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Abstract: As gravitational waves are now being nearly routinely measured with interferometers, the
question of using them to probe new physics becomes increasingly legitimate. In this article, we rely
on a well established framework to investigate how the complex frequencies of quasinormal modes
are affected by different models. The tendencies are explicitly shown for both the pulsation and the
damping rate. The goal is, at this stage, purely qualitative. This opportunity is also taken to derive
the Regge-Wheeler equation for general static and spherically symmetric metrics.

1. Introduction

General relativity (GR) is our best theory of spacetime. While the Lovelock theorem [1] ensures
that it cannot be easily modified, there are quite a lot of attempts to relax some hypotheses and build a
deeper model to describe the gravitational field. From effective quantum gravity to improved infrared
properties, the motivations to go beyond GR are countless. So are the situations, both in astrophysics
and cosmology, where extended gravity theories can, in principle, be tested. In practice, reaching the
level of accuracy useful to probe the relevant range of parameters is obviously far from trivial. In this
article we focus on a specific aspect of gravitational waves that would be emitted during the relaxation
phase of a deformed black hole (BH).

We will consider quasinormal modes associated with the ringdown phase of a BH merger.
The modes are not strictly normal due to energy losses of the system through gravitational waves.
The boundary conditions for the equation of motion are unusual as the wave has to be purely outgoing
at infinity and purely ingoing at the event horizon. The time component of the radial part reads
(an introductory review can be found in [2]):

e−iωt = e−i(ωR+iωI)t, (1)

the complex pulsation ω being split into a real part ωR, which corresponds to the frequency, and
an imaginary one ωI , which is the inverse timescale of the damping. Stability requires ωI < 0.
While real-life BHs are spinning, we focus on Schwarzschild solutions in this article. The details of
these predictions can not be used to directly compare with observations. We, however, expect the
general tendencies and orders of magnitudes to remain correct, as they can be checked for the general
relativistic case in [3].

Whether one considers “axial” or “polar” perturbations, the linearized Einstein equations lead
to wave equations with different potentials. In GR, the (so-called Regge-Wheeler) potential for axial
perturbations is:

VRG
` (r) =

(
1− 2M

r

) [
`(`+ 1)

r2 − 6M
r3

]
, (2)
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while the (so-called Zerilli) one for polar perturbations is:

VZ
` (r) =

2
r3

(
1− 2M

r

)
×

× 9M3 + 3a2Mr2 + a2(1 + a)r3 + 9M2ar
(3M + ar)2 , (3)

where a = `(`+ 1)/2− 1. Throughout the paper we use Planck units. In the purely gravitational sector,
one needs ` ≥ 2. Interestingly, both those equations have the very same spectrum of quasinormal
modes (QNMs). This property, called isospectrality [4], is not always true in modified gravity (see [5]
for an extension and a discussion of the original proof). Basically, quasinomal modes are described by
their multipole number ` and their overtone number n. The fundamental quadrupolar mode (n = 0
and ` = 2) for a Schwarzschild BH in GR is given by Mω ≈ 0.374− 0.0890i.

There are many different ways to calculate the QNMs: Continued fractions, Frobenius
series, Mashhoon’s method, confluent Heun’s equation, characteristic integration, shooting,
Wentzel-Kramers-Brillouin (WKB) approximations, etc. In this article we focus on the last approach.
For most models considered here, the QNMs have already been calculated in previous studies.
However, this has most of the time been done for s = 0 or s = 1, not for s = 2 as we have done it
here. More importantly, it is in addition very useful to rely on the very same method to investigate all
models so that the differences underlined are actually due to physical effects and not to numerical
issues. Even when the same approach is considered, the way it is implemented is often different
enough, between articles, so that it is hard to directly compare the results. This is why we have
here tried to methodically consider several modified gravity models with a well controlled WKB
approximation scheme used in the same way in all cases so as to compare the tendencies between
modified gravity proposals. This is not mandatory for this qualitative step but this will become useful
in future quantitative studies.

The determination of the complex frequencies of QNMs is difficult (see [6,7] for historical reviews
and [8,9] for results based on numerical approaches). This work is based on the WKB approach
described in [10]. Following the pioneering work in [11], the WKB method for QNMs was developed
in [12–15]. This formalism leads to fairly good approximations, especially for high multipole and low
overtone numbers. In the following, we restrict ourselves to n < l and use the sixth order WKB method
developed by Konoplya [10] (see also [16–18]). This allows one to recast the potential appearing in the
effective Schrödinger equation felt by gravitational perturbations in a complex but tractable form.

