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Abstract: Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of
gravitation in which the past history of the gravitational field is taken into account. In this theory,
nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of
nonlocal gravity theory is derived and its consequences for “isolated" astronomical systems in virial
equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby
galaxy in virial equilibrium, the galaxy’s baryonic diameter D0—namely, the diameter of the smallest
sphere that completely surrounds the baryonic system at the present time—is predicted to be larger
than the effective dark matter fraction fDM times a universal length that is the basic nonlocality length
scale λ0 ≈ 3± 2 kpc.
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1. Introduction

In the standard theory of relativity, physics is local in the sense that a postulate of locality
permeates through the special and general theories of relativity. First, Lorentz invariance is extended in
a pointwise manner to actual, namely, accelerated, observers in Minkowski spacetime. This hypothesis
of locality is then employed crucially in Einstein’s local principle of equivalence to render observers
pointwise inertial in a gravitational field [1]. Field measurements are intrinsically nonlocal, however.
To go beyond the locality postulate in Minkowski spacetime, the past history of the accelerated observer
must be taken into account. The observer in general carries the memory of its past acceleration.
The deep connection between inertia and gravitation suggests that gravity could be nonlocal as well,
and, in nonlocal gravity, the gravitational memory of past events must then be taken into account.
Along this line of thought, a classical nonlocal generalization of Einstein’s theory of gravitation has
recently been developed [2–13]. In this theory, the gravitational field is local but satisfies partial
integro-differential field equations. Moreover, a significant observational consequence of this theory is
that the nonlocal aspect of gravity appears to simulate dark matter. The physical foundations of this
classical theory, from nonlocal special relativity theory to nonlocal general relativity, sets it completely
apart from purely phenomenological and ad hoc approaches to the problem of dark matter.

Dark matter is currently required in astrophysics for explaining the gravitational dynamics
of galaxies as well as clusters of galaxies [9], gravitational lensing observations [10] and structure
formation in cosmology [13]. We emphasize that only some of the implications of nonlocal gravity
theory have thus far been confronted with observation [9,12]. It is also important to mention here
that many other approaches to nonlocal gravitation theory exist that are, however, inspired by
developments in quantum field theory. The consideration of such theories is well beyond the scope of
this purely classical work.

In this paper, we are concerned with the Newtonian regime of nonlocal gravity, where Poisson’s
equation of Newtonian gravity is modified by the addition of a certain average over the gravitational field.
This nonlocal term involves a kernel function q whose functional form can perhaps be derived from
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a future more complete theory, but, at the present stage of the development of nonlocal gravity, must be
determined using observational data. It is necessary that a unique kernel be eventually chosen in this
way, but kernel q at the present time could be either q1 or q2 [6]. Each of these kernels is spherically
symmetric in space and contains three length scales a0, λ0, and µ−1

0 such that a0 < λ0 < µ−1
0 . The basic

scale of nonlocality is a galactic length λ0 of order 1 kpc, while a0 is a short-range parameter that
controls the behavior of q(r) as r → 0. At the other extreme, r → ∞, q(r) decays exponentially
as exp(−µ0 r), indicating the fading of spatial memory with distance. The short-range parameter
a0 is necessary in dealing with the gravitational physics of the Solar System, globular clusters and
isolated dwarf galaxies; however, it may be safely neglected in dealing with larger systems such
as clusters of galaxies. When a0 = 0, q1 and q2 reduce to a single kernel q0, q1 = q2 = q0, and the
remaining parameters (λ0 and µ0) have been determined from a comparison of the theory with the
astronomical data regarding a sample of 12 spiral galaxies from the THINGS catalog—see reference [9]
for a detailed treatment. The results can be expressed, for the sake of convenience, as λ0 ≈ 3 kpc and
µ−1

0 ≈ 17 kpc. Moreover, lower limits have been placed on a0 from the study of the precession of
perihelia of planetary orbits in the Solar System [12,14,15].

