β∂aL+ β̇∂φ̇L = 0 (115)

where ∂ȧL = pa, and by taking into account the E-Lequations, then LXL = 0 yields:

d
dt
(
αpa + βpφ

)
= 0 (116)

therefore, the conserved quantity yields: Q = αpa + βpφ; so, in this case, we get:

(m− 1) Q = 6am+1e−φ/2 ((2m + 1) ȧ−maφt) (117)

If we set Q = 0, then we obtain:

φ =
(2m + 1)

m
ln a, m = −(

√
3 + 1)/2, φ =

(
3−
√

3
)

ln a (118)

by introducing this result into Equation (103), we get a(t) = ta1 , as is expected, and therefore, φ =

φ0 ln t, which is the solution obtained through the matter collineation approach and the invariant
solution obtained through the Lie group method. However, if Q 6= 0, then:

φ =
(2m + 1)

m
ln a− 2

m
ln
(
(m− 1) Q

12m
(t + c1)

)
(119)

and taking into account the first of the FE Equation (103), we get the following solution for the
scale factor:

a(t) = 2−
2
√

3
3

(
4c2 (t + c1)

√
3−1 + 3

(
4
√

3 + 7
)

V0

)√3
3

(120)

As a final remark about the invariant solution, we can also consider that it is possible to find an
invariant solution induced, for example, by:

α = C2ameφ/2, β =
−3

m− 1
C2am−1eφ/2, m = −(

√
3 + 1)/2

such that:
da
α

=
dφ

β
=⇒ φ =

3
1−m

ln a =
(

3−
√

3
)

ln a (121)

which is the conserved quantity deduced previously. However, all of these solutions are particular
solutions. Thus, in order to find the complete solution for the scalar function and the scale factor, we
may consider the following method. We use X for finding a new set of variables, in such a way that in
the new coordinates, the transformed Lagrangian is cyclic in one of them [14]. This is achieved iff, for
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z = z(a, φ) and w = w(a, φ), iX (dz) = 1, iX (dw) = 0, with α and β given by Equation (112), finding,
for example (there are several solutions, and not all of them work well), the following one:

w =
(√

3− 3
)

ln a + φ, z =

√
3

3
a

1
2 (3+

√
3)e−

1
2 φ (122)

and therefore:

a = e
√

3
6 w

(√
3

z

)−√3
3

, φ =
1
2

(
w
(√

3 + 1
)
+
(√

3− 1
)

ln 3 + 2
(

1−
√

3
)

ln
(

1
z

))
(123)

By rewriting the Lagrangian in the coordinates (w, z), it yields:

L̄ = −e−
1
2 w
(

2
√

3żẇ + V0e−
1
2 w(
√

3+2)
)

(124)

and therefore, the new E-L equations are:

ẅ =
ẇ2

2
, z̈ =

1
4

(
1 +
√

3
)

V0e−
1
2 w(
√

3+2) (125)

finding in this way that:

w = −2 ln
(
−1

2
(c1t + c2)

)
, c1, c2 ∈ R (126)

and:

z = K (c1t + c2)
4
(
−1

2
(c1t + c2)

)√3
+ c3t + c4 (127)

with K = V0

(√
3 + 1

) (√
3− 3

) (√
3− 4

)
/1248c2

1. Now, we recover the solution in the original
variables (a, φ):

a =

(
2
√

3
)√3/3

(−c1t− c2)
1
3
√

3

(
K (c1t + c2)

4
(
−1

2
(c1t + c2)

)√3
+ c3t + c4

)√3
3

(128)

φ = − ln
(
− 1

2 (c1t + c2)
) (√

3 + 1
)
+
(

1−
√

3
)

ln

(
1

K(c1t+c2)
4(− 1

2 (c1t+c2))
√

3
+c3t+c4

)
+ C1 (129)

with C1 =
(√

3− 1
)

ln 3. In order to get solutions with physical meaning, we need to impose the

assumption (ci)
4
i=1 ≤ 0. In the following plots (Figure 4), we show the behavior of the scale factor a(t),

the deceleration parameter q and the dilaton field φ(t). As we can see, the solution is inflationary, q < 1,
showing furthermore an acceleration expansion at late times, while the dilaton (eφ) is unbounded,
but the potential function is decreasing since V = V0emφ, with m = −(