The aim of this introductory paper is to investigate how several modified gravity theories impact
the QNMs at the qualitative level. There are several ways to go beyond GR: Extra dimensions, weak
equivalence principle violations, extra fields, diffeomorphism–invariance violations, etc. Beyond those
technicalities, there are strong conceptual motivations to consider extended gravity approaches, from
the building of an effective quantum gravity theory to the improvements of the renormalisation
properties, through the implementation of a dynamical cosmological constant. Among many others,
examples of recent relevant works on QNMs can be found in [19–22].

2. Perturbation Dynamics

The QNMs are solutions of a perturbation equation with the specific boundary conditions given
in the previous section. The radial and angular parts can be separated. The radial part is governed by
a Schrödinger-like equation:

d2Z
dr∗2

+ V(r)Z = 0, (4)

where Z is the radial part of the “perturbation” variable, assumed to have a time-dependance eiωt, and
r∗ is the tortoise coordinate. For a metric such that:
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ds2 = f (r)dt2 − f (r)−1dr2 − r2dθ2 − r2 sin2 θdφ2, (5)

the tortoise coordinate is defined by:

dr∗ =
1

f (r)
dr. (6)

It tends to −∞ at the event horizon and to +∞ at spatial infinity.
As explained previously, BH gravitational perturbations can be of two different types

distinguished by their behavior under a parity transformation. For an angular momentum l, axial
perturbations transform as (−1)l under parity, while polar perturbations transform as (−1)l+1.
This leads to the two different potentials in Equation (4). The potential for the gravitational
axial perturbations reads in full generality (see [2] and references therein) for the metric given by
Equation (5):

V(r) = f (r)
(

λ + 2( f (r)− 1)
r2 − f ′(r)

r

)
. (7)

In this work we will not consider the isospectrality-violation issues and we will focus only on
such perturbations. It should anyway be kept in mind that, in principle, isospectrality might not hold.

The boundary conditions can be expressed as:

Z ∼ e−iωr∗ r∗ → −∞, (8)

Z ∼ eiωr∗ r∗ → +∞. (9)

We shall now derive the Regge-Wheeler equation for the more general (spherical and static) metric:

ds2 = A(r)dt2 − B(r)−1dr2 − H(r)dθ2 − H(r) sin2 θd2φ. (10)

For this metric, the tortoise coordinate is defined by:

d
dr∗

=
√

AB
d
dr

. (11)

The general form of an axisymmetric metric can be written as [4]:

ds2 = e2ν(dx0)2 − e2ψ(dx1 − σdx0 − q2dx2 − q3dx3)2

−e2µ2(dx2)2 − e2µ3(dx3)2, (12)

where t = x0, φ = x1, r = x2 and θ = x3. For the metric given by Equation (10), the correspondence is:

e2ν = A(r), e−2µ2 = B(r),

e2µ3 = H(r), e2ψ = H(r) sin2 θ, (13)

σ = q2 = q3 = 0.

A perturbation of this kind of spacetime is described by σ, q2 and q3, assumed to be first order
quantities, and by infinitesimal increments, δν, δµ2, δµ3, of the other quantities. We focus here on axial
perturbations. The point is to linearize the field equations about the solution given by Equation (10),
considering components where σ, q2 and q3 are only functions of t, x2 and x3. The equations governing
σ, q2 and q3 are described by the vanishing of the Ricci tensor components:
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R12 = R13 = 0. (14)

For Equation (12), one has [4] :

R12 =
1
2

e−2ψ−ν−µ3 ×

[(e3ψ−ν−µ2+µ3 Q02),0 − (e3ψ+ν−µ2−µ3 Q32),3], (15)

with:
Qab = qa,b − qb,a and Qa0 = qa,0 − σ,a for a, b = 2, 3. (16)

where the comma indicates the derivative. The notation Q0a is used to mean −Qa0. The component
R13 is also given by Equation (15) by switching indices 2 and 3.

