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Abstract: We study the Jeans instability of an infinite homogeneous dissipative self-gravitating
Bose–Einstein condensate described by generalized Gross–Pitaevskii–Poisson equations [Chavanis, P.H.
Eur. Phys. J. Plus 2017, 132, 248]. This problem has applications in relation to the formation of dark
matter halos in cosmology. We consider the case of a static and an expanding universe. We take into
account an arbitrary form of repulsive or attractive self-interaction between the bosons (an attractive
self-interaction being particularly relevant for the axion). We consider both gravitational and
hydrodynamical (tachyonic) instabilities and determine the maximum growth rate of the instability
and the corresponding wave number. We study how they depend on the scattering length of the
bosons (or more generally on the squared speed of sound) and on the friction coefficient. Previously
obtained results (notably in the dissipationless case) are recovered in particular limits of our study.
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1. Introduction

Cosmological observations have revealed that baryonic (visible) matter represents only 5% of
the content of the Universe. The rest of the Universe is invisible, being made of 25% dark matter
(DM) and 70% dark energy (DE) [1]. DE has been introduced to explain why the expansion of
the universe is presently accelerating. This may be due to a nonvanishing value of the Einstein
cosmological constant [2], to a scalar field (SF) rolling down a potential like quintessence [3], or to
an exotic fluid with a negative pressure like the Chaplygin gas [4]. DM has been introduced to
explain why the rotation curves of disk galaxies tend to a plateau at large distances with a constant
rotational velocity v∞ ∼ 200 km/s [5] instead of declining according to the Keplerian law like for
the rotation of the planets around the sun (the rotation curves go up to 50 kpc while the mass of
visible matter converges within ∼10 kpc).1 Although some authors like Milgrom [7] have proposed an
explanation of the flat rotation curves of the galaxies in terms of a theory of modified gravity (MOND)
without the need for DM, the most likely scenario is to assume that galaxies are surrounded by DM
halos whose mass M(r) ∼ v2

∞r/G increases linearly with the distance so that the rotational velocity
v(r) =

√
GM(r)/r → v∞. This is the case if DM halos can be modeled as an isothermal gas with an

effective temperature kBT/m = v2
∞/2. In that case, their density decreases as kBT/(2πGmr2) at large

distances yielding flat rotation curves [8].

1 The first hints about the existence of a large amount of invisible matter in the universe date back to Zwicky [6] in 1933.
He applied the virial theorem to the Coma cluster and found that some mass was missing to interpret the observations.
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The standard model of cosmology, called the ΛCDM model, is based on the assumption that
DM is a classical pressureless gas (P = 0) and that DE is due to the cosmological constant Λ.
DM could be made of (still hypothetical) particles called weakly interacting massive particles (WIMPs).
These particles could be supersymmetric (SUSY) particles [9] with a mass in the GeV-TeV range.
However, no evidence of such particles has been found at this day. In addition, although the
ΛCDM model works extremely well at large (cosmological) scales, and can explain measurements
of the cosmic microwave background (CMB) [1], it faces several difficulties at small (galactic) scales.
Indeed, numerical simulations of CDM [10] predict that DM halos should be cuspy (with a central
density diverging as r−1 when r → 0) while observations [11] rather favor core density profiles.
This is the so-called core–cusp problem [12]. On the other hand, since the Jeans length of classical
matter at zero temperature vanishes, the ΛCDM model predicts that structures can form at all scales.
This implies in particular an over-abundance of subhalos around the Milky Way. This leads to the
missing satellite problem [13] and to the too big to fail problem [14]. The ΛCDM model therefore
faces an important small-scale crisis [15].

There have been several attempts to solve the problems of the CDM model. For example,
one can invoke the feedback of baryons to transform cusps into cores [16]. Alternatively, if DM
is self-interacting [17], the “collisions” between particles can create an isothermal core instead of a cusp.
Similarly, warm dark matter [18] explains the cores in terms of a balance between the gravitational
attraction and the velocity dispersion of the particles. Another interesting suggestion is to take into
account quantum mechanics or wave effects. Indeed, a general feature of quantum mechanics is
to generate an effective pressure even at zero absolute temperature. This quantum pressure could
prevent gravitational collapse. Interestingly, quantum effects are negligible at large scales, returning the
classical ΛCDM model (and maintaining its virtues), but they manifest themselves at small scales and
may solve the CDM crisis.

Some authors have considered the possibility that the DM particle is a fermion like a massive
neutrino (see the Introduction of Ref. [19] for a short review and an exhaustive list of references).
In that case, the gravitational attraction is balanced by the quantum pressure accounting for the Pauli
exclusion principle like in white dwarf stars [20]. This leads to the formation of a fermion ball at
T = 0. This quantum object is equivalent to a polytrope of index n = 3/2. Assuming that the smallest
(ultra-compact) DM halo observed in the universe with a typical mass M ∼ 108 M� and a typical radius
R ∼ 1 kpc corresponds to the ground state (T = 0) of the self-gravitating Fermi gas, one finds that the
mass of the fermionic DM particle is m = 170 eV/c2 (see Appendix D of [21] and Section II. of [22]).
Larger halos are described by the Fermi–Dirac distribution function at nonzero temperature. They have
a core–halo structure made of a completely degenerate quantum core (fermion ball) surrounded by
a classical isothermal halo (see, e.g., [23–25]). The fermion ball solves the core–cusp problem and
the isothermal halo accounts for the flat rotation curves of the galaxies at large distances. The core
mass—halo mass relation of fermionic DM halos has been determined in [22] from thermodynamical
arguments, i.e., by maximizing the entropy at fixed mass and energy.

Other authors have considered the possibility that the DM particle is a boson, like an ultralight
axion (ULA) (see the Introduction of Ref. [26] for a short review and an exhaustive list of references).
At T = 0, the bosons are in the form of self-gravitating Bose–Einstein condensates (BECs). They are
described by a single wavefunction which is determined by the Schrödinger-Poisson equations if
the bosons are noninteracting or by the Gross–Pitaevskii–Poisson (GPP) equations if the bosons are
self-interacting (see, e.g., [27,28]). This leads to the BECDM model that will be the main focus of the
present paper. In this model, the gravitational attraction is balanced by the pressure (or the quantum
potential) accounting for the Heisenberg uncertainty principle like in boson stars [29,30]. This leads
to the formation of a quantum core often referred to as a soliton. If the bosons are self-interacting,
there is an additional pressure arising from their scattering. If the interaction is repulsive the pressure
is positive and counteracts the gravitational attraction. In the TF approximation, a self-gravitating BEC
is equivalent to a polytrope of index n = 1. If the interaction is attractive (which is the case of the axion)



Universe 2020, 6, 226 3 of 54

the pressure is negative and adds up to the gravitational attraction. In that case, BECDM halos can
exist only below a maximum mass Mmax = 1.012 h̄/

√
Gm|as| first identified in [28].2 Assuming that

the smallest (ultra-compact) DM halo observed in the universe with a typical mass M ∼ 108 M�
and a typical radius R ∼ 1 kpc corresponds to the ground state (T = 0) of the self-gravitating BEC,
one finds that the mass of the bosonic DM particle is m ∼ 2.92× 10−22 eV/c2 if it is noninteracting.
These ultralight particles are not excluded by particle physics. Bosons with an attractive self-interaction
sensibly have the same mass otherwise the minimum halo would be unstable (M > Mmax). Bosons with
a repulsive self-interaction can have a mass up to 18 orders of magnitude larger than the mass of
noninteracting bosons (see Appendix D of [21] and Section II. of [22] for more details). Larger DM halos
have a core–halo structure made of a quantum core (soliton) surrounded by a halo of scalar radiation
resulting from quantum interferences and presenting granularities. This core–halo structure is observed
in direct numerical simulations of BECDM [34–41]. The density profile of the halo is consistent with the
Navarro–Frenk–White (NFW) [10] profile of CDM simulations and with the observational Burkert [11]
profile, both decreasing as r−3 at large distances, or with an isothermal profile characterized by an
effective temperature Teff decreasing as r−2 at large distances. The soliton solves the core–cusp problem
and the approximately isothermal halo accounts for the flat rotation curves of the galaxies at large
distances. The core mass–halo mass relation of bosonic DM halos was first determined numerically
in [35] for noninteracting bosons and explained by heuristic arguments. It has also been determined
from thermodynamical arguments in [22] for noninteracting and self-interacting bosons.

The formation of DM halos is a two-stages process. The first stage corresponds to the Jeans
instability. An infinite homogeneous self-gravitating gas is dynamically unstable and forms clumps
which are regions of over-density. This corresponds to the linear regime of structure formation.
When the density of these clumps has grown significantly, the system enters in the nonlinear regime
of structure formation. In that case, the gas undergoes gravitational collapse. It experiences free fall
followed by a series of damped oscillations (due to an exchange between kinetic and potential energy)
until it reaches a virialized state with a core–halo structure. This correspond to a process of collisionless
violent relaxation [42] and gravitational cooling [43] (in the case of bosons). This fast collisionless
relaxation, which takes place on a few dynamical times, is more relevant than the slow collisional
relaxation which takes place on a timescale larger than the age of the universe (see, e.g., [25,44,45]
for a detailed discussion).

The dynamical instability of an infinite homogeneous classical self-gravitating gas was first
studied by Jeans [46] in a seminal paper. He identified a critical length λJ = 2πcs/

√
4πGρ,

where cs =
√

P′(ρ) is the speed of sound in the gas, above which the gas becomes unstable
and fragments. The perturbations with a wavelength λ > λJ grow exponentially rapidly with time,
while the perturbations with λ < λJ oscillate without attenuation as gravity-modified sound waves.
Therefore, structure formation is suppressed on scales smaller than the Jeans length, and allowed on
larger scales.3 The Jeans instability of classical barotropic gases and collisionless stellar systems is
reviewed in [47]. This instability is fundamentally responsible for the formation of the large-scale
structures observed in the Universe.

More recently, the Jeans stability analysis has been generalized for quantum particles in the
context of the BECDM model. This study was initiated by Khlopov et al. [48] and Bianchi et al. [49]
for a general relativistic SF described by the Klein–Gordon–Einstein (KGE) equations, and followed by
Hu et al. [50] and Sikivie and Yang [51] for nonrelativistic BECs without self-interaction described by
the Schrödinger-Poisson equations, by Chavanis [28] for nonrelativistic self-interacting BECs described

2 This maximum mass has a nonrelativistic origin. It is physically different from the maximum mass of fermion stars [31]
and boson stars [29,30,32,33] that is due to general relativity.

3 We note that the Jeans length vanishes in the pressureless CDM model (cs = 0⇒ λJ = 0). As a result, there is no “ground
state” in this model so that structures can form at all scales. This leads to the different aspects of the CDM small-scale crisis
mentioned above.
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by the GPP equations, and by Suárez and Chavanis [52] for general relativistic self-interacting BECs
described by the Gross–Pitaevskii–Einstein (GPE) equations. These authors showed that the formation
of structures is suppressed at small scales even at T = 0 (unlike in the CDM model) because of the
quantum pressure (Heisenberg) or the self-interaction of the bosons (in the repulsive case). They also
determined the quantum Jeans length λJ and the quantum Jeans mass MJ which provide an estimate
of the minimum size and mass of BECDM halos (ground state).4 We refer to Suárez and Chavanis [52]
for an exhaustive study of the Jeans instability in the BECDM model in Newtonian gravity and general
relativity and for different estimates of the Jeans length and Jeans mass depending on the type of DM
particle considered (noninteracting bosons, or bosons with a repulsive or an attractive self-interaction).
The Jeans instability of rotating BECs in Newtonian gravity has been considered recently by Harko [53].

The original Jeans stability analysis [46] assumes that the universe is static (it was performed
long before the discovery of the expansion of the universe). The study of structure formation in an
expanding universe was first considered by Lifshitz [54] in general relativity and by Bonnor [55]
(for a gas) and Gilbert [56] (for a stellar system) in Newtonian gravity. In that case, it is found that the
perturbations above the Jeans length grow algebraically rapidly instead of exponentially rapidly as in
the original Jeans analysis. The study of structure formation in the BECDM model in an expanding
background was first studied by Bianchi et al. [49] for a general relativistic SF and by Sikivie and
Yang [51] for nonrelativistic BECs without self-interaction. The case of self-interacting BECs was
studied by Chavanis [57] and Suárez and Chavanis [58] in Newtonian gravity, and by Suárez and
Matos [59] and Suárez and Chavanis [58] in general relativity.5

Recently, we have introduced a generalized GP equation—coupled to the Poisson
equation—involving an arbitrary form of self-interaction (repulsive or attractive), an effective
temperature, and a source of dissipation equivalent to a friction or a damping [61]. This new wave
equation may have different interpretations: (i) It may describe dissipative self-gravitating BECs;
(ii) it may provide a heuristic parametrization (on a coarse-grained scale) of the processes of violent
relaxation and gravitational cooling experienced by a self-gravitating BEC fundamentally described
by the ordinary GPP equations; (iii) it may provide a numerical algorithm to construct stable steady
states of the ordinary GPP equations; (iv) it may arise from the fractal structure of space–time that
manifests itself at very large (astrophysical) scales [62] in the theory of scale relativity [63]. In Ref. [61]
we have initiated the study of the Jeans stability problem in the framework of these generalized
GPP equations. We have established the general dispersion relation including dissipation effects and
showed that the Jeans length is not affected by dissipation, thereby returning the expression of the
quantum Jeans length for a self-interacting BEC obtained in our former work [28]. In the present
paper, we study this dispersion relation in greater detail. We give particular consideration to the
case of an attractive self-interaction (appropriate to the axion) which can induce an “hydrodynamical”
(tachyonic) instability in addition to the gravitational instability. We determine the maximum growth
rate of this instability with or without self-gravity and study how it depends on the scattering length
of the bosons (through the squared speed of sound) and on the friction coefficient. We recover in
particular limits the results previously obtained in the literature.

The paper is organized as follows. In Section 2, we recall the general equations of the problem
and discuss their physical interpretations. We consider spatially inhomogeneous equilibrium states
of the generalized GPP equations representing BECDM halos and derive the fundamental equation
of quantum hydrostatic equilibrium. We also consider an infinite homogeneous self-gravitating

4 This is just an order of magnitude because the Jeans stability analysis is only valid in the linear regime of structure formation
(it describes the initiation of the large-scale structures of the universe) while DM halos form in the nonlinear regime after a
complicated process of free fall, violent relaxation, and gravitational cooling.

5 These studies are valid for a complex SF in Newtonian gravity and general relativity. They rely on the Madelung-de Broglie
hydrodynamical representation of the GPP and KGE wave equations (see, e.g., [60] for details). Cosmological perturbations
and gravitational instability in the case of a real SF in general relativity described by the KGE equations has been studied by
numerous authors (see an exhaustive list of references in [52]).