It is interesting to explore the implications of the virial theorem for nonlocal gravity. In general,
the virial theorem of Newtonian physics establishes a simple linear relation between the time averages
of the kinetic and potential energies of an isolated material system for which the potential energy
is a homogeneous function of spatial coordinates. For an isolated gravitational N-body system,
the significance of the virial theorem has to do with the circumstance that the kinetic energy is
a sum of terms each proportional to the mass of a body in the system, while the potential energy is a
sum of terms each proportional to the product of two masses in the system. Thus, under favorable
conditions, the virial theorem can be used to connect the total dynamic mass of an isolated relaxed
gravitational system with its average internal motion.

The main purpose of the present paper is to discuss, within the Newtonian regime of nonlocal
gravity, the consequences of the extension of the virial theorem to nonlocal gravity. Though such
an extension is technically straightforward, it is nevertheless physically quite significant as it allows
the possibility of making predictions regarding the effective dark-matter content of cosmologically
nearby isolated N-body gravitational systems in virial equilibrium.

2. Modification of the Inverse Square Force Law

It can be shown [12] that, in the Newtonian regime of nonlocal gravity, the force of gravity on
point mass m due to point mass m′ is given by:

F(r) = −Gmm′
r̂
r2

{
[1− E(r) + α0]− α0 (1 +

1
2

µ0 r) e−µ0 r
}

(1)

where r = xm − xm′ , r = |r| and r̂ = r/r. The quantity in curly brackets is henceforth denoted by 1 +N,
where N is the contribution of nonlocality to the force law and depends upon three parameters, namely,
α0, µ0 and a short-range parameter a0 that is contained in E ; in fact, E = 0 when a0 = 0. We will show
in the next section that N starts out from zero at r = 0 with vanishing slope and monotonically increases
toward an asymptotic value of about 10 as r → ∞. Thus, the gravitational force in Equation (1) is
always attractive; moreover, this force is central, conservative and satisfies Newton’s third law of motion.

Nonlocal gravity is in the early stages of development and, depending on whether we choose
kernel q1 or kernel q2, E(r) at the present time can be either

E1(r) =
a0

λ0
ep
[

E1(p)− E1(p + µ0r)
]

(2)
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or

E2(r) =
a0

λ0

{
− r

r + a0
e−µ0r + 2ep

[
E1(p)− E1(p + µ0r)

]}
(3)

respectively, where p = µ0 a0, λ0 = 2/(α0 µ0) and E1(u) is the exponential integral function [16]:

E1(u) =
∫ ∞

u

e−t

t
dt (4)

For u : 0 → ∞, E1(u) > 0 monotonically decreases from infinity to zero. In fact, near u = 0,
E1(u) behaves like − ln u and as u→ ∞, E1(u) vanishes exponentially. Furthermore,

E1(x) = −C− ln x−
∞

∑
n=1

(−x)n

n n!
(5)

where C = 0.577 . . . is Euler’s constant. It is useful to note that

e−u

u + 1
< E1(u) ≤

e−u

u
(6)

(see Equation 5.1.19 in reference [16]).
It is clear from Equation (1) that α0 is dimensionless, while µ−1

0 , λ0 and a0 have dimensions
of length. In fact, we expect that a0 < λ0 < µ−1

0 ; moreover, the short-range parameter a0 and E may
be neglected in Equation (1) when dealing with the rotation curves of spiral galaxies and the internal
gravitational physics of clusters of galaxies. In this way, α0 and µ0 have been tentatively determined
from a detailed comparison of nonlocal gravity with observational data [9]:

α0 = 10.94± 2.56 , µ0 = 0.059± 0.028 kpc−1 (7)

Hence, we find λ0 = 2/(α0 µ0) ≈ 3 ± 2 kpc. It is important to mention here that λ0 is the
fundamental length scale of nonlocal gravity at the present epoch; indeed, for λ0 → ∞, N → 0 and
Equation (1) reduces to Newton’s inverse square force law. In what follows, we usually assume
α0 ≈ 11 and µ−1

0 ≈ 17 kpc for the sake of convenience. Furthermore, we expect that p = µ0 a0 is such
that 0 < p < 1

5 . In reference [12], preliminary lower limits have been placed on a0 on the basis of current
data regarding planetary orbits in the Solar System. For instance, using the data for the orbit of Saturn,
a preliminary lower limit of a0 & 2× 1015 cm can be established if we use E1, while a0 & 5.5× 1014 cm
if we use E2.