The perturbed field equations are obtain by δRαβ = 0. After replacing ν, µ2, µ3 and ψ by their
expressions, δR12 = 0 leads to:

(H sin3 θ
√

ABQ23),3 = −H2 sin3 θ

√
B
A

Q02,0. (17)

By defining:

Q =
√

ABHQ23 sin3 θ, (18)

one obtains: √
A
B

1
H2 sin3 θ

∂Q
∂θ

= Q20,0. (19)

For δR13 = 0, one is led to:

√
AB

H sin3 θ

∂Q
∂r

= −Q30,0. (20)

We assume that perturbations have a time dependance given by: eiωt. This implies that Equations
(19) and (20) read: √

A
B

1
H2 sin3 θ

∂Q
∂θ

= −ω2q2 − iωσ,2, (21)

√
AB

H sin3 θ

∂Q
∂r

= ω2q3 + iωσ,3. (22)

Taking the derivative of Equation (21) with respect to θ and the derivative of Equation (22) with
respect to r and combining the results leads to:

sin3 θ
∂

∂θ

(
1

sin3 θ

∂Q
∂θ

)
+

H2B
A

∂

∂r

(√
AB
H

∂Q
∂r

)
+ σ2 QH

A
= 0. (23)

As suggested in [4], one can then separate the variables r and θ using:

Q(r, θ) = R(r)C−3/2
l+2 (θ) (24)

with Cm
n the Gegenbauer function satisfying:(

d
dθ

sin2m θ
d
dθ

+ n(n + 2m) sin2m θ

)
Cm

n (θ) = 0. (25)

Inserting Equation (24) into Equation (23), one is led to following radial equation:
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H2 B
A

∂

∂r

(√
AB
H

∂R(r)
∂r

)
+

H
A

σ2µ2R(r) = 0, (26)

where µ2 = (l − 1)(l + 2). Defining Z so that R =
√

HZ and using the tortoise coordinate, we are led
to a Schrödinger-like equation:

d2Z
dr∗2

+ (σ2 −V(r))Z = 0, (27)

where the potential is:

V(r) =
1

2H2

(
dH
dr∗

)2

+
µ2 A

H
− 1√

H
d2

dr∗2

(√
H
)

. (28)

The potential reduces to Equation (7) for A(r) = B(r) and H(r) = r2. This derivation is useful to
calculate QNMs for general static and spherically symmetric metrics.

3. The WKB Approximation

The WKB approximation [12–14] is known for leading to good approximations (compared to
numerical results) for the QNMs. The potential is written using the tortoise coordinate so as to be
constant at r∗ → 0 (which represent the horizon of the BH) and at r∗ → +∞ (which represents spatial
infinity). The maximum of the potential is reached at r∗0 . Three regions can be identified: Region I
from −∞ to r1, the first turning point (where the potential vanishes), region I I from r1 to r2, the second
turning point, and region I I I from r2 to +∞. In region I I, a Taylor expansion is performed around r∗0 .
In regions I and I I I, the solution is approximated by an exponential function:

Z ∼ exp
[

1
ε

∞

∑
n=0

εnSn(x)
]

, ε→ 0. (29)

This expression can be inserted into Equation (4) so as to obtain Sj as a function of the potential
and its derivative. We then impose the boundary conditions given by Equation (9) and match the
solutions of regions I and I I I with the solution for region I I at the turning points r1 and r2, respectively.
The WKB approximation has been usefully extended from the third to the sixth order in [10].

This allows one to derive the complex frequencies as a function of the potential and its derivatives
evaluated at the maximum. For the sixth order treatment, one is led to:

ω2 = V0 − i
√
−2V′′0

( 6

∑
j=2

Λj + n +
1
2

)
, (30)

where the expressions of the Λjs can be found in [10]. In the following, we use this scheme to compare
different modified gravity models and we present results only in the range of validity of the WKB
approximations.

Interesting recent considerations on the convergence on the WKB series are given in [23].
Details on the expansion parameter used in this work can be found in [17]. The consistency of
the WKB approximation has been checked for the presented results.

4. Modified Gravity Models and Results

Throughout this section we investigate some properties of the QNMs for several extended gravity
approaches. We pretend in no way to do justice to the subtleties of those models and, when necessary,
we explicitly choose specific simplified settings to make the calculations easily tractable.

As we focus on phenomenological aspects, the more interesting mode is the fundamental one:
n = 0 and l = 2. We therefore focus on a few points around this one (keeping in mind that the accuracy
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is better for higher values of l). In all the figures, the lower overtone n is the one with the smallest
imaginary part.

We first consider models with a metric of the form:

ds2 = f (r)dt2 − f (r)−1dr2 − r2dθ2 − r2 sin2 θd2φ, (31)

and then investigate a model with two different metric functions, using the result obtained in
Equation (28).