Universe 2020, 6, 226 5 of 54

BEC in a static or in an expanding universe and derive the linearized equations that can be used
to study the formation of structures in the linear regime. In the following sections, we focus on an
infinite homogeneous self-gravitating BEC in a static background and study the generalized Jeans
dispersion relation. In Sections 3 and 4 we review previously obtained results in the frictionless
limit and in the strong friction limit. In Section 5 we consider dissipative BECs with a repulsive
or a vanishing self-interaction. In Section 6 we consider dissipative BECs with an attractive
self-interaction. In Section 7 and in the conclusion we provide a summary of our results and a
discussion. The Appendices bring additional results or present alternative manners to derive the basic
equations of the problem.

2. Dissipative Self-Gravitating Bose–Einstein Condensates

2.1. Generalized Gross–Pitaevskii–Poisson Equations

We assume that DM is made of bosons (e.g., the axion) in the form of BECs. We use a nonrelativistic
approach based on Newtonian gravity. In the standard BECDM model, the evolution of the wave
function ψ(r, t) of the BEC is governed by the GPP equations (see, e.g., [27,28])

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + mΦψ +

4πas h̄2

m2 |ψ|2ψ, (1)

∆Φ = 4πG|ψ|2, (2)

where Φ(r, t) is the gravitational potential, m is the mass of the bosons, and as is their scattering length.
The interaction between the bosons is repulsive when as > 0 and attractive when as < 0 (the bosons
are noninteracting when as = 0). The mass density of the BEC is ρ(r, t) = |ψ|2.

To cover a greater variety of situations, we replace the GP Equation (1) by the generalized GP
equation introduced in [61]

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ +

4πas h̄2

m2 |ψ|2ψ + mΦψ + mΦextψ + 2kBT ln |ψ|ψ− i
h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ (3)

or, even more generally,

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + m

dVint

d|ψ|2 ψ + mΦψ + mΦextψ + 2kBT ln |ψ|ψ− i
h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ. (4)

The first term is the kinetic term which accounts for the Heisenberg uncertainty principle.
The second term takes into account the self-interaction of the bosons. The third term accounts for the
self-gravity of the BEC. The fourth term is an external potential which takes into account the possible
presence of a central black hole, the influence of dark energy (cosmological constant), tidal effects etc.
The fifth term is an effective temperature term and the sixth term is a friction (or damping) term.6

The usual GP Equation (1) is recovered when T = ξ = 0, Vint = (2πas h̄2/m3)|ψ|4, and Φext = 0. It is
convenient to introduce the total potential

V(|ψ|2) = Vint(|ψ|2) + Vth(|ψ|2) with Vth(|ψ|2) =
kBT
m
|ψ|2(ln |ψ|2 − 1), (5)

6 The interpretation of these terms will become clear in the hydrodynamical representation of the generalized GPP equations
given in the following section. In a sense, we can obtain the wave Equation (4) from the quantum damped Euler
Equations (14)–(19) by using the “inverse” Madelung transformation. However, this wave equation may have a more
profound meaning as explained in interpretation (ii) below.
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where Vint takes into account self-interaction effects and Vth takes into account thermal effects. We can
then rewrite Equation (4) as

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + m

dV
d|ψ|2 ψ + mΦψ + mΦextψ− i

h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ. (6)

In the following we take Φext = 0 since it will play no role in our analysis.
Finally, we take into account the expansion of the universe. In an expanding background,7

the generalized GPP equations take the form (see Refs. [57,58,60,64] and Appendix C)

ih̄
∂ψ

∂t
+

3
2

ih̄Hψ = − h̄2

2ma2 ∆ψ + m
dV

d|ψ|2 ψ + mΦψ− i
h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ, (7)

∆Φ
4πGa2 = |ψ|2 − 3H2

8πG
, (8)

where a(t) is the scale factor and H = ȧ/a is the Hubble parameter. Multiplying Equation (7) par ψ∗

and subtracting the resulting equation with its complex conjugate, we obtain after simplification

∂

∂t
(a3|ψ|2) +∇ ·

[
ih̄a
2m

(ψ∇ψ∗ − ψ∗∇ψ)

]
= 0. (9)

This equation has the form of a continuity equation

∂

∂t
(ρa3) +∇ · J = 0 (10)

with the current
J =

ih̄a
2m

(ψ∇ψ∗ − ψ∗∇ψ) . (11)

These equations express the conservation of mass M =
∫

ρa3 dr in an expanding background.
We can give different interpretations to the generalized GPP Equations (7) and (8) introduced

in [61]:
(i) When applied to the problem of structure formation in a cosmological context, the generalized

GPP equations can describe a dissipative self-gravitating BEC with an arbitrary potential of
self-interaction V(|ψ|2). Dissipative effects may be important in the early universe and the effective
temperature T may account for thermal fluctuations.

(ii) When applied to a single DM halo (with a = 1), we have argued in [61] that the generalized
GPP equations can provide a simple parametrization (on a coarse-grained scale) of the original GPP
Equations (1) and (2) taking into account the processes of violent relaxation and gravitational cooling.
In that case, T is an effective temperature like in the Lynden–Bell [42] theory of violent relaxation
and ξ is a damping coefficient which is related to a form of nonlinear Landau damping experienced
by a collisionless self-gravitating system.8 The generalized GPP equations relax towards a stable
equilibrium state with a core–halo structure. The quantum core (soliton) corresponds to the ground
state solution of the GPP Equations (1) and (2). It stems from the equilibrium between the gravitational
force and the quantum pressure force arising from the Heisenberg uncertainty principle or from the
self-interaction of the bosons (when as > 0). These quantum terms are important at “small” scales
(≤1 kpc). They stabilize the system against gravitational collapse and solve the cusp–core problem.
The halo results from the quantum interferences of excited states. It stems from the equilibrium between

7 We assume that the background is not affected by the damping.
8 In a forthcoming paper [65] we will provide a heuristic derivation of the generalized GPP Equations (7) and (8) by using a

procedure similar to the one developed in Ref. [66] in connection to the Lynden–Bell theory of violent relaxation [42].
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the gravitational force and the pressure force due to the effective temperature. The temperature term is
important at “large” scales (�1 kpc). It accounts for the flat rotation curves of the galaxies which have
a constant circular velocity (e.g., v∞ = (2kBT/m)1/2 ∼ 153 km/s for the medium spiral).9

(iii) When applied to a single DM halo (with a = 1), we have shown in [61] that the generalized
GPP equations relax towards an equilibrium state which minimizes the energy at fixed mass. As a
result, the generalized GPP equations provide a useful numerical algorithm to construct stable steady
states of the ordinary GPP Equations (1) and (2), which are minima of energy at fixed mass. This is
interesting because it is generally difficult to solve the nonlinear eigenvalue problem determining
a steady state of the ordinary GPP equations and make sure that the solution is dynamically stable.
The stationary solution reached by the generalized GPP equations is guaranteed to be a stable steady
state of the ordinary GPP equations (see Appendix B of [26] and [65]).

(iv) In a speculative paper [62], inspired by Nottale’s theory of scale relativity [63], we have
suggested that space–time may become fractal at very large (astrophysical) scales. In that case,
the trajectories of the particles are nondifferentiable and the deterministic equations must be replaced
by stochastic ones (in the sense of Nottale). This leads to a form of Schrödinger equation with a
diffusion-like coefficient D (called the fractal fluctuation parameter) playing the role of h̄2/2m in the
usual Schrödinger equation of quantum mechanics. In that case, “quantum” effects are a manifestation
of the fractal structure of space–time at the cosmic scale. Similarly, the effective temperature T
(fluctuation) and the friction ξ (dissipation) may be intrinsic properties of space–time. The dissipation
may be due to the interaction of the system with an external environment (e.g., a Dirac-like aether)
and the temperature may represent the temperature of the vacuum if it has fluctuations. In our
approach [62] the temperature and the friction arise from a single formalism. They correspond to the
real and imaginary parts of the complex friction coefficient present in the scale covariant equation of
dynamics and they satisfy a form of fluctuation-dissipation theorem (see Appendix B).

2.2. Madelung Transformation

Writing the wave function as

ψ(r, t) =
√

ρ(r, t)eiS(r,t)/h̄, (12)

where ρ(r, t) is the mass density and S(r, t) = (h̄/2i) ln(ψ/ψ∗) is the action, and making the
Madelung [68] transformation

ρ(r, t) = |ψ|2 and u =
∇S
ma

=
ih̄

2ma
ψ∇ψ∗ − ψ∗∇ψ

|ψ|2 , (13)

9 If we take m ∼ 2.92× 10−22 eV/c2 for the boson mass, we obtain a temperature T ∼ 4.41× 10−25 K. Such a small temperature
is clearly unphysical, confirming that T is an effective temperature [61]. In addition, the condensation temperature of
bosons is Tc = 2πh̄2ρ2/3/(m5/3kBζ(3/2)2/3) ∼ 4.82× 1036 K for ρ ∼ 7.02× 10−3 M�/pc3 (medium spiral) so that T � Tc.
This shows that the isothermal halo is an out-of-equilibrium structure (otherwise it would have condensed). It is important
to note that the effective temperature T in the generalized GPP Equations (7) and (8) is completely different from the
thermodynamical temperature Tthermo in the Zaremba–Nikuni–Griffin (ZNG) approach to the BECs [67]. The ZNG
equations describe the collisional relaxation of a gas of bosons and the interactions between the condensate and the cloud
of uncondensed bosons. By contrast, we are considering a collisionless (mean field) regime, equivalent to Tthermo = 0,
where we are far from thermal equilibrium. For self-gravitating bosons, the processes of gravitational cooling and violent
collisionless relaxation arising from the strong fluctuations of the gravitational potential during free fall lead to a quantum
core (soliton) + a halo of scalar radiation with an effective temperature T. Therefore, the generalized GPP Equations (7)
and (8) are physically different from the ZNG equations and have a completely different domain of validity (collisionless
versus collisional).
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where u(r, t) is the velocity field, it is shown in [61] (see also [57,58,60,64] and Appendix C in an
expanding background) that the generalized GPP Equations (7) and (8) can be written under the form
of hydrodynamic equations as

∂ρ

∂t
+ 3Hρ +

1
a
∇ · (ρu) = 0, (14)

∂S
∂t

+
(∇S)2

2ma2 = −Q−mΦ−mV′(ρ)− ξ(S− 〈S〉), (15)

∂u
∂t

+ Hu +
1
a
(u · ∇)u = − 1

ρa
∇P− 1

a
∇Φ− 1

ma
∇Q− ξu, (16)

∆Φ
4πGa2 = ρ− 3H2

8πG
, (17)

where

Q = − h̄2

2ma2

∆
√

ρ
√

ρ
= − h̄2

4ma2

[
∆ρ

ρ
− 1

2
(∇ρ)2

ρ2

]
(18)

is the quantum potential taking into account the Heisenberg uncertainty principle. The pressure is
a function P = P(ρ) of the density (the gas is barotropic) which is determined by the potential V(ρ)

through the relation (see Appendix A)

P(ρ) = ρV′(ρ)−V(ρ) = ρ2
[

V(ρ)

ρ

]′
⇒ P′(ρ) = ρV′′(ρ). (19)

The squared speed of sound is

c2
s = P′(ρ) = ρV′′(ρ). (20)

In terms of the density, the relation (5) can be written as

V(ρ) = Vint(ρ) + Vth(ρ) with Vth(ρ) =
kBT
m

ρ(ln ρ− 1), (21)

yielding

P(ρ) = Pint(ρ) + Pth(ρ) with Pth(ρ) = ρ
kBT
m

. (22)

For the standard BEC, we have

Vint(ρ) =
2πas h̄2

m3 ρ2 and Pint =
2πas h̄2

m3 ρ2. (23)

The total speed of sound is given by

c2
s =

4πas h̄2

m3 ρ +
kBT
m

. (24)

We note that the logarithmic potential Vth(ρ) taking into account (effective) thermal effects is
associated with an isothermal equation of state. On the other hand, the power-law potential Vint(ρ)

taking into account the self-interaction of the bosons is associated with a polytropic equation of state
of index γ = 2.

The hydrodynamic Equations (14)–(17) are called the quantum damped Euler–Poisson equations.
Equation (14) is the equation of continuity. It is equivalent to Equation (10) with J = a2ρu. Equation (15)
is the quantum damped Hamilton–Jacobi (or Bernoulli) equation. Equation (16), obtained by taking
the gradient of Equation (15), is the quantum damped Euler equation. Equation (17) is the Poisson
equation. We clearly see on these equations that T has the interpretation of a temperature and that ξ has
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the interpretation of a friction coefficient. When h̄ = 0,10 we get the classical damped Euler–Poisson
equations [66]. When ξ = 0, we get the quantum Euler–Poisson equations associated with the usual
GPP equations [28]. When ξ = h̄ = 0 we get the classical Euler–Poisson equations [8]. In the strong
friction limit ξ → +∞, we can neglect the advection term in the momentum Equation (16) and we get
the quantum Smoluchowski–Poisson (SP) equations [69]:

∂ρ

∂t
+ 3Hρ =

1
ξa2∇ ·

(
∇P + ρ∇Φ +

ρ

m
∇Q

)
, (25)

∆Φ
4πGa2 = ρ− 3H2

8πG
. (26)

When ξ → +∞ and h̄ = 0, we get the classical Smoluchowski–Poisson equations [70]. It is
interesting to note that at a formal level, the damped GPP Equations (7) and (8) allow us to make a
connection between the Schrödinger equation of quantum mechanics (ξ = 0) and the Smoluchowski
equation of Brownian theory (ξ → +∞) [61].

By using the Madelung transformation, the generalized GPP Equations (7) and (8) have been
written in the form of hydrodynamic equations involving a quantum potential taking into account
the Heisenberg uncertainty principle, a pressure force arising from the self-interaction of the bosons
(or from effective thermal effects), and a friction force. This transformation allows us to treat the
BEC as a quantum fluid (superfluid) and to apply standard methods developed in astrophysics as
discussed below.

Remark 1. In this paper, we have taken into account dissipative effects in the BEC by using a generalized wave
equation [Equation (7)] leading, through the Madelung transformation, to a damped quantum Euler equation
[Equation (16)] involving a linear friction force −ξu. One could also consider a generalized wave equation
associated (via the Madelung transformation) to a quantum Navier–Stokes equation involving a viscous term
ν∆u. This type of generalized wave equations has been considered in Section 7 and in Appendix L of [71], and in
Appendix L of [61].

2.3. Spatially Inhomogeneous Equilibrium States: DM Halos

We first apply the generalized GPP Equations (7) and (8), or equivalently the quantum damped
Euler–Poisson Equations (14)–(17), to DM halos. We take a = 1 since the expansion of the universe is
negligible at the scale of DM halos.