Let us note that
dE1

dr
=

a0

λ0

1
a0 + r

e−µ0 r (8)

and
dE2

dr
=

a0

λ0

a0 + 2r + µ0 r(a0 + r)
(a0 + r)2 e−µ0 r (9)

Therefore, E1(r) and E2(r) start from zero at r = 0 and monotonically increase as r → ∞;
furthermore, they asymptotically approach E1(∞) = E∞ and E2(∞) = 2 E∞, respectively, where

E∞ =
1
2

α0 p epE1(p) (10)
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It is a consequence of (6) that E∞ < α0/2, so that, in the gravitational force in Equation (1),

α0 − E(r) > 0 (11)

In the Newtonian regime, where we formally let the speed of light c → ∞, retardation effects
vanish and gravitational memory is purely spatial. The resulting gravitational force in Equation (1)
thus consists of two parts: an enhanced attractive “Newtonian” part and a repulsive fading spatial
memory (“Yukawa”) part with an exponential decay length of µ−1

0 ≈ 17 kpc. Equation (1) is such that it
reduces to Newton’s inverse square force law for r → 0, as it should [17–21], and on galactic scales, it is
a generalization of the phenomenological Tohline-Kuhn modified gravity approach to the flat rotation
curves of spiral galaxies [22–25]. An excellent review of the Tohline-Kuhn work is contained in the
paper of Bekenstein [26].

For r� µ−1
0 , the exponentially decaying (“fading memory") part of Equation (1) can be neglected and

F(r) ≈ −Gmm′ [1+ α0−E(∞)]

r2 r̂ (12)

so that m′ [α0−E(∞)] has the interpretation of the total effective dark mass associated with m′. For a0 = 0,
the net effective dark mass associated with point mass m′ is simply α0 m′, where α0 ≈ 11 [9]. On the
other hand, for a0 6= 0, the corresponding result is α0 ε(p)m′, where

ε1(p) = 1− 1
2

p ep E1(p) , ε2(p) = 1− p ep E1(p) (13)

depending on whether we use E1 or E2, respectively. The functions in Equation (13) start from unity at
p = 0 and decrease monotonically to ε1(0.2) ≈ 0.85 and ε2(0.2) ≈ 0.70 at p = 0.2; they are plotted in
Figure 1 of reference [12] for p : 0→ 0.2. If a0 turns out to be just a few parsecs or smaller, for instance,
then ε1 ≈ ε2 ≈ 1.

A detailed investigation reveals that it is possible to approximate the exterior gravitational force
due to a star or a planet by assuming that its mass is concentrated at its center [12]. In this connection,
we note that the radius of a star or a planet is generally much smaller than the length scales a0,
λ0 and µ−1

0 that appear in the nonlocal contribution to the gravitational force. Therefore, one can
employ Equation (1) in the approximate treatment of the two-body problem in astronomical systems
such as binary pulsars and the Solar System, where possible deviations from general relativity may
become measurable in the future.

Consider, for instance, the deviation from the Newtonian inverse square force law, namely,

δ F(r) = − Gmm′ r̂
r2 N(r) (14)

For r < a0, it is possible to show via an expansion in powers of r/a0 that [12]

δ F1(r) = −
1
2

Gmm′

λ0 a0
(1+ p) r̂+

1
3

Gmm′

λ0 a0
(1+ p + p2)

r
a0

r̂+ · · · (15)

if E1 is employed, or

δ F2(r) = −
1
3

Gmm′

λ0 a0
(1+ p)

r
a0

r̂+ · · · (16)

if E2 is employed. Perhaps dedicated missions, such as ESA’s Gaia mission that was launched in 2013,
can measure the imprint of nonlocal gravity in the Solar System [27,28]. In this connection, we note that

1
2

G M�
λ0 a0

(1+ p) ≈
(1018 cm

a0

)
10−14 cm s−2 (17)
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which, combined with lower limits on a0 established in reference [12], is at least three orders of
magnitude smaller than the acceleration involved in the Pioneer anomaly (∼ 10−7 cm s−2). It follows
from these results that nonlocal gravity is consistent with the gravitational physics of the Solar System.