4.1. Massive Gravity

In GR, the graviton is a massless spin-2 particle. One of the first motivations for modern massive
gravity—which can be seen as a generalization of GR—was the hope to account for the accelerated
expansion of the Universe by generating a kind of Yukawa-like potential for gravitation [24]. The initial
linear approach to massive gravity contained a Boulware-Deser ghost, which was cured in the dRGT
version [25–28]. Massive gravity also features interesting properties for holography (see, e.g., [29]).

Starting from the action:

S =
1

16π

∫
d4x

√
−g
(

R + m2U (g, φa)
)

, (32)

where R is the Ricci scalar and U is the potential for the graviton, the following black hole solution can
be derived [30,31]:

f (r) = 1− 2M
r

+
Λr2

3
+ γr + ε, (33)

where Λ, γ and ε are, respectively:

Λ = 3m2(1 + a + b),

γ = −cm2(1 + 2a + 3b),

ε = c2m2(a + 3b), (34)

with a and b being two dimensionless constants and c being positive. It should also be pointed out
that a positive value of γ might raise consistency issues [31].

The results are presented in Figure 1. The values chosen for the constants do, of course, change
the amplitude of the displacement of the QNMs. The global trend, which is the point of this study,
however, remains the same. Increasing the graviton mass m tends to increase the real part of QNMs,
that is the frequency of the oscillations. The difference in frequency between the fundamental and the
first overtone also increases with m. The effect on the imaginary part is hardly noticeable on the plot,
even though a slight increase, which is actually 50% less important, in relative variation, than the shift
in frequency, should be noticed. The values considered here for the mass are, of course, way out of the
known bounds, but this is clearly not the point. As a specific feature, one can notice that the frequency
shift due to massive corrections decreases for higher overtones. The shift patterns are mostly the same
whatever the multipole number considered.



Universe 2019, 5, 202 7 of 14

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9
Re(ω)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
-Im(ω)

Massive Gravity

Figure 1. Quasinormal modes (QNMs) in massive gravity. The left block is for l = 2, the middle
one corresponds to l = 3 and the right one is for l = 4. The dark points correspond to the
Schwarzschild QNMs. The arbitrary constants a, b and c have been taken to one. From left to right:
m = {15, 30, 45, 60, 75} × 10−3.

4.2. Modified Scalar–Tensor–Vector (STV) Gravity

The scalar–tensor–vector modified gravitational theory (MOG) allows the gravitational constant,
a vector field coupling, and the vector field mass to vary with space and time [32]. The equations
of motion lead to an effective modified acceleration law that can account for galaxy rotation curves
and cluster observation without dark matter. While it has recently been much debated and put under
pressure, the theory is still worth considering seriously. We consider the field equation for the metric
tensor [33] :

Rµν = −8πGTφµν, (35)

where the gravitational coupling is G = GN(1 + α), with GN being the Newton’s constant.
The gravitational strength of the vector field φµ (spin 1 graviton) is Qg =

√
αGN M. With Bµν =

∂µφν − ∂νφµ, the energy-momentum tensor for the vector field is :

Tφµν = − 1
4π

(Bµ
αBνα −

1
4

gµνBαβBαβ), (36)

with the constant ω of [32] being set to one. Solving the vacuum field equations:

∇νBµν =
1√−g

∂ν(
√
−gBµν) = 0, (37)

and:
∇σBµν +∇µBνσ +∇νBσµ = 0, (38)

with the appropriate symmetry leads to the metric:

f (r) = 1− 2M
r

+
α(1 + α)M2

r2 . (39)
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We focus on the case where the field equations for Bµν are non-linear, as the phenomenology
is then richer, and we consider the relevant choice α < αc = 0.67 where there are two horizons and
appropriate potential behavior for the WKB approximation to hold. An up-to-date investigation of
QNMs in MOG can be found in [34].

The results are given in Figure 2. The imaginary part of the QNMs is nearly the same whatever
the value of α: The modified metric has no effect on the damping rate. However, increasing α does
increase of the real part, that is the frequency. The effect is important for values near the critical value
αc. The slope of the Imaginary part versus the real one, at a given l for different values of n, is nearly
independent of α. This slope is not directly observable but it shows how the structure of the QNMs
changes with the overtone number. The curves remain here parallel one to the other: This means that
increasing the deformation parameter does not change the frequency shift between overtones.
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Modified Gravity

Figure 2. QNMs in modified SVT gravity. The left block is for l = 2, the middle one corresponds to
l = 3 and the right one is for l = 4. The dark points correspond to the Schwarzschild QNMs. From left
to right: α = {1, 2, 3, 4, 5} × 10−1.