2.3.1. Core–Halo Structure

It is shown in [61] that the generalized GPP equations satisfy an H-theorem for a generalized free
energy F and generically relax towards a stable equilibrium state which minimizes F at fixed mass
M.11 The condition of quantum hydrostatic equilibrium, which corresponds to the steady state of the
quantum Euler Equation (16), writes

ρ

m
∇Q +∇P + ρ∇Φ = 0. (27)

10 Here and in the following, h̄ = 0 described either classical particles or BECs in the Thomas–Fermi (TF) limit where the
quantum potential can be neglected.

11 The H-theorem and the relaxation towards an equilibrium state are due to the friction term ξ > 0 which provides a source
of dissipation and implies the irreversibility of the generalized GPP Equations (7) and (8). By contrast, the ordinary GPP
Equations (1) and (2) are reversible. Their relaxation towards a quasisteady state is due to gravitational cooling and can
be understood only at a coarse-grained level. It is in this sense that the generalized GPP Equations (7) and (8) provide a
parametrization of the GPP Equations (1) and (2) taking into account the processes of gravitational cooling and violent
relaxation (see the interpretation (ii) of these equations given in Section 2.1).
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Combined with the Poisson Equation (17), we obtain the fundamental differential equation of
quantum hydrostatic equilibrium

h̄2

2m2 ∆
(

∆
√

ρ
√

ρ

)
−∇ ·

(
∇P

ρ

)
= 4πGρ. (28)

If we decompose the pressure according to Equation (22), and if we consider the case of a standard
BEC (23) to be explicit, the foregoing equations become

ρ

m
∇Q +∇Pint +∇Pth + ρ∇Φ = 0 (29)

and

h̄2

2m2 ∆
(

∆
√

ρ
√

ρ

)
− 4πas h̄2

m3 ∆ρ− kBT
m

∆ ln ρ = 4πGρ. (30)

They describe the balance between the quantum potential taking into account the Heisenberg
uncertainty principle, the pressure due to the self-interaction of the bosons, the pressure due to effective
thermal effects, and the self-gravity. The solutions of these equations have a “core–halo” structure
with a quantum core (soliton) and an isothermal halo (see [45] for explicit calculations in the TF limit).
These solutions are consistent with the structure of large DM halos that are obtained in direct numerical
simulations of BECDM [34–41].

Remark 2. A stationary solution of the generalized GPP Equations (7) and (8) with a = 1 is of the form
ψ(r, t) = φ(r)e−iEt/h̄, where the real quantities φ(r) =

√
ρ(r) and E (eigenenergy) are determined by the

eigenvalue problem

− h̄2

2m
∆φ + m

[
Φ + V′(ρ)

]
φ = Eφ, (31)

∆Φ = 4πGφ2. (32)

Dividing Equation (31) by φ, we get

Q + mΦ + mV′(ρ) = E. (33)

Taking the gradient of this equation and using Equation (19), we recover the condition of quantum
hydrostatic equilibrium, Equation (27). The foregoing equations can also be obtained by extremizing the free
energy at fixed mass [61]. This variational principle shows that the eigenenergy is equal to the total chemical
potential (E = µtot).

2.3.2. Quantum Core (Soliton)

In the core, we can neglect thermal effects and take Pth = 0. In that case, we obtain

ρ

m
∇Q +∇Pint + ρ∇Φ = 0 (34)

and

h̄2

2m2 ∆
(

∆
√

ρ
√

ρ

)
− 4πas h̄2

m3 ∆ρ = 4πGρ. (35)
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The equilibrium of the core results from the balance between the quantum potential,
the self-interaction of the bosons, and the gravitational attraction. Equation (35) has been solved
analytically (using a Gaussian ansatz) in [28] and numerically in [72], for an arbitrary (repulsive or
attractive) self-interaction. It describes a compact quantum core (soliton). Because of quantum effects,
the central density is finite instead of diverging as in the CDM model. Therefore, quantum mechanics
can solve the cusp–core problem.

2.3.3. Isothermal Halo

In the halo, we can neglect quantum effects and take Q = 0 and Pint = 0. In that case, we obtain

∇Pth + ρ∇Φ = 0 (36)

and

− kBT
m

∆ ln ρ = 4πGρ. (37)

The equilibrium of the halo is due to the balance between the thermal pressure and the
gravitational attraction. Equation (37) is equivalent to the Boltzmann–Poisson equation or to the
Emden equation [20]. This equation has no simple analytical solution and must be solved numerically.
However, its asymptotic behavior is known analytically [20]. The density of a self-gravitating
isothermal halo decreases as ρ(r) ∼ kBT/(2πGmr2) for r → +∞, corresponding to an accumulated
mass M(r) ∼ 2kBTr/Gm increasing linearly with r. This leads to flat rotation curves

v2(r) =
GM(r)

r
→ v2

∞ =
2kBT

m
(38)

in agreement with the observations [8].

2.3.4. Conclusions

In conclusion, the physical meaning of the generalized GPP Equations (7) and (8) is clear.
The friction allows the system to relax towards a stable equilibrium state with a “core–halo” structure.
The quantum core can solve the core–cusp problem and the isothermal halo accounts for the flat
rotation curves of the galaxies. This core–halo structure is in agreement with the phenomenology of
BECDM halos.

2.4. Infinite Homogeneous Distribution: Generalized Jeans Problem

We now apply the generalized GPP Equations (7) and (8), or equivalently the quantum damped
Euler–Poisson Equations (14)–(17), to the universe as a whole. We first study the formation of
structures in a static universe (a = 1). Specifically, we study the linear dynamical stability of an infinite
homogeneous self-gravitating BEC with density ρ and velocity u = 0 described by the quantum
damped Euler–Poisson Equations (14)–(17). This is a generalization of the classical Jeans problem [46]
to a dissipative quantum fluid.12

12 As is well-known, the Jeans approach suffers from a mathematical inconsistency at the start. Indeed, an infinite homogeneous
self-gravitating system cannot be in static equilibrium since there are no pressure gradients to balance the gravitational force.
In other words, we cannot simultaneously satisfy the condition of hydrostatic equilibrium∇P + ρ∇Φ = 0, which reduces to
∇Φ = 0 for a barotropic fluid with a constant density ρ, and the Poisson equation ∆Φ = 4πGρ [8]. Jeans [46] removed this
inconsistency by assuming that the Poisson equation describes only the relationship between the perturbed gravitational
potential and the perturbed density. However, this assumption seems to be ad hoc and is known as the Jeans swindle [8].
In fact, the detailed discussion of the Jeans “swindle” provided by Kiessling [73] and Joyce et al. [74,75] has demonstrated
that there is no swindle in the Jeans analysis. These authors have shown that the gravitational force created by an infinite
and uniform distribution of particles in a static universe is well-defined provided that it is summed symmetrically about
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Considering a small perturbation about the equilibrium state and linearizing the hydrodynamic
Equations (14)–(17), we obtain

∂δ

∂t
+∇ · u = 0, (39)

∂u
∂t

= −c2
s∇δ−∇δΦ +

h̄2

4m2∇(∆δ)− ξu, (40)

∆δΦ = 4πGρδ, (41)

where c2
s = P′(ρ) is the squared speed of sound and δ(r, t) = δρ(r, t)/ρ is the density contrast.

Taking the time derivative of Equation (39) and the divergence of Equation (40), and using the Poisson
Equation (41), we obtain a single equation for the density contrast

∂2δ

∂t2 + ξ
∂δ

∂t
= − h̄2

4m2 ∆2δ + c2
s ∆δ + 4πGρδ. (42)

Expanding the solutions of this equation into plane waves of the form δ(r, t) ∝ exp[i(k · r−ωt)],
we obtain the dispersion relation (see Appendix M of [61])

ω2 + iξω =
h̄2k4

4m2 + c2
s k2 − 4πGρ. (43)

The Jeans wavenumber k J , corresponding to ω = 0, is determined by the quadratic equation

h̄2k4
J

4m2 + c2
s k2

J − 4πGρ = 0. (44)

It is given by

k2
J =

2m2

h̄2

−c2
s +

√
c4

s +
4πGρh̄2

m2

 . (45)

This general expression of the quantum Jeans wavenumber, valid for possibly self-interacting
bosons, was first given in [28]. As noted in [61], the Jeans wavenumber is not altered by dissipative
effects (the friction parameter ξ does not appear in its expression). The general dispersion relation (43)
is studied in detail in Sections 3–6 below. We shall review and connect different limits have already
been investigated in the literature.

2.5. Structure Formation in an Expanding Universe: Generalized Bonnor Equation

Finally, we consider the formation of structures in the framework of the generalized GPP
Equations (7) and (8), or equivalently in the framework of the quantum damped Euler–Poisson
Equations (14)–(17), in an expanding universe. Specifically, we study the linear dynamical stability of
an infinite homogeneous self-gravitating BEC with density ρb(t) and velocity u = 0 (in the comoving
frame) described by the quantum damped Euler–Poisson Equations (14)–(17). This is a generalization of
the classical Bonnor problem [55] to a dissipative quantum fluid. In that case, an infinite homogeneous

each particle. This leads to a modified Poisson equation of the form ∆Φ = 4πG(ρ− ρ) where ρ is the average density. In that
case, a uniform distribution ρ = ρ is an exact solution of the equations of the problem. Modifying the Poisson in this way
(or by introducing a screening length κ−1 in the interaction and letting κ → 0) is not a “swindle” but rather a well-defined
and rigorous mathematical procedure [73] to treat the problem (see [47,52,76] for additional discussion).
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distribution of matter is an equilibrium solution of the hydrodynamic equations and this problem is
mathematically well-posed without swindle or without the need to modify the Poisson equation.13

For the homogeneous solution ρ(r, t) = ρb(t), S(r, t) = S0(t), u(r, t) = 0 and Φ(r, t) = 0,
corresponding to a wavefunction

ψb(t) =
√

ρb(t)eiS0(t)/h̄, (46)

the hydrodynamic Equations (14)–(17) reduce to

dρb
dt

+ 3Hρb = 0, (47)

dS0

dt
= −mV′(ρb), (48)

H2 =
8πGρb

3
. (49)

Equations (47) and (49) are the same equations as in the CDM model. They correspond
to the Friedmann [78,79] equations for a nonrelativistic (or pressureless) cosmic fluid.
Therefore, quantum mechanics does not affect the evolution of the background in the nonrelativistic
regime. Equation (47) is readily integrated into

ρb ∝ a−3, (50)

expressing the conservation of mass. Then, Equation (49) determines the evolution of the scale factor.
This leads to the Einstein–de Sitter (EdS) [80] solution

a ∝ t2/3, H =
2
3t

, ρb =
1

6πGt2 . (51)

For a standard BEC, Equation (48) can be readily integrated with the aid of Equations (23) and
(51) yielding S0 = 2as h̄2/(3Gm2t).

We now consider a perturbation about the homogeneous background and write

ρ = ρb(t)[1 + δ(r, t)], (52)

where δ(r, t) = δρ(r, t)/ρb(t) is the density contrast. The wavefunction can be written as

ψ =
√

ρb(1 + δ)eiS/h̄. (53)

We stress that at this stage, we do not assume that δ is small. We can then rewrite the
hydrodynamic Equations (14)–(17) in terms of the density contrast as

∂δ

∂t
+

1
a
∇ · [(1 + δ)u] = 0, (54)

∂S
∂t

+
(∇S)2

2ma2 =
h̄2

2ma2
∆
√

1 + δ√
1 + δ

−mΦ−mV′[ρb(1 + δ)]− ξ(S− 〈S〉), (55)

13 In cosmology, when we work in the comoving frame, the expansion of the universe introduces a sort of “neutralizing
background” with a negative density −3H2/8πG in the Poisson Equation (17), like in the Jellium model of plasma physics.
In that case, an infinite homogeneous self-gravitating medium can be in static equilibrium in the comoving frame [77].
Therefore, the Jeans instability mechanism is relevant to understand the formation of DM halos and galaxies in the
homogeneous early universe.
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∂u
∂t

+ Hu +
1
a
(u · ∇)u = − c2

s
(1 + δ)a

∇δ− 1
a
∇Φ +

h̄2

2m2a3∇
(

∆
√

1 + δ√
1 + δ

)
− ξu, (56)

∆Φ = 4πGρba2δ. (57)

In the strong friction limit ξ → +∞, they reduce to

∂δ

∂t
=

1
ξa2∇ ·

[
c2

s∇δ + (1 + δ)∇Φ− h̄2

2m2a2 (1 + δ)∇
(

∆
√

1 + δ√
1 + δ

)]
. (58)

If we now consider a small perturbation δ � 1, we can linearize the foregoing equations.
The wavefunction (53) can be written as ψ = ψb + δψ with

δψ = ψb

(
δ

2
+ i

δS
h̄

)
, (59)

where we have defined δS = S − S0 � 1. We also have ρ = |ψ|2 = (ψb + δψ)(ψ∗b + δψ∗) '
|ψb|2 + ψbδψ∗ + ψ∗b δψ so that δρ = ψbδψ∗ + ψ∗b δψ. On the other hand, the linearized hydrodynamic
Equations (54)–(57) are

∂δ

∂t
+

1
a
∇ · u = 0, (60)

∂δS
∂t

=
h̄2

4ma2 ∆δ−mΦ−mc2
s δ− ξ(δS− 〈δS〉), (61)

∂u
∂t

+ Hu = −1
a

c2
s∇δ− 1

a
∇δΦ +

h̄2

4m2a3∇(∆δ)− ξu, (62)

∆Φ = 4πGρba2δ. (63)

They can be combined into a single equation for the density contrast

∂2δ

∂t2 + (2H + ξ)
∂δ

∂t
=

c2
s

a2 ∆δ + 4πGρbδ− h̄2

4m2a4 ∆2δ. (64)

In the strong friction limit ξ → +∞, Equation (64) becomes

ξ
∂δ

∂t
=

c2
s

a2 ∆δ + 4πGρbδ− h̄2

4m2a4 ∆2δ. (65)

If we decompose the perturbations into normal modes of the form δ(r, t) = δk(t)eik·r etc.,
we obtain

u =
ik
ma

δS, δS =
ma2

k2
∂δ

∂t
, u = − a

i
k
k2

∂δ

∂t
, (66)

Φ = −4πGρba2δ

k2 ,
δψ

ψb
=

δ

2
+

ima2

h̄k2
∂δ

∂t
, (67)

where δ(t) is determined by the equation

δ̈ + (2H + ξ)δ̇ +

(
h̄2k4

4m2a4 +
c2

s k2

a2 − 4πGρb

)
δ = 0. (68)

For brevity, we have not written the dependance of δk(t) on the wavenumber k. In the strong
friction limit ξ → +∞, Equation (68) becomes

ξδ̇ +

(
h̄2k4

4m2a4 +
c2

s k2

a2 − 4πGρb

)
δ = 0. (69)
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In a static universe (a = 1), writing δ(t) ∝ e−iωt, we recover the dispersion relation (43) [61].
In order to study Equation (68), it is more convenient to express the density contrast in terms of a
rather than in terms of t. Making the change of variables from Equation (51) valid in the EdS universe,
we find that Equation (68) is replaced by

d2δ

da2 +
3
2a

(1 + χa3/2)
dδ

da
+

3
2a2

(
h̄2k4

16πGρbm2a4 +
c2

s k2

4πGρba2 − 1

)
δ = 0, (70)

where we have defined the constant χ through the relation χ = ξt/a3/2 (recall that t/a3/2 is constant
according to Equation (51)). In the strong friction limit ξ → +∞, Equation (70) becomes

χ
dδ

da
+

1
a5/2

(
h̄2k4

16πGρbm2a4 +
c2

s k2

4πGρba2 − 1

)
δ = 0. (71)

These equations will be studied in a specific paper [65]. When ξ = h̄ = 0, we recover the results of
Bonnor [55] for classical particles. When ξ = 0 and cs = 0, we recover the results of Bianchi et al. [49]
and Sikivie and Yang [51] for noninteracting bosons. When ξ = 0, we recover the results of Suárez and
Matos [59] and Chavanis [57] for possibly interacting bosons.14 Analytical solutions of Equation (70)
when ξ = 0 are given in [57] and illustrated in [58]. It is shown that the typical Jeans length is the same
in a static and in an expanding universe. However, the evolution of the perturbation is different. In the
stable regime (k > k J(a)) the perturbation is oscillating in the two cases but in the unstable regime
(k < k J(a)) the growth of the perturbation is algebraic in an expanding universe and exponential in a
static universe.