√
3 + 1)/2 < 0. Compare this

solution to the obtained one in Equation (68).
We would like to emphasize that for an adequate choice of the constants of integration, basically,

we have obtained the following results:

a ≈ a0ta1 , φ ≈ φ0 ln t, V = V0enφ, a1, n ∈ R

which is, in essence, the same result as the obtained one in the previous sections.
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Figure 4. Plot of the quantities, a(t), q and φ(t). Numerical values of the constants: c1 = −1, c2 = −1,
c3 = −1/624 and c4 = 0. Note that the solution is inflationary and has an accelerated expansion at late
time without any transition to a decelerated era.

With regard to the first of the symmetries Equation (110), that is α = a, β = 3 and V = V0,
following the same steps as above, we find that Q = αpa + βpφ; therefore, −e−φ6a2 ȧ = Q, finding in
this way that:

a =
1
2

(
−4Q

∫
eφdt + 8c1

)1/3
(130)

but we are not able to obtain more information. Now, if we calculate the cv, z = z(a, φ) and w = w(a, φ),
induced by the symmetry, we may find that: w = −3 ln a, z = ln a; so a = ez and φ = w+ 3z. With these
new variables, the Lagrangian yields:

L = e−w
(

ẇ2 − 3ż2 + V0

)
(131)

in such a way that the new EL equations are:

z̈ = ẇż, (132)

2ẅ = ẇ2 + 3ż2 −V0 (133)

finding that

z = c1 + c2

∫
ewdt (134)

where c1, c2 are constants of integration, but we are only able to find a particular solution for w, w = w0,
that is a constant. Calculating the inverse cv, we arrive at the following solution:

a = et, φ = φ0t (135)

thus, this particular solution is quite similar to the obtained one through the Lie group method with
the symmetry [a, 1] .

7. Conclusions

We have studied how to find the functional form of the physical quantities, V, h, φ and ρ, of the
low energy string-inspired cosmological models by using several symmetry methods. We have proven,
through the matter collineation approach (MC), the exact form that each physical quantity must take in
the string frame; see Theorem 1. Therefore, we have proven that there exist self-similar solutions (SS)
and how each physical quantity must behave in order for the FE to admit such a kind of solution. In
the same way, we have formalized the use of power-law solutions (less restrictive than the self-similar
ones) by studying the wave equation for the dilaton through the Lie group method (LG); see Theorem 2.
Since we have not been able to find the general solution of the wave equation, then we have obtained
the invariant solution induced by the imposed symmetry. This invariant solution coincides with the
SS one. We have shown that the LG method is a powerful method to obtain the functional form of
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the unknown functions. In this paper, we have been more interested in obtaining solutions similar to
the SS ones, but by imposing other symmetries, we are able to obtain other integrable solutions, as
we have shown. In this case, the obtained solution is always inflationary, q = −1, and it verifies the
T-duality property for the scale factor, while the potential is constant, that is V = V0.

As examples, we have calculated exact self-similar and power-law solutions to several string
cosmological models by using two geometries, the FRW and the Bianchi Type II one. In these
models, we have studied how each physical field affects the solution, that is we have studied several
cosmological models in the four-dimensional NS-NSsector of low-energy effective string theory
coupled to a dilaton and an axion-like H-field within the string frame background; Cases (1)–(7).

In the FRW background, we have shown that, if we take into account the H-field, then the
solutions are quite restrictive, since in Case (3), where the effective stress-energy tensor is defined by
effTµν = (φ)Tµν + (H)Tµν, we obtained imaginary solutions, while in the rest of the cases studied, the
h-equation, that is Equation (59), brings us to get a1 = 1/3, that is the exponent of the scale factor only
takes this value. Nevertheless, we have obtained two solutions (see Cases (6 and 7)) that are interesting
from the physical point of view, since in these cases, we have obtained ρ0 > 0, φ0 < 0 (in this way, eφ

is bounded) and Λ > 0. Furthermore, in Case (6), we may find values for the free parameters in such a
way that the solution is also inflationary.