3. Virial Theorem

Consider an idealized isolated system of N Newtonian point particles with fixed masses mi,
i = 1, 2, . . . , N. We assume that the particles occupy a finite region of space and interact with each
other only gravitationally such that the center of mass of the isolated system is at rest in a global
inertial frame and the isolated system permanently occupies a compact region of space. The equation
of motion of the particle with mass mi and state (xi, vi) is then

mi
d vi
dt

= −∑
j

′ G mi mj (xi − xj)

|xi − xj|3
[1+N(|xi − xj|)] (18)

for j = 1, 2, . . . , N, but the case j = i is excluded in the sum by convention. In fact, a prime over the
summation sign indicates that in the sum j 6= i. Here, 1+N(r) is a universal function that is inside the
curly brackets in Equation (1) and the contribution of nonlocality, N(r), is given by

N(r) = α0

[
1− (1+

1
2

µ0 r) e−µ0 r
]
−E(r) (19)

Consider next the quantities

I = 1
2 ∑

i
mi x2

i ,
d I
dt

= ∑
i

mi xi · vi (20)

where xi = |xi| and
d2 I
dt2 = ∑

i
mi v2

i +∑
i

mi xi ·
d vi
dt

(21)

It follows from Equation (18) that

∑
i

mi xi ·
d vi
dt

= −∑
i,j

′ G mi mj (xi − xj) · xi

|xi − xj|3
[1+N(|xi − xj|)] (22)

Exchanging i and j in the expression on the right-hand side of Equation (22), we get

∑
i

mi xi ·
d vi
dt

= ∑
i,j

′ G mi mj (xi − xj) · xj

|xi − xj|3
[1+N(|xi − xj|)] (23)

Adding Equations (22) and (23) results in

∑
i

mi xi ·
d vi
dt

= −1
2 ∑

i,j

′ G mi mj

|xi − xj|
[1+N(|xi − xj|)] (24)

Using this result, Equation (21) takes the form

d2 I
dt2 = ∑

i
mi v2

i −
1
2 ∑

i,j

′ G mi mj

|xi − xj|
[1+N(|xi − xj|)] (25)
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Let us recall that the net kinetic energy and the Newtonian gravitational potential energy of the
system are given by

T =
1
2 ∑

i
mi v2

i , WN = −1
2 ∑

i,j

′ G mi mj

|xi − xj|
(26)

Hence,
d2 I
dt2 = 2T+WN +D (27)

where

D = −1
2 ∑

i,j

′ G mi mj

|xi − xj|
N(|xi − xj|) (28)

and N is given by Equation (19).
Finally, we are interested in the average of Equation (27) over time. Let < f > denote the time

average of f , where

< f > = lim
τ→∞

1
τ

∫ τ

0
f (t) dt (29)

Then, it follows from averaging Equation (27) over time that

2 < T > = − < WN > − < D > (30)

since d I/dt, which is the sum of m x · v over all particles in the system, is a bounded function of time
and hence the time average of d2 I/dt2 vanishes. This is clearly based on the assumption that the spatial
coordinates and velocities of all particles indeed remain finite for all time. Equation (30) expresses the
virial theorem in nonlocal Newtonian gravity.

It is important to digress here and re-examine some of the assumptions involved in our derivation
of the virial theorem. In general, any consequence of the gravitational interaction involves the whole
mass-energy content of the universe due to the universality of the gravitational interaction; therefore,
an astronomical system may be considered isolated only to the extent that the tidal influence of
the rest of the universe on the internal dynamics of the system can be neglected. Moreover, the
parameters of the force law in Equation (1) refer to the present epoch and hence the virial theorem
in Equation (30) ignores cosmological evolution. Thus, the temporal average over an infinite period
of time in Equation (30) must be reinterpreted here to mean that the relatively isolated system under
consideration has evolved under its own gravity such that it is at the present epoch in a steady
equilibrium state. That is, the system is currently in virial equilibrium. Finally, we recall that a point
particle of mass m in Equation (30) could reasonably represent a star of mass m as well, where the mass
of the star is assumed to be concentrated at its center.