For a dissipative cold classical gas (h̄ = c2
s = 0), or for noninteracting bosons in the TF limit,

Equation (70) reduces to
d2δ

da2 +
3
2a

(1 + χa3/2)
dδ

da
− 3

2a2 δ = 0. (72)

In the dissipationless limit ξ → 0, Equation (72) becomes

d2δ

da2 +
3
2a

dδ

da
− 3

2a2 δ = 0. (73)

Its independent solutions are [77]

δ+ ∝ a, δ− ∝ a−3/2. (74)

The first solution describes a growing mode and the second solution describes a decaying mode.
In the strong friction limit ξ → +∞, Equation (72) becomes

χ
dδ

da
− 1

a5/2 δ = 0. (75)

Its solution is

δ = δmax e
− 2

3χa3/2 . (76)

The density contrast starts from δ = 0 at a = 0, increases, and tends to a constant δmax for
a→ +∞. This extreme case (ξ � 1) illustrates the effect of the friction which is to saturate the growth

14 The results of Refs. [57,59] were obtained independently. Suárez and Matos [59] started from the KGE equations and took at
the end the nonrelativistic limit c→ +∞. Chavanis [57] directly started from the GPP equations valid in the nonrelativistic
limit. The generalization of Equation (70) in general relativity was obtained by Suárez and Chavanis [58].
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of the density contrast even in the linear regime. For a finite value of ξ, the independent solutions of
Equation (72) are

δ+ ∝
5
3

χ2/3ae−χa3/2
+

(
10

9χa3/2 −
5
3

) [
Γ
(

5
3

, χa3/2
)
− Γ

(
5
3

)]
, (77)

and
δ− ∝

1
χa3/2 −

3
2

, (78)

where Γ(z) is the Gamma function and Γ(a, z) is the incomplete Gamma function. The growing solution
behaves as χ2/3a for a → 0 (like δ+ in Equation (74)) and tends to a finite value Γ(8/3) = 1.50458...
for a→ +∞ (like δ in Equation (76)). The decaying solution behaves as 1/(χa3/2) for a→ 0 (like δ−
in Equation (74)) and vanishes at a finite time corresponding to a∗ = (2/3χ)2/3. These solutions are
plotted in Figure 1.

0 1 2 3 4 5
a

0

1

2

3

4

5

δ

δ
+

δ
-

χ = 1

Figure 1. Growing and decaying modes of a dissipative noninteracting BEC in the TF limit (h̄ = c2
s = 0)

in an expanding background. We have taken χ = 1 for illustration.

2.6. Fermionic DM

Although the previous formalism has been developed for self-gravitating bosons in the form
of BECs, it can also be applied to self-gravitating fermions. In that case, we must take into account
the Pauli exclusion principle that prevents two fermions to occupy the same quantum state. In a
semiclassical approach, the Pauli exclusion principle creates a pressure PPauli which plays a role similar
to the pressure Pint arising from the self-interaction of the bosons. Therefore, we just have to replace
Pint by PPauli in the previous formalism.

In the nonrelativistic limit, the equation of state of the Fermi gas at T = 0 is

P(ρ) =
1

20

(
3
π

)2/3 h2

m8/3 ρ5/3. (79)

Using the results of Section 2.2 and Appendix A, the enthalpy and the potential are given by

h(ρ) =
1
8

(
3
π

)2/3 h2

m8/3 ρ2/3, V(ρ) =
3
40

(
3
π

)2/3 h2

m8/3 ρ5/3. (80)

This leads to a generalized wave equation of the form

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ +

1
8

(
3
π

)2/3 h2

m5/3 |ψ|
4/3ψ + mΦψ + mΦextψ + 2kBT ln |ψ|ψ− i

h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ. (81)
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On the other hand, the squared speed of sound that is needed in the Jeans analysis is

c2
s =

1
12

(
3
π

)2/3 h2

m8/3 ρ2/3. (82)

We can take into account the expansion of the universe as in the previous sections.
In the ultrarelativistic limit, the equation of state of the Fermi gas at T = 0 is

P(ρ) =
1
8

(
3
π

)1/3 hc
m4/3 ρ4/3. (83)

Using the results of Section 2.2 and Appendix A, the enthalpy and the potential are given by

h(ρ) =
1
2

(
3
π

)1/3 hc
m4/3 ρ1/3, V(ρ) =

3
8

(
3
π

)1/3 hc
m4/3 ρ4/3. (84)

This leads to a generalized wave equation of the form

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ +

1
2

(
3
π

)1/3 hc
m1/3 |ψ|

2/3ψ + mΦψ + mΦextψ + 2kBT ln |ψ|ψ− i
h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ. (85)

The squared speed of sound that is needed in the Jeans analysis is

c2
s =

1
6

(
3
π

)1/3 hc
m4/3 ρ1/3. (86)

We can take into account the expansion of the universe as in the previous sections.
The wave Equations (81) and (85) with ξ = T = 0 are expected to display a process of violent

relaxation leading to a fermion ball at T = 0 surrounded by a halo of scalar radiation. This is similar
to the process of gravitational cooling experienced by the GPP Equations (1) and (2) for bosons
(the fermion ball is the counterpart of the bosonic condensate). The coarse-grained Equations (81)
and (85), with the friction and temperature terms retained, parameterize the process of violent
relaxation. Note that these equations also take into account the Heisenberg uncertainty principle.
This provides an additional small-scale regularization, in addition to the Pauli exclusion principle.

3. The Dissipationless Case ξ = 0

We first review the Jeans instability problem in the dissipationless case (ξ = 0) treated in previous
papers. In that case, the system is described by the quantum Euler-Poisson equations and the dispersion
relation is given by [28]

ω2 =
h̄2k4

4m2 + c2
s k2 − 4πGρ. (87)

The squared pulsation is real. When ω2 > 0, the pulsation is real and the perturbation behaves
with time as e−iωt, i.e., it oscillates with a pulsation ω (with ω = ±

√
ω2). When ω2 < 0, the pulsation

is imaginary (ω = iγ) and the perturbation behaves with time as eγt, i.e., it evolves exponentially
with time with a rate γ (with γ = ±

√
−ω2). There is a growing mode (γ+ > 0) and a decaying

mode (γ− < 0).
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3.1. The Case h̄ = G = 0

In the classical (or TF) + nongravitational limit (h̄ = G = 0), the dispersion relation (87) reduces to

ω2 = c2
s k2. (88)

It is plotted in Figure 2.
When c2

s > 0, the squared pulsation is positive (ω2 > 0). The system is stable for all modes
k. The perturbation oscillates with a pulsation ω = ±csk corresponding to a sound wave (this is
associated with the concept of phonons in the language of superfluidity [81]).

When cs = 0, the squared pulsation vanishes (ω = 0). The perturbation is stationary.
When c2

s < 0, the squared pulsation is negative (ω2 < 0). The system is unstable for all modes k.
The perturbation evolves exponentially rapidly with a rate γ = ±(|c2

s |)1/2k. The growth rate tends to
+∞ when k→ +∞.
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Figure 2. Dispersion relation for dissipationless BECs in the nongravitational + TF limit (G = h̄ = 0).

3.2. The Case h̄ = 0

The classical limit (h̄ = 0) has been treated by Jeans [46] in a seminal paper. His results also apply
to self-gravitating BECs with a repulsive self-interaction in the TF limit. In that case, the dispersion
relation (87) reduces to

ω2 = c2
s k2 − 4πGρ. (89)

It is plotted in Figure 3.
When c2

s > 0, the classical (or TF) Jeans wavenumber is

k J =

(
4πGρ

c2
s

)1/2
. (90)

It is due to the interplay between the attractive gravity and the repulsive pressure (or self-interaction).
For k = kJ, the pulsation vanishes (ω = 0) and the perturbation is stationary. For k > kJ, the squared
pulsation is positive (ω2 > 0). The system is stable for these modes. The perturbation oscillates with
a pulsation

ω = ±
√

c2
s k2 − 4πGρ. (91)
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This corresponds to a gravity-modified sound wave. For k→ +∞, we have ω ∼ ±csk. For k < k J ,
the squared pulsation is negative (ω2 < 0). The system is unstable for these modes. The perturbation
evolves exponentially rapidly with a rate

γ = ±
√
−c2

s k2 + 4πGρ. (92)

For k = 0, we have γ = ±
√

4πGρ. The growth rate is maximum at km = 0 (infinite wavelength)
with value γmax =

√
4πGρ.

When cs = 0, the dispersion relation writes

ω2 = −4πGρ. (93)

The system is unstable for all modes (k J → +∞). The perturbation evolves exponentially rapidly
with a rate γ = ±

√
4πGρ.

When c2
s < 0, the squared pulsation is negative (ω2 < 0). The system is unstable for all modes.

The perturbation evolves exponentially rapidly with a rate

γ = ±
√
|c2

s |k2 + 4πGρ. (94)

For k = 0, we have γ = ±
√

4πGρ. For k→ +∞, we have γ ∼ ±(|c2
s |)1/2k. The growth rate tends

to +∞ when k→ +∞.
The noninteracting regime corresponds to k� (4πGρ/|c2

s |)1/2 and the nongravitational regime
corresponds to k� (4πGρ/|c2

s |)1/2.
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Figure 3. Dispersion relation for dissipationless self-gravitating BECs in the TF limit (h̄ = 0). We have
normalized the wavenumber by (4πGρ/|c2

s |)1/2 and the pulsation by (4πGρ)1/2. This is equivalent to
taking 4πG = ρ = |c2

s | = 1 in the dimensional equations.

3.3. The Case G = 0

The nongravitational limit (G = 0) has been treated by Bogoliubov [82] in a seminal paper on
superfluidity. In that case, the dispersion relation (87) reduces to

ω2 =
h̄2k4

4m2 + c2
s k2. (95)

It is plotted in Figure 4. Bogoliubov [82] considered the case of bosons with a repulsive
self-interaction (corresponding to c2

s > 0) and determined the excitation spectrum of the bosons
at T = 0—equivalent to the dispersion relation (95)—from a microscopic theory. At short wavelengths
(k → +∞), or for noninteracting bosons, we recover the free-particle energy ω ∼ h̄k2/2m. At long
wavelengths (k→ 0), the excitation spectrum reduces to the phonon solution ω ∼ ±csk. The crossover
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from the particle-like region to the collective phonon region occurs at a wavenumber kc ∼ mcs/h̄.
This shows how the self-interaction changes the qualitative nature of low-energy excitations in a
BEC. The linear spectrum at long wavelengths provides the key to superfluid behavior and was a
triumph of Bogoliubov’s pioneering calculations. The derivation of the dispersion relation (95) from
the GP equation, or from its hydrodynamic representation, and the consideration of bosons with an
attractive self-interaction (corresponding to c2

s < 0), appeared later in the BEC literature [81]. In the
hydrodynamic description, the linear spectrum is almost obvious. The dispersion relation (95) was
also specifically considered by Khlopov et al. [48], Chavanis [28] and Guth et al. [83] as a particular
case of their study of self-gravitating BECs. This limit may apply, for example, to axions in the early
universe which have an attractive self-interaction and a negligible self-gravity. In the relativistic regime,
this leads to the notion of axitons which were studied by Kolb and Tkachev [84].

When c2
s > 0, the squared pulsation is positive (ω2 > 0). The system is stable for all modes.

The perturbation oscillates with a pulsation

ω = ±

√
h̄2k4

4m2 + c2
s k2. (96)

For k→ 0, we have ω ∼ ±csk. For k→ +∞, we have ω ∼ ±h̄k2/2m.
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Figure 4. Dispersion relation for dissipationless BECs in the nongravitational limit (G = 0). We have
normalized the wavenumber by (m2|c2

s |/h̄2)1/2 and the pulsation by m|c2
s |/h̄. This is equivalent to

taking m = |c2
s | = h̄ = 1 in the dimensional equations.

When cs = 0, the dispersion relation writes

ω = ± h̄k2

2m
. (97)

This is the dispersion relation associated with a free particle whose kinetic energy is E = p2/2m
when we use the Einstein–de Broglie relations E = h̄ω and p = h̄k.

When c2
s < 0, we can define an effective Jeans wavenumber15

k J =

(
4m2|c2

s |
h̄2

)1/2

. (98)

15 We call this critical wavenumber a “Jeans wavenumber” by an abuse of language since there is no gravity in the present
situation. The instability is a purely “hydrodynamical” (tachyonic) instability. This terminology will make sense in the
general case (see Section 3.4) where the instability is due to the combined effect of self-gravity and self-interaction.
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It is due to the interplay between the attractive self-interaction and the repulsive quantum
potential. For k = k J , the pulsation vanishes (ω = 0) and the perturbation is stationary. For k > k J ,
the squared pulsation is positive (ω2 > 0). The system is stable for these modes. The perturbation
oscillates with a pulsation

ω = ±

√
h̄2k4

4m2 − |c2
s |k2. (99)

For k → +∞, we have ω ∼ ±h̄k2/2m. For k < k J , the squared pulsation is negative (ω2 < 0).
The system is unstable for these modes. The perturbation evolves exponentially rapidly with a rate

γ = ±

√
− h̄2k4

4m2 + |c2
s |k2. (100)

For k→ 0, we have γ ∼ ±(|c2
s |)1/2k. The growth rate is maximum at the wavenumber

km =

(
2m2|c2

s |
h̄2

)1/2

(101)

with value

γmax =
m|c2

s |
h̄

. (102)

We note that k J =
√

2 km.
The noninteracting regime corresponds to k � m|c2

s |1/2/h̄ and the TF regime corresponds to
k� m|c2

s |1/2/h̄.