In the case of Bianchi Type II geometry, we have shown that there are only two self-similar
solutions, which correspond to Cases (2) and (6), where Case (6) could be of particular physical interest,
since in it, we found that the solution gives eφ bounded at late times, with Λ and ρ positive. The rest
of the obtained solutions under the self-similar hypothesis are unphysical, since the exponent of the
scale factor a(t) = ta1 is equal naught, a1 = 0. Therefore, the self-similar condition is very restrictive.
By working under the power-law hypothesis (less restrictive than the self-similar one), we have shown
that all of the obtained solutions collapse to the obtained ones with the FRW geometry, except in Case
(1), where the solution belongs to the Bianchi I class.

We have also studied the existence of Noether symmetries in the particular case of the FRW
geometry, finding three symmetries with different potentials, constant, dynamical and vanishing.
In the first of the studied cases, with a dynamical potential, we have shown that the conserved quantity
induced by this symmetry brings us to obtain the same result as with the MC and LG (power-law
solution) methods. However, in this case, we have been able to obtain a complete solution to the E-L
equations through the change of variables method. This solution is inflationary and has an accelerated
expansion at late times without any transition to a decelerated era, and for a suitable choice of the
constants of integration, it may collapse to the obtained one through the previous symmetry methods,
that is the MC and LG methods. In the second studied symmetry, we have shown that this solution
(particular solution) is very similar to the obtained one through the LGM (second solution). This
solution verifies the T−duality symmetry property and has a constant potential, and it is always
inflationary, since the deceleration parameter q = −1. Nevertheless, this method has some drawbacks
in comparison to the other ones. The Noether method is only applicable to one geometry (for example,
FRW), while with the other tactics, we have been able to get general results valid for any Bianchi
geometry and the FRW one; so, it is necessary to study case by case. Noether’s method also depends
on many change of variables, but not all of them bring us to get correct solutions from the physical
point of view. The matter collineation approach is maybe the simplest one, but as we have shown with
the examples, not all of the self-similar solutions have physical meaning, since we have obtained some
complex solutions (where the numerical constants belong to the complex numbers).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Matter Conservation

In this Appendix, we prove that the matter conservation condition is verified for the field
equations. We recall that FE in the string frame reads:
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Rν
µ −

1
2

gν
µR = eφTν

µ +
1

12

(
3HµλκHνλκ − 1

2
gν

µH2
)
− 1

2
gν

µV

− 1
2

gν
µ (∇φ)2 +

(
gν

µgλκ − gλ
µ gνκ

)
∇λ∇κφ

with the wave equation for the dilaton:

2�φ + R− (∇φ)2 −V + ∂φV − 1
12

H2 = 0

where:
Rν

µ = eφTν
µ +

1
4

HµλκHνλκ − gλ
µ gνκ∇λ∇κφ− 1

2
gν

µ∂φV

with ∇µ∇νφ = gλ
µ gνκ∇λ∇κφ.

Theorem 3. Field equations verify the condition, ∇νTν
µ = 0, that is there is matter conservation.

Proof. We start by rewriting the FE in the following form:

eφTν
µ = Rν

µ −
1
2

gν
µR− 1

12

(
3HµλκHνλκ − 1

2
gν

µH2
)
+

1
2

gν
µV

+
1
2

gν
µ (∇φ)2 −

(
gν

µgλκ − gλ
µ gνκ

)
∇λ∇κφ

so:

Tν
µ = e−φ

(
Rν

µ −
1
2

gν
µR− 1

12

(
3HµλκHνλκ − 1

2
gν

µH2
)
+

1
2

gν
µV +

1
2

gν
µ (∇φ)2 −

(
gν

µgλκ − gλ
µ gνκ

)
∇λ∇κφ

)
Now, we take the divergence of both sides of the above equation, that is:

∇νTν
µ = ∇ν

[
e−φ

(
Rν

µ −
1
2

gν
µR− 1

12

(
3HµλκHνλκ − 1

2
gν

µH2
)
+

1
2

gν
µV − gν

µ

(
�φ− 1

2
φ;λφ;λ

)
− φ;ν

;µ

)]
and splitting, it we obtain the following terms:

∇ν

[
e−φ

(
Rν

µ −
1
2

gν
µR
)]

=
(
e−φ
)

;ν

(
Rν

µ −
1
2

gν
µR
)

∇ν

[
e−φ

(
1

12

(
3HµλκHνλκ − 1

2
gν

µH2
))]