The deviation of the virial theorem in Equation (30) from the Newtonian result is contained in
< D >, where D is given by Equation (28). More explicitly, we have

D = −1
2 ∑

i,j

′ G mi mj

|xi − xj|

[
α0− α0 (1+

1
2

µ0 |xi − xj|) e−µ0 |xi−xj| −E(|xi − xj|)
]

(31)

It proves useful at this point to study some of the properties of the function N, which is the
contribution of nonlocality that is inside the square brackets in Equation (31). The argument of this
function is |xi − xj| > 0 for i 6= j; therefore, |xi − xj| varies over the interval (0,D0], where D0 is the
largest possible distance between any two baryonic point masses in the system. Thus, N(r), in the
context of the virial theorem, is defined for the interval 0 < r ≤ D0, where D0 is the diameter of
the smallest sphere that completely encloses the baryonic system for all time. In general, however,
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N(0) = 0 and N(∞) = α0 − E(∞) > 0, where E(∞) = E∞ or 2E∞, depending on whether we use E1

or E2, respectively. Moreover, dN(r)/dr is given by

d
dr

N1(r) =
1
2

α0 µ0
r [1+ µ0 (a0 + r)]

a0 + r
e−µ0 r (32)

if we use E1 or
d
dr

N2(r) =
1
2

α0 µ0
r2 [1+ µ0 (a0 + r)]

(a0 + r)2 e−µ0 r (33)

if we use E2. Writing exp (µ0 r) = 1+ µ0 r +R, where R > 0 represents the remainder of the power
series, it is straightforward to see that for r ≥ 0 and n = 1, 2, . . . ,

eµ0 r (a0 + r)n > rn [1+ µ0 (a0 + r)] (34)

This result, for n = 1 and n = 2, implies that the right-hand sides of Equations (32) and (33),
respectively, are less than α0 µ0/2. Therefore, it follows that, in general,

d
dr

N(r) < 1
2

α0 µ0 (35)

Moreover, for r > 0, (35) implies:

N(r) =
∫ r

0

dN(x)
dx

dx <
1
2

α0 µ0 r (36)

We conclude that N is a monotonically increasing function of r that is zero at r = 0 with a slope
that vanishes at r = 0. For r � µ−1

0 , N(r) asymptotically approaches a constant α0 ε := α0 − E(∞).
Here, ε(p) is either ε1(p) or ε2(p) depending on whether we use E1 or E2, respectively. The functions
ε1(p) and ε2(p) are defined in Equation (13).

4. Dark Matter

Most of the matter in the universe is currently thought to be in the form of certain elusive particles
that have not been directly detected [29–32]. The existence and properties of this dark matter have thus
far been deduced only through its gravity. We are interested here in dark matter only as it pertains
to stellar systems such as galaxies and clusters of galaxies [33–39]. We mention that dark matter is
also essential in the explanation of gravitational lensing observations [40,41] and in the solution of the
problem of structure formation in cosmology [13,42]; however, these topics are beyond the scope of
this work.

Actual (mainly baryonic) mass is observationally estimated for astronomical systems using the
mass-to-light ratio M/L. However, it turns out that the dynamic mass of the system is usually larger
and this observational fact is normally attributed to the possible existence of nonbaryonic dark matter.
Let M be the baryonic mass and MDM be the mass of the nonbaryonic dark matter needed to explain
the gravitational dynamics of the system. Then,

fDM =
MDM

M
(37)

is the dark matter fraction and M + MDM = M (1+ fDM) is the dynamic mass of the system.
In observational astrophysics, the virial theorem of Newtonian gravity is interpreted to be

a relationship between the dynamic (virial) mass of the entire system and its average internal motion
deduced from the rotation curve or velocity dispersion of the bound collection of masses in virial equilibrium.
Therefore, regardless of how the net amount of dark matter in galaxies and clusters of galaxies is
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operationally estimated and the corresponding fDM is thereby determined, for sufficiently isolated
self-gravitating astronomical systems in virial equilibrium, we must have

2 < T > = −(1+ fDM) < WN > (38)

That is, virial theorem Equation (38) is employed in astronomy to infer in some way the total
dynamic mass of the system. Indeed, Zwicky first noted the need for dark matter in his application of
the standard virial theorem of Newtonian gravity to the Coma cluster of galaxies [33,34].