4.3. Hořava-Lifshitz Gravity

Hořava-Lifshitz gravity bets on the fundamental nature of the quantum theory instead of relying
on GR principles. It is a renormalizable UV-complete gravitational theory which is not Lorentz
invariant in 3 + 1 dimensions [35]. The relativistic time with its Lorentz invariance emerges only at
large distances. Black hole solutions have been found [36–38] and QNMs were studied [39].

Using the ansatz:

ds2 = −N2(r) dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) (40)
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in the action, one is led to the Lagrangian:

L̃1 =
κ2µ2N

8(1− 3λ)
√

f

(
λ− 1

2
f ′2 − 2λ( f − 1)

r
f ′ (41)

+
(2λ− 1)( f − 1)2

r2 − 2w(1− f − r f ′)

)
, (42)

where w = 8µ2(3λ− 1)/κ2. For λ = 1, the solution is:

N2 = f (r) =
2(r2 − 2Mr + β)

r2 + 2β +
√

r4 + 8βMr
, (43)

with β = 1/(2w), w being the deformation parameter enterring the action given in [37]. There are two
horizons for M2 > β.

The results are given in Figure 3. The frequency increases with an increase of β. Interestingly,
the imaginary part of the overtones is highly sensitive to β. This remains true for higher multipoles.
The relative variation of the imaginary part is nearly the same whatever the overtone number.
It therefore becomes large in absolute value for high n values.
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Figure 3. QNMs in Horava-Lifshits gravity. The left block is for l = 2, the middle one corresponds to
l = 3 and the right one is for l = 4. The dark points correspond to the Schwarzschild QNMs. From left
to right: β = {15, 30, 45, 60, 75} × 10−2.

4.4. h̄ Correction

It has been known for a long time that quantum corrections to the Newtonian gravitational
potential can be rigorously derived without having a full quantum theory of gravity at disposal (see,
e.g., [40–44] to cite only a few works from a very long list). Recently, a quite similar approach was
developed [45] requiring that the quantum mechanically corrected metric reproduces the corrected
Newtonian limit, reproduces the standard result for the entropy of black holes including the known
corrections and fulfills some consistency conditions regarding the geodesic motion.

The resulting metric is:
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f (r) = 1− 2M
r

+ γ
2M
r3 . (44)

We use, as previously, natural units and the coefficients of the last term, γ, is proportional to h̄ in
these models. It is worth noticing that there has been a long controversy about the value and the sign
of the γ factor. From the phenomenological perspective, we do not fix it to a particular value but we
keep it negative, in agreement with the latest expectations.

The results are given in Figure 4. For large values of γ, the effects are noticeable on the frequency.
It is remarkable that, from our analysis, the real part of the complex frequency is only decreased,
which is not the case for the other models that have been considered in this study. The higher the
absolute value of γ, the larger the difference of frequency between the fundamental and the overtones.
This effect, however, remains quite subtle.
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Figure 4. QNMs in quantum-corrected gravity. The left block is for l = 2, the middle one corresponds
to l = 3 and the right one is for l = 4. The dark points correspond to the Schwarzschild QNMs.
From left to right: γ = {−5,−4,−3,−2,−1}.

4.5. LQG Polymeric BH

Loop quantum gravity (LQG) is a non-perturbative and background-independant quantum theory
of gravity [46]. In the covariant formulation, space is described by a spin network [47]. Each edge
carries a “quantum of area”, labelled by a half integer j, associated with a irreducible representations
of SU(2). Each node carries a “quantum of space” associated with an intertwiner. A key result is that
the area is quantized according to:

A(j) = 8πγBI

√
j(j + 1), (45)

with γBI being the Barbero-Immirzi parameter. Black holes are usually described in LQG through an
isolated horizon puncturing a spin network [48] and the phenomenology is very rich, depending on
the precise setting chosen [49]. We focus here on the model developed in [50], as this is the one leading
to metric modifications outside the horizon, where a regular lattice with edges of lengths δb and δc

is considered. Requiring the minimal area to be one derived in LQG, one is left with only one free
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parameter δ. From this minisuperspace approximation, a static spherical solution can be derived and
is given by:

ds2 = −G(r)dt2 +
dr2

F(r)
+ H(r)dΩ2 ,

G(r) =
(r− r+)(r− r−)(r + r∗)2

r4 + a2
o

,

F(r) =
(r− r+)(r− r−)r4

(r + r∗)2(r4 + a2
o)

,

H(r) = r2 +
a2

o
r2 , (46)

where dΩ2 = dθ2 + sin2 θdφ2, r+ = 2m and r− = 2mP2 are the two horizons, and r∗ =
√

r+r− = 2mP,
P is the polymeric function defined by P = (

√
1 + ε2 − 1)/(

√
1 + ε2 + 1) with ε = γBIδ, and the

area parameter a0 is given by a0 = Amin/8π, Amin being the minimum area appearing in LQG.
The parameter m in the solution is related to the ADM mass M by M = m(1 + P)2.