3.4. The General Case

The dispersion relation (87) has been studied in the general case by Khlopov et al. [48]
and Chavanis [28].16 It is plotted in Figure 5. The generalized Jeans wavenumber k J is given
by [28]

k2
J =

2m2

h̄2

√c4
s +

4πGρh̄2

m2 − c2
s

 . (103)

It is due to the interplay between the attractive gravity, the repulsive quantum potential and
the (attractive or repulsive) self-interaction. A repulsive self-interaction increases the quantum Jeans
length while an attractive self-interaction decreases the quantum Jeans length (see Figure 6). For k = k J ,
the pulsation vanishes (ω = 0) and the perturbation is stationary. For k > k J , the squared pulsation is
positive (ω2 > 0). The system is stable for these modes. For k < k J , the squared pulsation is negative
(ω2 < 0). The system is unstable for these modes.

16 Khlopov et al. [48] developed a general relativistic approach based on the KGE equations while Chavanis [28] developed a
nonrelativistic approach based on the GPP equations. The nonrelativistic approach of Chavanis [28] was extended to general
relativity by Suárez and Chavanis [52]. Their treatment goes beyond some limitations of the approach of Khlopov et al. [48]
as explained in footnote 7 of [52].
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Figure 5. Dispersion relation for dissipationless self-gravitating BECs in the general case. We have
normalized the wavenumber by (4πGρm2/h̄2)1/4, the pulsation by (4πGρ)1/2 and the squared speed
of sound by (4πGρh̄2/m2)1/2. This is equivalent to taking 4πG = ρ = m = h̄ = 1 in the dimensional
equations. We have selected c2

s = 1, 0,−1.

We first assume that c2
s > 0. For k > k J , the perturbation oscillates with a pulsation

ω = ±

√
h̄2k4

4m2 + c2
s k2 − 4πGρ. (104)

For k→ +∞, we have ω ∼ ±h̄k2/2m. For k < k J , the perturbation evolves exponentially rapidly
with a rate

γ = ±

√
− h̄2k4

4m2 − c2
s k2 + 4πGρ. (105)

For k = 0, we have γ = ±
√

4πGρ. The growth rate is maximum at km = 0 (infinite wavelength)
with value γmax =

√
4πGρ.
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Figure 6. Jeans wavenumber of self-gravitating BECs as a function of the the squared speed of sound.
We have normalized the Jeans wavenumber by (4πGρm2/h̄2)1/4 and the squared speed of sound by
(4πGρh̄2/m2)1/2. This is equivalent to taking 4πG = ρ = m = h̄ = 1 in the dimensional equations.
For cs = 0, we have k J = (16πGρm2/h̄2)1/4. For c2

s → +∞, we have k J ∼ (4πGρ/c2
s )

1/2. For c2
s → −∞,

we have k J ∼ (4m2|c2
s |/h̄2)1/2.
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The special case c2
s = 0, corresponding to noninteracting bosons, has been studied specifically by

Khlopov et al. [48], Bianchi et al. [49], Hu et al. [50], Sikivie and Yang [51], and Chavanis [28]. In that
case, the dispersion relation (87) writes

ω2 =
h̄2k4

4m2 − 4πGρ. (106)

This is the gravitational analogue of the Bogoliubov [82] energy spectrum of the excitation of a
weakly interacting BEC (Appendix D). For large wavenumbers (small wavelengths), the quasi-particle
energy tends to the kinetic energy of an individual gas particle and ω ∼ h̄k2/2m. The quantum Jeans
wavenumber of noninteracting bosons is

k J =

(
16πGρm2

h̄2

)1/4

. (107)

It is due to the interplay between the attractive gravity and the repulsive quantum potential.
We finally assume that c2

s < 0. For k > k J , the perturbation oscillates with a pulsation

ω = ±

√
h̄2k4

4m2 − |c2
s |k2 − 4πGρ. (108)

For k→ +∞ we have ω ∼ ±h̄k2/2m. For k < k J , the perturbation evolves exponentially rapidly
with a rate

γ = ±

√
− h̄2k4

4m2 + |c2
s |k2 + 4πGρ. (109)

For k = 0, we have γ = ±
√

4πGρ. The growth rate is maximum at

km =

(
2m2|c2

s |
h̄2

)1/2

(110)

with value

γmax =

√
m2c4

s

h̄2 + 4πGρ. (111)

Since γmax >
√

4πGρ, an attractive self-interaction increases the growth rate of the
Jeans instability.

4. The Strong Friction Limit ξ→ +∞

We now consider the Jeans instability problem in the overdamped limit (ξ → +∞). This limit
has been studied by Chavanis [69]. In that case, the system is described by the quantum
Smoluchowski-Poisson equations and the dispersion relation is given by [69]

iξω =
h̄2k4

4m2 + c2
s k2 − 4πGρ. (112)

The pulsation ω is imaginary. Introducing the growth (γ > 0) or damping (γ < 0) rate γ = −iω,
the dispersion relation (112) can be rewritten as

γ = −1
ξ

(
h̄2k4

4m2 + c2
s k2 − 4πGρ

)
. (113)
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The perturbation behaves with time as eγt, i.e., it evolves exponentially with a rate γ.

4.1. The Case h̄ = G = 0

In the classical (or TF) + nongravitational limit (h̄ = G = 0), the dispersion relation (113)
reduces to

γ = −1
ξ

c2
s k2. (114)

It is plotted in Figure 7.
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Figure 7. Exponential rate for overdamped BECs in the nongravitational + TF limit (G = h̄ = 0).

When c2
s > 0, the perturbation decays exponentially rapidly (γ < 0). The system is stable for all

modes k.
When cs = 0, the perturbation is stationary (γ = 0).
When c2

s < 0, the perturbation grows exponentially rapidly (γ > 0). The system is unstable for all
modes k. The growth rate tends to +∞ when k→ +∞.

4.2. The Case h̄ = 0

In the classical (or TF) limit (h̄ = 0), the dispersion relation (113) reduces to

γ = −1
ξ
(c2

s k2 − 4πGρ). (115)

It is plotted in Figure 8.
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Figure 8. Exponential rate γ for overdamped self-gravitating BECs in the TF limit (h̄ = 0). We have
normalized the wavenumber by (4πGρ/|c2

s |)1/2 and the rate by 4πGρ/ξ. This is equivalent to taking
4πG = ρ = |c2

s | = ξ = 1 in the dimensional equations.
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When c2
s > 0, the classical Jeans wavenumber is

k J =

(
4πGρ

c2
s

)1/2
. (116)

It coincides with Equation (90). For k = kJ, the perturbation is stationary (γ = 0). For k > kJ,
the perturbation decays exponentially rapidly (γ < 0). The system is stable for these modes. For k→ +∞,
we have γ ∼ − 1

ξ c2
s k2. For k < k J , the perturbation grows exponentially rapidly (γ > 0). The system is

unstable for these modes. For k = 0, we have γ = 4πGρ/ξ. The growth rate is maximum at km = 0
(infinite wavelength) with value γmax = 4πGρ/ξ.

When cs = 0, the dispersion relation writes

γ =
4πGρ

ξ
. (117)

The perturbation grows exponentially rapidly (γ > 0). The system is unstable for all
modes (k J → + ∞).

When c2
s < 0, the perturbation grows exponentially rapidly (γ > 0). The system is unstable for all

modes. For k = 0, we have γ = 4πGρ/ξ. For k→ +∞, we have γ ∼ |c2
s |k2/ξ. The growth rate tends

to +∞ when k→ +∞.

4.3. The Case G = 0

In the nongravitational limit (G = 0), the dispersion relation (113) reduces to

γ = −1
ξ

(
h̄2k4

4m2 + c2
s k2

)
. (118)

It is plotted in Figure 9.
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Figure 9. Exponential rate γ for overdamped BECs in the nongravitational limit (G = 0). We have
normalized the wavenumber by (m2|c2

s |/h̄2)1/2 and the rate by m2c4
s /h̄2ξ. This is equivalent to taking

m = |c2
s | = h̄ = ξ = 1 in the dimensional equations.

When c2
s > 0, the perturbation decays exponentially rapidly (γ < 0). The system is stable for all

modes. For k→ 0, we have γ ∼ − 1
ξ c2

s k2. For k→ +∞, we have γ ∼ −h̄2k4/4ξm2.
When c2

s = 0, the dispersion relation writes

γ = − h̄2k4

4ξm2 . (119)

The perturbation decays exponentially rapidly (γ < 0). The system is stable for all modes.
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When c2
s < 0, we can define an effective Jeans wavenumber (see footnote 15)

k J =

(
4m2|c2

s |
h̄2

)1/2

. (120)

It coincides with Equation (98). For k = kJ, the perturbation is stationary (γ = 0). For k > kJ,
the perturbation decays exponentially rapidly (γ < 0). The system is stable for these modes. For k→ +∞,
we have γ ∼ −h̄2k4/4ξm2. For k < k J , the perturbation grows exponentially rapidly (γ > 0).
The system is unstable for these modes. For k→ 0, we have γ ∼ 1

ξ |c
2
s |k2. The growth rate is maximum

at the wavenumber

km =

(
2m2|c2

s |
h̄2

)1/2

(121)

with value

γmax =
m2c4

s

ξ h̄2 . (122)

4.4. The General Case

The dispersion relation (113) is plotted in Figure 10 in the general case. The generalized Jeans
wavenumber k J is given by

k2
J =

2m2

h̄2

√c4
s +

4πGρh̄2

m2 − c2
s

 . (123)

It coincides with Equation (103). For k = kJ, the perturbation is stationary (γ = 0). For k > kJ,
the perturbation decays exponentially rapidly (γ < 0). The system is stable for these modes. For k→ +∞,
we have γ ∼ −h̄2k4/4ξm2. For k < k J , the perturbation grows exponentially rapidly (γ > 0).
The system is unstable for these modes. For k = 0, we have γ = 4πGρ/ξ.
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Figure 10. Exponential rate γ for overdamped self-gravitating BECs in the general case. We have
normalized the wavenumber by (4πGρm2/h̄2)1/4, the rate by 4πGρ/ξ and the squared speed of sound
by (4πGρh̄2/m2)1/2. This is equivalent to taking 4πG = ρ = m = h̄ = ξ = 1 in the dimensional
equations. We have selected c2

s = 1, 0,−1.

For c2
s > 0, the growth rate is maximum at km = 0 (infinite wavelength) with γmax = 4πGρ/ξ.

For c2
s = 0, the dispersion relation writes

γ = −1
ξ

(
h̄2k4

4m2 − 4πGρ

)
. (124)
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The quantum Jeans length is given by

k J =

(
16πGρm2

h̄2

)1/4

. (125)

It coincides with Equation (107).
For c2

s < 0, the growth rate is maximum at

km =

(
2m2|c2

s |
h̄2

)1/2

(126)

with value

γmax =
1
ξ

(
m2c4

s

h̄2 + 4πGρ

)
. (127)

Since γmax > 4πGρ/ξ, an attractive self-interaction increases the growth rate of the
Jeans instability.

5. Repulsive or Vanishing Self-Interaction c2
s ≥ 0

We now assume a finite nonzero value of the friction parameter ξ. We first consider the case of a
repulsive or vanishing self-interaction corresponding to c2

s ≥ 0.

5.1. The General Case

In this subsection we treat the general case where h̄ 6= 0 and G 6= 0. Particular cases will be
considered in the following subsections. The generalized dispersion relation is given by [61]

ω2 + iξω =
h̄2k4

4m2 + c2
s k2 − 4πGρ. (128)

This is a second-degree equation for ω whose solutions are

ω = −i
ξ

2
±

√
− ξ2

4
+

h̄2k4

4m2 + c2
s k2 − 4πGρ. (129)

The discriminant

∆(k) = − ξ2

4
+

h̄2k4

4m2 + c2
s k2 − 4πGρ (130)

is a quadratic function of k2. It starts from ∆(0) = −ξ2/4 − 4πGρ < 0 at k = 0 and increases
monotonically up to +∞. It is negative for k < k∗ and positive for k > k∗, where the wavenumber k∗ is
given by

k2
∗ =

2m2

h̄2

√c4
s +

4πGρh̄2

m2 +
h̄2ξ2

4m2 − c2
s

 . (131)

We write the complex pulsation as ω = ωr + iγ. The perturbation behaves with time as e−iωrteγt,
i.e., it oscillates with a pulsation ωr and evolves exponentially with a rate γ. When k < k∗, the real and
imaginary parts of the complex pulsation are given by

ωr = 0, (132)
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γ = − ξ

2
±

√
ξ2

4
− h̄2k4

4m2 − c2
s k2 + 4πGρ. (133)

When k > k∗ they are given by

ωr = ±

√
− ξ2

4
+

h̄2k4

4m2 + c2
s k2 − 4πGρ, (134)

γ = − ξ

2
. (135)

The pulsation ω vanishes at the Jeans wavenumber k J given by [61]

k2
J =

2m2

h̄2

√c4
s +

4πGρh̄2

m2 − c2
s

 . (136)

It coincides with the quantum Jeans wavenumber (103) of self-interacting bosons. As already
noted in [61] the quantum Jeans length is unaffected by frictional effects. The wavenumber k∗ increases
with ξ. It is equal to k J when ξ = 0 and behaves as k∗ ∼ (mξ/h̄)1/2 when ξ → +∞. Therefore k J ≤ k∗.
For k > k∗, the perturbation oscillates with a pulsation ωr and is damped at a rate γ = −ξ/2.
For k J < k < k∗, the perturbation evolves exponentially rapidly with a rate γ. The two modes are
decaying (γ+ < 0 and γ− < 0). For k < k J , the perturbation evolves exponentially rapidly with a rate
γ. There is a growing mode (γ+ > 0) and a decaying mode (γ− < 0). The system is stable for the
modes k > k J and unstable for the modes k < k J . We note that the friction ξ has the effect of decreasing
the pulsation, increasing the damping rate, and decreasing the growth rate.

The functions ωr and γ are represented in Figure 11. For k = 0:

ωr = 0, γ+ = − ξ

2
+

√
ξ2

4
+ 4πGρ, γ− = − ξ

2
−
√

ξ2

4
+ 4πGρ. (137)

For k = k J :

ωr = 0, γ+ = 0, γ− = −ξ. (138)

For k = k∗:

ωr = 0, γ = − ξ

2
. (139)

For k→ +∞:

ωr ∼ ±
h̄k2

2m
, γ = − ξ

2
. (140)

The growth rate is maximum at km = 0 with value γmax = −ξ/2 +
√

ξ2/4 + 4πGρ. For ξ = 0,
we have γmax =

√
4πGρ. For ξ → +∞, we have γmax ∼ 4πGρ/ξ.
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Figure 11. Dispersion relation for self-gravitating BECs in the general case when c2
s ≥ 0. We have

normalized the wavenumber by (4πGρm2/h̄2)1/4, the pulsation and the friction by (4πGρ)1/2, and the
squared speed of sound by (4πGρh̄2/m2)1/2. This is equivalent to taking 4πG = ρ = m = h̄ = 1 in the
dimensional equations. We have selected c2

s = 1, 0 and ξ = 1.