5. Effective Dark Matter

A significant physical consequence of nonlocal gravity theory is that it appears to simulate dark
matter [9]. In particular, in the Newtonian regime of nonlocal gravity, the Poisson equation is modified
such that the density of ordinary matter ρ is accompanied by a term ρD that is obtained from the
folding (convolution) of ρ with the reciprocal kernel of nonlocal gravity. Thus, ρD has the interpretation
of the density of effective dark matter and ρ + ρD is the density of the effective dynamic mass.

The virial theorem makes it possible to elucidate in a simple way the manner in which nonlocality
can simulate dark matter. It follows from a comparison of Equations (30) and (38) that nonlocal gravity
can account for this “excess mass” if

< D > = fDM < WN > (39)

where WN and D are given in Equations (26) and (28), respectively.
It is interesting to apply the virial theorem of nonlocal gravity to sufficiently isolated astronomical

N-body systems. The configurations that we briefly consider below consist of clusters of galaxies with
diameters D0 � µ−1

0 ≈ 17 kpc, galaxies with D0 ∼ µ−1
0 and globular star clusters with D0 � µ−1

0 .
The results presented in this section follow from certain general properties of the function N(r) and
are completely independent of how the baryonic matter is distributed within the astronomical system
under consideration.

We emphasize that, after setting the short-range parameter a0 = 0, the parameters α0 and µ0,
and hence λ0, were originally determined from the combined observational data for the rotation curves
of a sample of 12 nearby spiral galaxies from the THINGS catalog [9]. These tentative values are given
in Equation (7). These parameter values were then found to be in reasonable agreement with the
internal dynamics of a sample of 10 rich nearby clusters of galaxies from the Chandra X-ray catalog [9].
In the present paper, we use these parameter values to make predictions about all nearby isolated
N-body gravitational systems that are in virial equilibrium.

5.1. Clusters of Galaxies: fDM ≈ α0 ε(p)

Consider, for example, a cluster of galaxies, where nearly all of the relevant distances are much
larger than µ−1

0 ≈ 17 kpc. In this case, µ0 r� 1 and hence N approaches its asymptotic value, namely,

N ≈ α0 ε(p) (40)

where ε = ε1 or ε2, defined in Equation (13), depending on whether we use E1 or E2, respectively.
Hence, Equation (28) can be written as:

< D >≈ α0 ε(p) < WN > (41)
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It then follows from Equation (39) that, for galaxy clusters,

fDM ≈ α0 ε(p) (42)

in nonlocal gravity. We recall that ε is only weakly sensitive to the magnitude of a0. It follows from
α0 ≈ 11 that fDM for galaxy clusters is about 10, in general agreement with observational data [9].
This theoretical result is essentially equivalent to the work on galaxy clusters contained in reference [9],
except that Equation (42) takes into account the existence of the short-range parameter a0.

Nonlocal gravity thus predicts that the effective dark matter fraction fDM has approximately the
same constant value of about 10 for all isolated nearby clusters of galaxies that are in equilibrium.

5.2. Galaxies: fDM < D0/λ0

Consider next a sufficiently isolated galaxy of diameter D0 in virial equilibrium. In this case,
we recall that N(r) is a monotonically increasing function of r, so that for 0 < r ≤ D0, Equation (36) implies

N(r) ≤ N(D0) <
1
2

α0 µ0D0 (43)

Therefore, it follows from Equation (28) that, in this case,

D > (
1
2

α0 µ0D0)WN (44)

The virial theorem for nonlocal gravity in the case of an isolated galaxy is then

2 < T > + < WN > < − (
1
2

α0 µ0D0) < WN > (45)

which means, when compared with Equation (38), that

fDM <
1
2

α0 µ0D0 (46)

Let us note that
1
2

α0 µ0 =
1

λ0
(47)

where λ0 is the basic nonlocality length scale. Its exact value is not known; however, from the results
of reference [9], we have λ0 ≈ 3± 2 kpc. If we formally let λ0 → ∞, then (46), namely, fDM < D0/λ0,
implies that in this case nonlocality and the effective dark matter both disappear, as expected. Therefore,
for a sufficiently isolated galaxy in virial equilibrium, the ratio of its baryonic diameter to dark matter
fraction fDM must always be above a fixed length λ0 of about 3± 2 kpc; that is,