The results are given in Figure 5. The damping rate does not depend at all on the polymerization
parameter. The real part of the complex frequency does, however, first decrease with δ. Noticeably, the
slope is unchanged, and varying the deformation parameter just leads to a horizontal translation of the
QNM frequency in the complex plane. This means that the frequency shift between the fundamental
and the overtones does not depend on the amplitude of the quantum gravity corrections, as in modified
gravity. Interestingly, for higher values of δ, the frequency begins to increase. This is the only model
considered in this study with non-monotonic behavior. For δ ≈ 10−0.7 the “polymerization” effect
nearly exactly compensates the “area discretization" effect and one recovers the GR frequencies (and
damping rates).
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Figure 5. QNMs in loop quantum gravity (LQG) (polymer black holes (BHs)). The left block is for
l = 2, the middle one corresponds to l = 3 and the right one is for l = 4. The dark points correspond
to the Schwarzschild QNMs. The parameters are a0 = 1 and from left to right: ε = 10−x with
x ∈ {−1,−0.8,−0.6,−0.4,−0.2}.
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5. Conclusions

This study shows the evolution of the complex frequency of quasinormal modes of a
Schwarzschild black hole for the fundamental and the first overtones for a few multipole numbers.
We have considered massive gravity, STV gravity, Hořava-Lifshitz gravity, quantum corrected gravity
and loop quantum gravity. All the results were derived using the very same WKB approximation
scheme which makes a meaningful comparison possible. It will be especially useful for future
quantitative studies.

Obviously, distinguishing between those models with observations is more than challenging.
First, because there exist degeneracies, for given overtone and multipole numbers, between the
models—when taking into account that the values of the parameters controlling the deformation are
unknown. Second, because the intrinsic characteristics of the observed black holes are also unknown,
which induces other degeneracies. In addition, this study should be extended to Kerr black holes,
which also add some degeneracies in addition to the complexity.

Some interesting trends can, however, be underlined. For all models, the effects of modifying the
gravitational theory are more important for the real part than for the imaginary part of the complex
frequency of the QNMs. Stated in another way, the frequency shift is more important than the change
in the damping rate. Obviously, it does not make sense to quantitatively compare the results from
various models, as the deformation parameters are different. However, the “trends” are clearly specific
to each studied theory and there is no need to define comparable “steps” in the deformation parameters
(which do not have the same units anyway) to draw significant conclusions about the directions in
which the different models considered deviate from GR. In addition, the sign of the frequency shift,
and its dependance upon the overtone and multipole numbers, is characteristic of a given extension of
GR. The accurate patterns are never the same, which is an excellent point for phenomenology. It can
basically be concluded that a meaningful use of QNMs to efficiently investigate modified gravity
requires the measurement of several relaxation modes. This is in principle possible [51], but way
beyond the sensitivity of current interferometers. If features beyond GR were to be observed, the
direction of the frequency shift in the complex plane would already allow the exclusion of models, as
this article shows. The goal of this study was not to perform a detailed analysis of the discrimination
capabilities of gravitational wave experiments, it simply aimed at exhibiting the main tendencies for
currently considered extended gravity models, as an introduction to this special issue on “probing
new physics with black holes”.
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36. Colgain, E.O.; Yavartanoo, H. Dyonic solution of Hořava-Lifshitz gravity. J. High Energy Phys. 2009, 8, 21.
[CrossRef]

37. Kehagias, A.; Sfetsos, K. The black hole and FRW geometries of non-relativistic gravity. Phys. Lett. 2009,
B678, 123. [CrossRef]

38. Lu, H.; Mei, J.; Pope, C.N. New black holes in five dimensions. Nuclear Phys. 2009, B806, 436. [CrossRef]
39. Chen, S.; Jing, J. Quasinormal modes of a black hole in the deformed Hořava-Lifshitz gravity. Phys. Lett. B
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