For noninteracting bosons (cs = 0), the preceding discussion remains valid with

k∗ =
(

m2ξ2

h̄2 +
16πGρm2

h̄2

)1/4

(141)

and

k J =

(
16πGρm2

h̄2

)1/4

, (142)

where k J coincides with the quantum Jeans wavenumber (107) of noninteracting bosons.

5.2. The Case G = 0

The nongravitational limit (G = 0) has been studied in [71]. In that case, the generalized
dispersion relation (128) reduces to

ω2 + iξω =
h̄2k4

4m2 + c2
s k2, (143)

and its solutions are

ω = −i
ξ

2
±

√
− ξ2

4
+

h̄2k4

4m2 + c2
s k2. (144)

The discriminant is negative when k < k∗ and positive when k > k∗, where

k2
∗ =

2m2

h̄2

√c4
s +

h̄2ξ2

4m2 − c2
s

 . (145)

When k < k∗, the real and imaginary parts of the complex pulsation are given by

ωr = 0, (146)

γ = − ξ

2
±

√
ξ2

4
− h̄2k4

4m2 − c2
s k2. (147)
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When k > k∗, they are given by

ωr = ±

√
− ξ2

4
+

h̄2k4

4m2 + c2
s k2, (148)

γ = − ξ

2
. (149)

The wavenumber k∗ increases with ξ. It behaves as k∗ ∼ ξ/2cs when ξ → 0 and as k∗ ∼ (mξ/h̄)1/2

when ξ → +∞. For k > k∗, the perturbation oscillates with a pulsation ωr and is damped at a rate
γ = −ξ/2. For k < k∗, the perturbation evolves exponentially rapidly with a rate γ. The two modes
are decaying (γ+ < 0 and γ− < 0). The system is stable for all modes.

The functions ωr and γ are represented in Figure 12. For k = 0:

ωr = 0, γ+ = 0, γ− = −ξ. (150)

For k = k∗:

ωr = 0, γ = − ξ

2
. (151)

For k→ +∞:

ωr ∼ ±
h̄k2

2m
, γ = − ξ

2
. (152)

For noninteracting bosons (cs = 0), the preceding discussion remains valid with

k∗ =
(

mξ

h̄

)1/2
. (153)
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Figure 12. Dispersion relation for BECs in the nongravitational limit (G = 0) when c2
s ≥ 0. We have

normalized the wavenumber by mcs/h̄ and the pulsation and the friction by mc2
s /h̄. This is equivalent

to taking m = cs = h̄ = 1 in the dimensional equations. We have selected ξ = 1. When cs = 0, we can
normalize the pulsation by ξ and the wavenumber by (ξm/h̄)1/2.
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5.3. The Case h̄ = 0

The classical (or TF) limit (h̄ = 0) has been treated in [85].17 In that case, the generalized
dispersion relation (128) reduces to

ω2 + iξω = c2
s k2 − 4πGρ, (154)

and its solutions are

ω = −i
ξ

2
±
√
− ξ2

4
+ c2

s k2 − 4πGρ. (155)

The discriminant is negative when k < k∗ and positive when k > k∗, where

k∗ =
(

4πGρ

c2
s

+
ξ2

4c2
s

)1/2

. (156)

When k < k∗, the real and imaginary parts of the complex pulsation are given by

ωr = 0, (157)

γ = − ξ

2
±
√

ξ2

4
− c2

s k2 + 4πGρ. (158)

When k > k∗, they are given by

ωr = ±
√
− ξ2

4
+ c2

s k2 − 4πGρ, (159)

γ = − ξ

2
. (160)

The pulsation ω vanishes at the Jeans wavenumber

k J =

(
4πGρ

c2
s

)1/2
. (161)

It coincides with the classical (or TF) Jeans wavenumber (90). The wavenumber k∗ increases with
ξ. It is equal to k J when ξ = 0 and behaves as k∗ ∼ ξ/2cs when ξ → +∞. Therefore k J ≤ k∗. For k > k∗,
the perturbation oscillates with a pulsation ωr and is damped at a rate γ = −ξ/2. For k J < k < k∗,
the perturbation evolves exponentially rapidly with a rate γ. The two modes are decaying (γ+ < 0
and γ− < 0). For k < k J , the perturbation evolves exponentially rapidly with a rate γ. There is a
growing mode (γ+ > 0) and a decaying mode (γ− < 0). The system is stable for the modes k > k J and
unstable for the modes k < k J .

The functions ωr and γ are represented in Figure 13. The results from Equations (137)–(140)
remain valid except that ωr ∼ ±csk for k→ +∞.

17 This study was done in relation to the chemotaxis of bacterial populations based on the Keller–Segel [86] model.
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Figure 13. Dispersion relation for self-gravitating BECs in the TF limit (h̄ = 0) when c2
s ≥ 0. We have

normalized the wavenumber by (4πGρ/c2
s )

1/2 and the pulsation and the friction by (4πGρ)1/2. This is
equivalent to taking 4πG = ρ = m = cs = 1 in the dimensional equations. We have selected ξ = 1.
When cs = 0, we can normalize the pulsation by ξ and the density by ξ2/4πG.

For noninteracting bosons (cs = 0), the discriminant is always negative and the solution of the
dispersion relation is

ωr = 0 and γ = − ξ

2
±
√

ξ2

4
+ 4πGρ. (162)

The perturbation evolves exponentially rapidly with a rate γ which is independent of k. There
is a growing mode (γ+ > 0) and a decaying mode (γ− < 0). The system is unstable for all modes
(k∗, k J → +∞).

5.4. The Case h̄ = G = 0

In the classical (or TF) + nongravitational limit (h̄ = G = 0) the generalized dispersion
relation (128) reduces to

ω2 + iξω = c2
s k2, (163)

and its solutions are

ω = −i
ξ

2
±
√
− ξ2

4
+ c2

s k2. (164)

The discriminant is negative when k < k∗ and positive when k > k∗, where

k∗ =
ξ

2cs
. (165)

When k < k∗, the real and imaginary parts of the complex pulsation are given by

ωr = 0, (166)

γ = − ξ

2
±
√

ξ2

4
− c2

s k2. (167)

When k > k∗, they are given by

ωr = ±
√
− ξ2

4
+ c2

s k2, (168)



Universe 2020, 6, 226 33 of 54

γ = − ξ

2
. (169)

For k > k∗, the perturbation oscillates with a pulsation ωr and is damped at a rate γ = −ξ/2.
For k < k∗, the perturbation evolves exponentially rapidly with a rate γ. The two modes are decaying
(γ+ < 0 and γ− < 0). The system is stable for all modes.

The functions ωr and γ are represented in Figure 14. The results from Equations (150)–(152)
remain valid except that ωr ∼ ±csk for k→ +∞.

For noninteracting bosons (cs = 0), the solutions of the dispersion relation reduce to ωr = 0,
γ+ = 0 and γ− = −ξ.
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Figure 14. Dispersion relation for BECs in the nongravitational + TF limit (G = h̄ = 0) when c2
s ≥ 0.

We have normalized the wavenumber by ξ/cs and the pulsation by ξ. This is equivalent to taking
ξ = cs = 1 in the dimensional equations.

6. Attractive Self-Interaction c2
s < 0

As in the previous section, we assume a finite nonzero value of the friction parameter ξ but we
now consider the case of an attractive self-interaction corresponding to c2

s < 0.

6.1. The General Case

In this subsection we treat the general case where h̄ 6= 0 and G 6= 0. Particular cases will be
considered in the following subsections. The generalized dispersion relation is given by [61]

ω2 + iξω =
h̄2k4

4m2 − |c
2
s |k2 − 4πGρ. (170)

This is a second-degree equation for ω whose solutions are

ω = −i
ξ

2
±

√
− ξ2

4
+

h̄2k4

4m2 − |c2
s |k2 − 4πGρ. (171)

The discriminant

∆(k) = − ξ2

4
+

h̄2k4

4m2 − |c
2
s |k2 − 4πGρ (172)

is a quadratic function of k2. It starts from ∆(0) = −ξ2/4− 4πGρ < 0 at k = 0, decreases, reaches a
minimum value

∆min = − ξ2

4
− m2c4

s

h̄2 − 4πGρ at km =

(
2m2|c2

s |
h̄2

)1/2

, (173)
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and increases up to +∞. The critical wavenumber km is independent of ξ and coincides with
Equation (110). The discriminant is negative when k < k∗ and positive when k > k∗, where the
wavenumber k∗ is given by

k2
∗ =

2m2

h̄2

√c4
s +

h̄24πGρ

m2 +
h̄2ξ2

4m2 + |c2
s |

 . (174)

We write the complex pulsation as ω = ωr + iγ. The perturbation behaves with time as e−iωrteγt,
i.e., it oscillates with a pulsation ωr and evolves exponentially with a rate γ. When k < k∗, the real and
imaginary parts of the complex pulsation are given by

ωr = 0, (175)

γ = − ξ

2
±

√
ξ2

4
− h̄2k4

4m2 + |c2
s |k2 + 4πGρ. (176)

When k > k∗, they are given by

ωr = ±

√
− ξ2

4
+

h̄2k4

4m2 − |c2
s |k2 − 4πGρ, (177)

γ = − ξ

2
. (178)

The pulsation ω vanishes at the Jeans wavenumber k J given by [61]

k2
J =

2m2

h̄2

√c4
s +

h̄24πGρ

m2 + |c2
s |

 . (179)

It is unaffected by frictional effects and coincides with the quantum Jeans wavenumber (103) of
self-interacting bosons. The wavenumber k∗ increases with ξ. It is equal to k J when ξ = 0 and behaves
as k∗ ∼ (mξ/h̄)1/2 when ξ → +∞. Therefore km ≤ k J ≤ k∗. For k > k∗, the perturbation oscillates
with a pulsation ωr and is damped at a rate γ = −ξ/2. For k J < k < k∗, the perturbation evolves
exponentially rapidly with a rate γ. The two modes are decaying (γ+ < 0 and γ− < 0). For k < k J ,
the perturbation evolves exponentially rapidly with a rate γ. There is a growing mode (γ+ > 0) and
a decaying mode (γ− < 0). The system is stable for the modes k > k J and unstable for the modes
k < k J . We note that the friction ξ has the effect of decreasing the pulsation, increasing the damping
rate, and decreasing the growth rate.

The functions ωr and γ are represented in Figure 15. The results from Equations (137)–(140)
remain valid. The growth rate is maximum at k = km with value

γmax = − ξ

2
+

√
ξ2

4
+

m2c4
s

h̄2 + 4πGρ. (180)
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Figure 15. Dispersion relation for self-gravitating BECs in the general case when c2
s < 0. We have

normalized the wavenumber by (4πGρm2/h̄2)1/4, the pulsation and the friction by (4πGρ)1/2, and the
squared speed of sound by (4πGρh̄2/m2)1/2. This is equivalent to taking 4πG = ρ = m = h̄ = 1 in the
dimensional equations. We have selected c2

s = −1 and ξ = 1.

6.2. The Case G = 0

The nongravitational limit (G = 0) has been studied in [71]. In that case, the generalized dispersion
relation (170) reduces to

ω2 + iξω =
h̄2k4

4m2 − |c
2
s |k2, (181)

and its solutions are

ω = −i
ξ

2
±

√
− ξ2

4
+

h̄2k4

4m2 − |c2
s |k2. (182)

The discriminant is negative when k < k∗ and positive when k > k∗, where

k2
∗ =

2m2

h̄2

√c4
s +

h̄2ξ2

4m2 + |c2
s |

 . (183)

When k < k∗, the real and imaginary parts of the complex pulsation are given by

ωr = 0, (184)

γ = − ξ

2
±

√
ξ2

4
− h̄2k4

4m2 + |c2
s |k2. (185)

When k > k∗, they are given by

ωr = ±

√
− ξ2

4
+

h̄2k4

4m2 − |c2
s |k2, (186)

γ = − ξ

2
. (187)
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The pulsation vanishes at the effective Jeans wavenumber

k J =

(
4m2|c2

s |
h̄2

)1/2

. (188)

It is unaffected by frictional effects and coincides with Equation (98). The wavenumber k∗
increases with ξ. It is equal to k J when ξ = 0 and behaves as k∗ ∼ (mξ/h̄)1/2 when ξ → +∞.
Therefore km ≤ k J ≤ k∗. For k > k∗, the perturbation oscillates with a pulsation ωr and is damped at a
rate γ = −ξ/2. For k J < k < k∗, the perturbation evolves exponentially rapidly with a rate γ. The two
modes are decaying (γ+ < 0 and γ− < 0). For k < k J , the perturbation evolves exponentially rapidly
with a rate γ. There is a growing mode (γ+ > 0) and a decaying mode (γ− < 0). The system is stable
for the modes k > k J and unstable for the modes k < k J .

The functions ωr and γ are represented in Figure 16. The results from Equations (137)–(140)
remain valid. The growth rate is maximum at

km =

(
2m2|c2

s |
h̄2

)1/2

(189)

with value

γmax = − ξ

2
+

√
ξ2

4
+

m2c4
s

h̄2 . (190)
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Figure 16. Dispersion relation for BECs in the nongravitational limit (G = 0) when c2
s < 0. We have

normalized the wavenumber by (m2|c2
s |/h̄2)1/2 and the pulsation and the friction by m|c2

s |/h̄. This is
equivalent to taking m = |c2

s | = h̄ = 1 in the dimensional equations. We have selected ξ = 1.

6.3. The Case h̄ = 0

In the classical (or TF) limit (h̄ = 0), the generalized dispersion relation (170) reduces to

ω2 + iξω = −|c2
s |k2 − 4πGρ, (191)

and its solutions are

ω = −i
ξ

2
±
√
− ξ2

4
− |c2

s |k2 − 4πGρ. (192)

The discriminant is always negative. The real and imaginary parts of the complex pulsation are
given by

ωr = 0, (193)
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γ = − ξ

2
±
√

ξ2

4
+ |c2

s |k2 + 4πGρ. (194)

The perturbation evolves exponentially rapidly with a rate γ. There is a growing mode (γ+ > 0)
and a decaying mode (γ− < 0). The system is unstable for all modes (k∗, k J → +∞).

The functions ωr and γ are represented in Figure 17. For k = 0:

γ = − ξ

2
±
√

ξ2

4
+ 4πGρ. (195)

For k→ +∞:

γ = ±|c2
s |1/2k. (196)

The growth rate tends to +∞ when k→ +∞.
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Figure 17. Dispersion relation for self-gravitating BECs in the TF limit (h̄ = 0) when c2
s < 0. We have

normalized the wavenumber by (4πGρ/|c2
s |)1/2 and the pulsation and the friction by (4πGρ)1/2.