D0

fDM
> λ0 (48)

To illustrate (48), consider, for instance, the Andromeda Galaxy (M31) with a diameter D0 of
about 67 kpc. In this case, we have fDM ≈ 12.7 [43,44], so that for this spiral galaxy

D0

fDM
(Andromeda Galaxy) ≈ 5.3 kpc (49)

More recently, the distribution of dark matter in M31 has been further studied in reference [45].
Similarly, for the Triangulum Galaxy (M33), we have D0 ≈ 34 kpc and fDM ≈ 5 [46], so that

D0

fDM
(Triangulum Galaxy) ≈ 6.8 kpc (50)
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Turning next to an elliptical galaxy, namely, the massive E0 galaxy NGC 1407, we haveD0 ≈ 160 kpc
and fDM ≈ 31 [47], so that

D0

fDM
(NGC 1407) ≈ 5.2 kpc (51)

Moreover, for the intermediate-luminosity elliptical galaxy NGC 4494, which has a half-light
radius of Re ≈ 3.77 kpc, the dark matter fraction has been found to be fDM = 0.6± 0.1 [48]. Assuming that
the baryonic system has a radius of 2 Re, we have D0 = 4 Re ≈ 15 kpc and fDM ≈ 0.6; hence,

D0

fDM
(NGC 4494) ≈ 25 kpc (52)

Let us note that the results presented here are essentially for the present epoch in the expansion of
the universe. Observations indicate, however, that the diameters of massive galaxies can increase with
decreasing redshift z. For a discussion of such massive compact galaxies, see reference [49].

Finally, it is interesting to consider fDM at the other extreme, namely, for the case of globular star
clusters and isolated dwarf galaxies. The diameter of a globular star cluster is about 40 pc. We can
therefore conclude from (48) with λ0 ≈ 3 kpc that for globular star clusters:

fDM (globular star cluster) . 10−2 (53)

Thus, according to the virial theorem of nonlocal gravity, less than about one percent of the mass
of a globular star cluster must appear as effective dark matter if the system is sufficiently isolated and is
in virial equilibrium. It is not clear to what extent such systems can be considered isolated. It is usually
assumed that observational data are consistent with the existence of almost no dark matter in globular
star clusters. However, a recent investigation of six galactic globular clusters has led to the conclusion
that fDM ≈ 0.4 [50]. The resolution of this discrepancy is beyond the scope of the present work.

Isolated dwarf galaxies with diameters D0 � µ−1
0 would similarly be expected to contain

a relatively small percentage of effective dark matter. There is a significant discrepancy here as well,
see reference [51]; again, the resolution of this difficulty is beyond the scope of this paper. In dwarf
systems that are not isolated, the tidal influence of a much larger neighboring galaxy on the dynamics
of the dwarf spheroidal galaxy cannot be ignored [52–54].

6. Discussion

Nonlocal gravity theory predicts that the amount of effective dark matter in a sufficiently isolated
nearby galaxy in virial equilibrium is such that fDM has an upper bound, D0/λ0, that is completely
independent of the distribution of baryonic matter in the galaxy. However, it is possible to derive
an improved upper bound for fDM, which does depend on how baryons are distributed within the galaxy.
To this end, we note that Equation (28) for D and N(r) < r/λ0 imply:

D > −1
2 ∑

i,j

′ G mi mj

λ0
(54)

If follows from this result together with Equation (39) that

< WN > fDM > −1
2 ∑

i,j

′ G mi mj

λ0
(55)

Let us define a characteristic length, Rav, for the average extent of the distribution of baryons in
the galaxy via

Rav < WN >= −1
2 ∑

i,j

′ G mi mj (56)
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Then, it follows from (55) and Equation (56), that

fDM <
Rav

λ0
(57)

Clearly, Rav depends upon the density of baryons in the galaxy. In the Newtonian gravitational
potential energy in Equation (56), 0 < |xi − xj| ≤ D0; therefore, in general, Rav ≤ D0; hence, we
recover from the new inequality, namely, fDM < Rav/λ0, our previous less tight but more general
result fDM < D0/λ0.
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