=
(
e−φ
)

;ν

(
1
12

(
3HµλκHνλκ − 1

2
gν

µH2
))

∇ν

[
e−φ

(
1
2

gν
µV
)]

=
(
e−φ
)

;ν
1
2

gν
µV + e−φ

(
1
2

gν
µV
)

;ν

∇ν

[
e−φ

(
gν

µ

(
�φ− 1

2
φ;λφ;λ

)
− φ;ν

;µ

)]
= A

where A stands for:

∇ν

[
e−φ

(
−gν

µ (�φ)
)]

= −
((

e−φ
)

;ν

(
gν

µ (�φ)
)
+ e−φ

(
gν

µ (�φ)
)

;ν

)
∇ν

[
e−φ

(
1
2

gν
µ

(
φ;λφ;λ

))]
=
(
e−φ
)

;ν
1
2

gν
µ

(
φ;λφ;λ

)
+ e−φ

(
1
2

gν
µ

(
φ;λφ;λ

))
;ν

∇ν

[
e−φ

(
−φ;ν

;µ

)]
= −

((
e−φ
)

;ν φ;ν
;µ + e−φφ;ν

;µ;ν

)
with: (

e−φ
)

;ν = −e−φφ;ν
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Therefore:

(
e−φ
)

;ν

(
Rν

µ −
1
2

gν
µR
)
= −e−φφ;ν

(
Rν

µ −
1
2

gν
µR
)

,

(
e−φ
)

;ν

(
1
12

(
3HµλκHνλκ − 1

2
gν

µH2
))

= −e−φφ;ν

(
1
12

(
3HµλκHνλκ − 1

2
gν

µH2
))

(
e−φ
)

;ν
1
2

gν
µV + e−φ

(
1
2

gν
µV
)

;ν
= − e−φ

2
φ;ν

(
gν

µV − gν
µ∂φV

)
and:

(
e−φ
)

;ν
1
2

gν
µ

(
φ;λφ;λ

)
+ e−φ

(
1
2

gν
µ

(
φ;λφ;λ

))
;ν
= − e−φ

2

(
φ;νgν

µ

(
φ;λφ;λ

)
− gν

µ

(
φ;λ;νφ;λ

))
−
((

e−φ
)

;ν

(
gν

µ (�φ)
)
+ e−φ

(
gν

µ (�φ)
)

;ν

)
= e−φ

(
φ;νgν

µ (�φ) +
(

gν
µ (�φ)

)
;ν

)
−
((

e−φ
)

;ν φ;ν
;µ + e−φφ;ν

;µ;ν

)
= e−φ

(
φ;νφ;ν

;µ − φ;ν
;µ;ν

)
and taking into account the identity:

φ;µRµ
ν = �(φ;ν)− (� φ);ν ,

and rearranging terms, we get:

e−φ
[

φ;ν
2

(
gν

µR +
(

1
6

(
3HµλκHνλκ − 1

2 gν
µH2

))
−
(

gν
µV − gν

µ∂φV
)
− gν

µ

(
φ;λφ;λ)+ 2gν

µ (�φ) + 2φ;ν
;µ

)
+ 1

2 gν
µ

(
φ;λ;νφ;λ)+ (gν

µ (�φ)
)

;ν
− φ;ν

;µ;ν − φ;νRν
µ

]
note that: (

gν
µ (�φ)

)
;ν
− φ;ν

;µ;ν − φ;νRν
µ = 0

thus:
φ;ν

2

(
2�φ + R− (∇φ)2 −V + ∂φV − 1

12
H2 + 2φ;ν

;µ

)
+

1
2

gν
µ

(
φ;λ;νφ;λ

)
where:

φ;ν

2
2φ;ν

;µ +
1
2

gν
µ

(
φ;λ;νφ;λ

)
= 0

and taking into account the conservation equation:

2�φ + R− (∇φ)2 −V + ∂φV − 1
12

H2 = 0

then we arrive at the conclusion that ∇νTν
µ = 0, as it is required.

With regard to the expression:

1
6

(
3HµλκHνλκ − 1

2
gν

µH2
)

we have only considered the term 1
2 gν

µH2, since the component (0, 0) of 3HµλκHνλκ is equal naught.
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