This is equivalent to taking 4πG = ρ = m = |c2
s | = 1 in the dimensional equations. We have

selected ξ = 1.

6.4. The Case h̄ = G = 0

In the classical (or TF) + nongravitational limit (h̄ = G = 0) the generalized dispersion
relation (170) reduces to

ω2 + iξω = −|c2
s |k2, (197)

and its solutions are

ω = −i
ξ

2
±
√
− ξ2

4
− |c2

s |k2. (198)

The discriminant is always negative. The real and imaginary parts of the complex pulsation are
given by

ωr = 0, (199)

γ = − ξ

2
±
√

ξ2

4
+ |c2

s |k2. (200)

The perturbation evolves exponentially rapidly with a rate γ. There is a growing mode (γ+ > 0)
and a decaying mode (γ− < 0). The system is unstable for all modes (k∗, k J → +∞).
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The functions ωr and γ are represented in Figure 18. For k = 0:

γ+ = 0, γ− = −ξ. (201)

For k→ +∞:

γ = ±|c2
s |1/2k. (202)

The growth rate tends to +∞ when k→ +∞.
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Figure 18. Dispersion relation for BECs in the nongravitational and TF limit (G = h̄ = 0) when c2
s < 0.

We have normalized the wavenumber by ξ/|c2
s |1/2 and the pulsation by ξ. This is equivalent to taking

ξ = |c2
s | = 1 in the dimensional equations.

7. Summary and Discussion

In this section, we summarize the results obtained previously.

7.1. The Case c2
s > 0

When ξ is finite and nonzero, the perturbation undergoes damped oscillations for k > k∗, decays
exponentially rapidly for k J < k < k∗, and grows exponentially rapidly for k < k J (see Figure 11).
The growth rate is maximum at km = 0 (infinite wavelength). When h̄ = 0 (see Figure 13),
the situation is the same. When G = 0 (see Figure 12), there is no instability (k J = 0). In that
case, the perturbation undergoes damped oscillations for k > k∗ and decays exponentially rapidly for
k < k∗. When G = h̄ = 0 (see Figure 14), the situation is the same.

When ξ = 0, in which case k∗ = k J , the perturbation oscillates for k > k J and grows exponentially
rapidly for k < k J (see Figure 5). The growth rate is maximum at km = 0 (infinite wavelength).
When h̄ = 0 (see Figure 3), the situation is the same. When G = 0 (see Figure 4), there is no instability
(k J = 0). In that case, the perturbation oscillates for all k. When G = h̄ = 0 (see Figure 2), the situation
is the same.

When ξ → +∞, in which case k∗ → +∞, the perturbation decays exponentially rapidly for k > k J
and grows exponentially rapidly for k < k J (see Figure 10). The growth rate is maximum at km = 0
(infinite wavelength). When h̄ = 0 (see Figure 8), the situation is the same. When G = 0 (see Figure 9),
there is no instability (k J = 0). In that case, the perturbation decays exponentially rapidly for all k.
When G = h̄ = 0 (see Figure 7), the situation is the same.

7.2. The Case c2
s = 0

When ξ is finite and nonzero, the perturbation undergoes damped oscillations for k > k∗,
decays exponentially rapidly for k J < k < k∗, and grows exponentially rapidly for k < k J
(see Figure 11). The growth rate is maximum at km = 0 (infinite wavelength). When h̄ = 0
(see Figure 13), there is nothing to prevent the instability (k J , k∗ → +∞). The perturbation grows
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exponentially rapidly for all k with the same rate. When G = 0 (see Figure 12), there is no instability
(k J = 0). In that case, the perturbation undergoes damped oscillations for k > k∗ and decays
exponentially rapidly for k < k∗. When h̄ = G = 0 (see Figure 14), the perturbation is stationary
(k J = 0 and k∗ → +∞).

When ξ = 0, in which case k∗ = k J , the perturbation oscillates for k > k J and grows exponentially
rapidly for k < k J (see Figure 5). The growth rate is maximum at km = 0 (infinite wavelength).
When h̄ = 0 (see Figure 3), there is nothing to prevent the instability (k J → +∞). The perturbation
grows exponentially rapidly for all k with the same rate. When G = 0 (see Figure 4), there is no
instability (k J = 0). In that case, the perturbation oscillates for all k. When h̄ = G = 0 (see Figure 2),
the perturbation is stationary.

When ξ → +∞, in which case k∗ → +∞, the perturbation decays exponentially rapidly for k > k J
and grows exponentially rapidly for k < k J (see Figure 10). The growth rate is maximum at km = 0
(infinite wavelength). When h̄ = 0 (see Figure 8), there is nothing to prevent the instability (k J → +∞).
The perturbation grows exponentially rapidly for all k with the same rate. When G = 0 (see Figure 9),
there is no instability (k J = 0). In that case, the perturbation decays exponentially rapidly for all k.
When h̄ = G = 0 (see Figure 7), the perturbation is stationary.

7.3. The Case c2
s < 0

When ξ is finite and nonzero, the perturbation undergoes damped oscillations for k > k∗, decays
exponentially rapidly for k J < k < k∗, and grows exponentially rapidly for k < k J (see Figure 15).
The growth rate is maximum at km > 0. When G = 0 (see Figure 16), the situation is the same.
When h̄ = 0 (see Figure 17), there is nothing to prevent the instability (k J , k∗ → +∞). In that case,
the perturbation grows exponentially rapidly for all k and the growth rate is infinite for k → +∞
(zero wavelength). When h̄ = G = 0 (see Figure 18), the situation is the same.

When ξ = 0, in which case k∗ = k J , the perturbation oscillates for k > k J and grows exponentially
rapidly for k < k J (see Figure 5). The growth rate is maximum at km > 0. When G = 0 (see Figure 4),
the situation is the same. When h̄ = 0 (see Figure 3), there is nothing to prevent the instability
(k J → +∞). In that case, the perturbation grows exponentially rapidly for all k and the growth rate is
infinite for k→ +∞ (zero wavelength). When h̄ = G = 0 (see Figure 2), the situation is the same.

When ξ → +∞, in which case k∗ → +∞, the perturbation decays exponentially rapidly for k > k J
and grows exponentially rapidly for k < k J (see Figure 10). The growth rate is maximum at km > 0.
When G = 0 (see Figure 9), the situation is the same. When h̄ = 0 (see Figure 8), there is nothing
to prevent the instability (k J → +∞). In that case, the perturbation grows exponentially rapidly for
all k and the growth rate is infinite for k → +∞ (zero wavelength). When h̄ = G = 0 (see Figure 7),
the situation is the same.

8. Conclusions

In this paper, we have made an exhaustive study of the Jeans instability of an infinite
homogeneous dissipative self-gravitating BEC based on the generalized GPP equations introduced
in [61]. Following our previous works [28,52], we have considered the case of an arbitrary (vanishing,
repulsive or attractive) self-interaction. The general expression of the Jeans wavenumber is given
by Equation (45). Self-gravitating BECs with a vanishing or a repulsive self-interaction are only
subject to the gravitational instability. The Jeans length is due to the interplay between the quantum
pressure (Heisenberg), the repulsive self-interaction and the self-gravity. Self-gravitating BECs with
an attractive self-interaction can experience, in addition, a hydrodynamical (tachyonic) instability.
In that case, the Jeans length is due to the interplay between the quantum pressure (Heisenberg),
the attractive self-interaction and the self-gravity. This hydrodynamical instability exists even in
the absence of gravitation. As shown in our previous work [28], the maximum growth rate of the
hydrodynamical or gravito-hydrodynamical instability occurs at a finite wavelength λm while the
maximum growth rate of the purely gravitational instability occurs at an infinite wavelength, and the
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value of the maximum growth rate is smaller. We have studied how the dissipation affects the results
obtained in [28]. Generically, in the absence of friction (ξ = 0), the perturbation oscillates for λ < λJ
and grows exponentially rapidly for λ > λJ . With the friction, a new scale λ∗ < λJ appears in the
problem. The perturbation undergoes damped oscillations for λ < λ∗, decays exponentially rapidly
for λ∗ < λ < λJ , and grows exponentially rapidly for λ > λJ . In the overdamped limit (ξ → +∞),
the perturbation decays exponentially rapidly for λ < λJ and grows exponentially rapidly for λ > λJ .
As already shown in [61], the Jeans length is not affected by the friction. The effect of the friction
is to damp the perturbation in the stable regime (λ < λJ), to diminish the pulsation in the range
λ < λ∗ (where the damping rate is constant), to increase the damping rate |γ−| in the range λ < λJ ,
and to diminish the growth rate γ+ in the range λ > λJ . We have considered specific situations of
physical interest: the noninteracting limit (as = 0), the nongravitational limit (G = 0), and the TF limit
(h̄ = 0). In the present paper, we have developed a general formalism to treat the Jeans instability of a
dissipative quantum fluid. The case of a standard BEC can be obtained from our general formalism
by replacing the squared speed of sound c2

s by its expression given by Equation (24). The case of
fermions can be treated similarly by using the results of Section 2.6. The corresponding Jeans mass MJ
and Jeans length λJ have been given in [28] and their numerical values for different types of bosonic
and fermionic DM particles in a cosmological context have been calculated in [52]. In a forthcoming
paper [65], we shall complete the studies initiated in [28,52] in the light of the present results.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Thermodynamical Identities

In this Appendix, we recall basic elements of thermodynamics and apply them to BECs at absolute
zero temperature (see [61] for a more detailed discussion).

The first principle of thermodynamics can be written as

d
(

u
ρ

)
= −Pd

(
1
ρ

)
+ Td

(
s
ρ

)
, (A1)

where u is the density of internal energy, s is the density of entropy, ρ is the mass density, and P is the
pressure. For a cold (T = 0) gas, it reduces to

d
(

u
ρ

)
= −Pd

(
1
ρ

)
=

P
ρ2 dρ. (A2)

Introducing the enthalpy per particle

h =
P + u

ρ
, (A3)

we get

du = hdρ and dh =
dP
ρ

. (A4)

Comparing Equation (A3) with the Gibbs–Duhem relation at T = 0:

u = −P + Ts +
µ

m
ρ ⇒ µ

m
=

P + u
ρ

, (A5)
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we see that the enthalpy h is equal to the chemical potential µ by unit of mass: h = µ/m. For a
barotropic gas, for which P = P(ρ), the foregoing equations can be written as

P(ρ) = −d(u/ρ)

d(1/ρ)
= ρ2

[
u(ρ)

ρ

]′
= ρu′(ρ)− u(ρ) ⇒ P′(ρ) = ρu′′(ρ), (A6)

and

h(ρ) =
P(ρ) + u(ρ)

ρ
, h(ρ) = u′(ρ), h′(ρ) =

P′(ρ)
ρ

. (A7)

Comparing Equation (A6) with Equation (19), we see that the potential V(ρ) represents the density
of internal energy

u(ρ) = V(ρ). (A8)

We then have

h(ρ) =
P(ρ) + V(ρ)

ρ
, h(ρ) = V′(ρ), h′(ρ) =

P′(ρ)
ρ

. (A9)

In particular, we see that the enthalpy is equal to the first derivative of the potential V.

Appendix B. Generalized Wave Equation

In this Appendix, we briefly recall the derivation of the generalized Schrödinger Equation (4)
given in [71] from the formalism of scale relativity [63].

Nottale [63] has shown that the standard Schrödinger equation is equivalent to the fundamental
equation of dynamics

DU
Dt

= −∇Φ, (A10)

where F = −∇Φ is the force by unit of mass exerted on a particle, provided that U(r, t) is interpreted
as a complex velocity field and D/Dt as a complex time derivative operator (or covariant derivative)
defined by

D
Dt

=
∂

∂t
+ U · ∇ − iD∆, (A11)

where
D =

h̄
2m

(A12)

is the Nelson [87] diffusion coefficient of quantum mechanics or the fractal fluctuation parameter in
the theory of scale relativity [63]. In Ref. [71] we proposed to generalize this procedure by including a
dissipative term in the fundamental equation of dynamics. Specifically, we considered an equation of
motion of the form

DU
Dt

= −∇Φ− Re(γU) (A13)

involving a linear friction force −γU, where γ is a complex friction coefficient.18 Using the
expression (A11) of the covariant derivative, Equation (A13) can be rewritten as a damped complex
viscous Burgers equation

∂U
∂t

+ (U · ∇)U = iD∆U−∇Φ− Re(γU) (A14)

18 As explained in [71], it is necessary to take the real part of the complex friction force in Equation (A13) in order to guarantee
the local conservation of the normalization condition.
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with an imaginary viscosity ν = iD and a complex friction γ. It can be shown [63] that the complex
velocity field can be written as the gradient of a complex action:

U =
∇S
m

. (A15)

This defines a potential flow. As a consequence, the flow is irrotational: ∇×U = 0. Using the
well-known identities of fluid mechanics (U · ∇)U = ∇(U2/2)−U× (∇×U) and ∆U = ∇(∇ ·U)−
∇× (∇× U) which reduce to (U · ∇)U = ∇(U2/2) and ∆U = ∇(∇ · U) for an irrotational flow,
and using the identity ∇ ·U = ∆S/m resulting from Equation (A15), we find that Equation (A13) is
equivalent to the complex quantum Hamilton–Jacobi (or Bernoulli) equation

∂S
∂t

+
1

2m
(∇S)2 − iD∆S + mΦ + V(t) + Re(γS) = 0, (A16)

where V(t) is a “constant” of integration that may depend on time. We now define the wave function
ψ(r, t) through the complex Cole–Hopf transformation

S = −2imD ln ψ, (A17)

which is equivalently to the WKB formula

ψ = eiS/h̄. (A18)

Substituting Equation (A17) into Equation (A16), and using the identity

∆(ln ψ) =
∆ψ

ψ
− 1

ψ2 (∇ψ)2, (A19)

we obtain the generalized Schrödinger equation [71]

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + mΦψ + Vψ + h̄ Im(γ ln ψ)ψ. (A20)

Writing γ = γR + iγI , where γR is the classical friction coefficient and γI is the quantum friction
coefficient, and using the identity

Im(γ ln ψ) = γI ln |ψ| − 1
2

iγR ln
(

ψ

ψ∗

)
, (A21)

we can rewrite Equation (A20) in the equivalent form

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + mΦψ + Vψ + h̄γI ln |ψ|ψ− i

h̄
2

γR ln
(

ψ

ψ∗

)
ψ. (A22)

Introducing the notations

γR = ξ, γI =
2kBT

h̄
, (A23)

the generalized Schrödinger Equation (A22) becomes

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + mΦψ + Vψ + 2kBT ln |ψ|ψ− i

h̄
2

ξ ln
(

ψ

ψ∗

)
ψ. (A24)

As shown in [71] (see also Section 2.2), ξ plays the role of an ordinary friction coefficient while
T plays the role of an effective temperature. Since the temperature is effective, it can be positive or
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negative. Finally, we choose the function V(t) so that the average value of the friction term proportional
to ξ is equal to zero. This gives

V(t) = i
h̄
2

ξ

〈
ln
(

ψ

ψ∗

)〉
, (A25)

where 〈X〉 =
∫

ρX dr. Then, the generalized Schrödinger Equation (A24) takes the form [71]

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + mΦψ + 2kBT ln |ψ|ψ− i

h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ. (A26)

This equation is equivalent to the equation of motion (A13). It is interesting to note that the
complex nature of the friction coefficient,

γ = ξ + i
2kBT

h̄
, (A27)

leads to a generalized Schrödinger equation exhibiting simultaneously a friction term and an effective
temperature term. They correspond to the real and imaginary parts of γ. This may be viewed as a
new form of fluctuation-dissipation theorem. As a result, the generalized Schrödinger Equation (A26)
introduced by Chavanis [71] connects the generalized Schrödinger equation with a friction term
introduced by Kostin [88] and the generalized Schrödinger equation with a logarithmic nonlinearity
introduced by Bialynicki-Birula and Mycielski [89]. Remarkably, this equation can be obtained from a
unique equation of motion, Equation (A13), by using the formalism of scale relativity [63].

Remark A1. Equation (A26) can be interpreted as a generalized Gross–Pitaevskii (GP) equation with a
logarithmic nonlinearity and a dissipation term. This is a particular case of the generalized GP equations
considered in [61]. General properties of these equations are established in [61].

Appendix C. Derivation of the GPP Equations in an Expanding Universe

In the main text, we have directly written the GPP Equations (7) and (8) in an expanding universe.
Following our previous work [58], this can be justified as follows. We start from the KGE equations
for a complex SF (see Equations (9) and (16) of [58]) and use the conformal Newtonian gauge (see
Equation (17) of [58]) which is a perturbed form of the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric taking into account the expansion of the Universe. We then make the Klein transformation (see
Equation (34) of [58]) and finally take the nonrelativistic limit c→ +∞ to obtain the GPP equations in
an expanding background.19 In this Appendix, we propose an alternative derivation. We start from the
nonrelativistic GPP equations in the inertial frame, show that they admit a time-dependent spatially
homogeneous solution (describing an expanding universe in a Newtonian cosmology), and finally
transform the GPP equations in the comoving frame.

Appendix C.1. Inertial Frame

In the inertial frame, the GPP equations write

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + m

dV
d|ψ|2 ψ + mΦψ− i

h̄
2

ξ

[
ln
(

ψ

ψ∗

)
−
〈

ln
(

ψ

ψ∗

)〉]
ψ− 1

2
ξmH(r2 − 〈r2〉)ψ, (A28)

∆Φ = 4πG|ψ|2. (A29)

19 A similar derivation can be performed for a real SF as shown in Sec. II of [90] and in Appendix A of [26].
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The last term in Equation (A28) comes from the fact that the friction force manifests itself only in
the deviation from the expanding background (see footnote 7). Writing the wave function as

ψ(r, t) =
√

ρ(r, t)eiS(r,t)/h̄, (A30)

where ρ(r, t) is the mass density and S(r, t) is the action, and making the Madelung [68] transformation

ρ(r, t) = |ψ|2 and u =
∇S
m

, (A31)

where u(r, t) is the velocity field, we obtain the hydrodynamic equations in the inertial frame

∂ρ

∂t
+∇ · (ρu) = 0, (A32)

∂S
∂t

+
(∇S)2

2m
= −Q−mΦ−mV′(ρ)− ξ(S− 〈S〉) + 1

2
ξmH(r2 − 〈r2〉), (A33)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇P−∇Φ− 1

m
∇Q− ξ(u− Hr), (A34)

∆Φ = 4πGρ, (A35)

where

Q = − h̄2

2m
∆
√

ρ
√

ρ
= − h̄2

4m

[
∆ρ

ρ
− 1

2
(∇ρ)2

ρ2

]
(A36)

is the quantum potential taking into account the Heisenberg uncertainty principle, and P is the
pressure determined by Equation (19). In line with the remark made after Equation (A29), we see on
Equation (A34) that the friction force manifests itself only when the fluid velocity u deviates from the
Hubble flow Hr. In the strong friction limit ξ → +∞, the fluid velocity is given at leading order by
u ' Hr. Then, at next order, the quantum Euler Equation (A34) becomes

(Ḣ + H2)r = −1
ρ
∇P−∇Φ− 1

m
∇Q− ξ(u− Hr). (A37)

Combining this relation with the continuity Equation (A32), we obtain the quantum Smoluchowski
equation in the inertial frame

∂ρ

∂t
+∇ · (ρHr) =

1
ξ
∇ ·

[
∇P + ρ∇Φ +

ρ

m
∇Q + ρ(Ḣ + H2)r

]
. (A38)

Appendix C.2. Newtonian Cosmology

We now derive the basic equations of Newtonian cosmology. We consider a spatially homogeneous
solution of Equations (A32)–(A35) of the form

ρb(r, t) = ρb(t), Sb(r, t) =
1
2

H(t)mr2 + S0(t), ub(r, t) = H(t)r, Φb(r, t) =
2
3

πGρb(t)r
2, (A39)

where H = ȧ/a is the Hubble constant (actually a function of time) and a(t) is the scale factor.
The velocity is assumed to be proportional to the distance (Hubble’s law) and the gravitational potential
has been determined from the Poisson equation ∆Φb = 4πGρb. The corresponding wavefunction is

ψb(r, t) =
√

ρb(t)e
i[ 1

2 H(t)mr2+S0(t)]/h̄. (A40)
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Under these assumptions, the hydrodynamic Equations (A32)–(A34) reduce to

dρb
dt

+ 3Hρb = 0 ⇒ ρb ∝ a−3, (A41)

dS0

dt
= −mV′(ρb), (A42)

Ḣ + H2 = −4
3

πGρb ⇒ ä = −4
3

πGρba. (A43)

The first equation can be interpreted as the conservation of mass

M =
4
3

πρba3 ⇒ ρb =
3M

4πa3 (A44)

and the third equation as the Newtonian equation of dynamics

ä = −GM
a2 = −

4
3 πGρba3

a2 (A45)

for a particle submitted to a gravitational field −GM/a2 created by a mass M.20 The first integral of
motion is

1
2

(
da
dt

)2
− GM

a
= E ⇒

(
da
dt

)2
=

2GM
a

+ 2E =
8
3

πGρba2 + 2E. (A46)

These equations coincide with the Friedmann equations in the nonrelativistic limit (or for
pressureless matter). In the context of general relativity, the term−2E represents the curvature of space
κ, where κ = −1, 0,+1 depending whether the Universe is open, critical, or closed. Both inflationary
theory and observations of the CMB favor a flat universe (κ = 0) so we shall take E = 0. In that case,
Equation (A46) reduces to (

da
dt

)2
=

8
3

πGρba2 ⇒ H2 =
8
3

πGρb. (A47)

Together with Equation (A41) this leads to the Einstein–de Sitter (EdS) universe21

a ∝ t2/3, H =
ȧ
a
=

2
3t

, ρb =
1

6πGt2 . (A48)

Appendix C.3. Comoving Frame

In the comoving frame, we make the change of variables

r = a(t)x, ψ(r, t) = Ψ(x, t)ei 1
2 mHr2/h̄, (A49)

where r is the proper distance. Equation (A49) is a change of variables from proper locally Minkowski
coordinates r to expanding coordinates x comoving in the background model [77]. The density is
given by ρ = |Ψ|2. Defining the gravitational potential φ(x, t) by

Φ(r, t) = Φb(r, t) + φ(x, t), (A50)

20 These equations can be justified in a Newtonian cosmology if we view the Universe as a homogeneous sphere of mass M,
radius a(t) and density ρb(t) evolving under its own gravitation. Equation (A45) is then obtained by considering the force
experienced by a particle of arbitrary mass m on the surface of this sphere and using Newton’s law.

21 Throughout the paper we have assumed a vanishing cosmological constant (Λ = 0).
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we find that the Poisson Equation (A35) becomes

∆φ = 4πGa2(ρ− ρb), (A51)

where the derivatives are with respect to x (the same is true for the following equations unless
explicitly specified).

We now transform the generalized GPP Equations (A28) and (A29) to the comoving frame.
We first compute (

∂ψ

∂t

)
r

=

(
∂

∂t

)
r

Ψ
(

r
a(t)

, t
)

ei 1
2 mHr2/h̄

=

(
∂Ψ
∂t
− Hx · ∇Ψ +

i
2h̄

mḢa2x2Ψ
)

ei 1
2 mHr2/h̄, (A52)

∆rψ =

(
1
a2 ∆Ψ + 3

i
h̄

mHΨ + 2
i
h̄

mHx · ∇Ψ− m2H2

h̄2 a2x2Ψ
)

ei 1
2 mHr2/h̄, (A53)

and

−i
h̄
2

ξ ln
(

ψ

ψ∗

)
ψ =

[
−i

h̄
2

ξ ln
(

Ψ
Ψ∗

)
+

1
2

ξmHa2x2
]

Ψei 1
2 mHr2/h̄. (A54)

Substituting the foregoing relations into Equation (A28) we find after simplification
(using Equation (A43)) that

ih̄
∂Ψ
∂t

+
3
2

ih̄HΨ = − h̄2

2ma2 ∆Ψ + m
dV

d|Ψ|2 Ψ + mφΨ− i
h̄
2

ξ

[
ln
(

Ψ
Ψ∗

)
−
〈

ln
(

Ψ
Ψ∗

)〉]
Ψ. (A55)

On the other hand, using Equation (A47), the Poisson Equation (A51) can be written as

∆φ

4πGa2 = |Ψ|2 − 3H2

8πG
. (A56)

We now proceed in transforming the hydrodynamic Equations (A32)–(A34) to the comoving
frame. The wave function can be written as

Ψ(x, t) =
√

ρ(x, t)eiS(x,t)/h̄, (A57)

where ρ(x, t) is the mass density and S(x, t) is the action in the comoving frame. Making the
Madelung [68] transformation

ρ(x, t) = |Ψ|2 and v =
∇S
ma

, (A58)

where v(x, t) is the velocity field in the comoving frame, and comparing Equations (A30), (A49)
and (A57), we get

S(r, t) = S(x, t) +
1
2

mHr2 ⇒ u(r, t) = v(x, t) + Hr, (A59)
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where u is the velocity field in the inertial frame and Hr is the Hubble flow.22 Then, we compute(
∂ρ

∂t

)
r
=

(
∂

∂t

)
r

ρ

(
r

a(t)
, t
)
=

∂ρ

∂t
− Hx · ∇ρ (A60)

and
∇r(ρu) =

1
a
∇ · (ρv) + Hx · ∇ρ + 3Hρ. (A61)

With these relations, the continuity Equation (A32) becomes

∂ρ

∂t
+ 3Hρ +

1
a
∇ · (ρv) = 0. (A62)

Similarly, using(
∂u
∂t

)
r
=

(
∂

∂t

)
r

v
(

r
a(t)

, t
)
+ Ḣr =

∂v
∂t
− H(x · ∇)v + Ḣax, (A63)

and
(u · ∇r)u = [(Hr + v) · ∇r] (Hr + v) = H2ax + H(x · ∇)v + Hv +

1
a
(v · ∇)v, (A64)

the quantum Euler Equation (A34) becomes

∂v
∂t

+
1
a
(v · ∇)v + Hv = − 1

ρa
∇P− 1

a
∇φ− 1

ma
∇Q− ξv (A65)

with the quantum potential

Q = − h̄2

2ma2

∆
√

ρ
√

ρ
= − h̄2

4ma2

[
∆ρ

ρ
− 1

2
(∇ρ)2

ρ2

]
, (A66)

where we have used Equation (A43) to simplify some terms. These transformations can also be made
at the level of the action. Using(

∂S
∂t

)
r
=

(
∂

∂t

)
r
S
(

r
a(t)

, t
)
+

1
2

mḢr2 =
∂S
∂t
− Hx · ∇S +

1
2

mḢr2 (A67)

and
∇rS =

1
a
∇S + mHr, (A68)

the quantum Hamilton–Jacobi Equation (A33) becomes after simplification

∂S
∂t

+
(∇S)2

2ma2 = −Q−mφ−mV′(ρ)− ξ(S − 〈S〉). (A69)

Finally, we transform the Smoluchowski Equation (A38) to the comoving frame.
Using Equations (A39), (A43), (A50) and (A60), we get

∂ρ

∂t
+ 3Hρ =

1
ξa2∇ ·

(
∇P + ρ∇φ +

ρ

m
∇Q

)
. (A70)

22 This result can also be obtained as follows. Taking the derivative with respect to time of the relation r = a(t)x, we get
dr/dt = ȧx + adx/dt. This can be written as u = Hr + v with u = dr/dt and v = adx/dt, where u is the proper velocity and
v is the peculiar velocity.
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We can check that the above results return the equations of Sections 2.1 and 2.2 up to an obvious
change of notations.

Appendix D. Gravitational Bogoliubov Equations

In this Appendix, following Ref. [67], we derive the quantum Jeans dispersion relation from
the gravitational Bogoliubov equations for quasi-particle excitations. We directly work on the GPP
equations without introducing the hydrodynamic variables.

The GPP equations can be written as

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + m

dV
d|ψ|2 ψ + mΦψ + mΦextψ, (A71)

Φ(r, t) =
∫

uG(|r− r′|)|ψ|2(r′, t) dr′, (A72)

where uG(|r − r′|) = −G/|r − r′| denotes the gravitational potential of interaction. A stationary
solution of the GPP equations is of the form

ψ0(r, t) = ψ0(r)e−iE0t/h̄, (A73)

where the real quantities ψ0(r) =
√

ρ0(r) and E0 are determined by the eigenvalue equation

− h̄2

2m
∆ψ0 + mV′(|ψ0|2)ψ0 + mΦ0ψ0 + mΦextψ0 = E0ψ0 (A74)

with
Φ0(r) =

∫
uG(|r− r′|)|ψ0|2(r′) dr′. (A75)

We now consider a small perturbation about this stationary solution and write the wavefunction as

ψ(r, t) = e−iE0t/h̄ [ψ0(r) + δψ(r, t)] (A76)

with |δψ| � ψ0. The density is given at linear order by

ρ = |ψ|2 = (ψ0 + δψ)(ψ∗0 + δψ∗) ' |ψ0|2 + ψ0δψ∗ + ψ∗0 δψ. (A77)

Therefore, we have
ρ0 = |ψ0|2 and δρ = ψ0δψ∗ + ψ∗0 δψ. (A78)

Substituting these relations into the GP Equation (A71), we obtain at linear order

ih̄
∂δψ

∂t
=

[
− h̄2

2m
∆ + mV′(|ψ0|2) + mV′′(|ψ0|2)|ψ0|2 + mΦ0 + mΦext − E0

]
δψ + mδΦψ0 + mV′′(|ψ0|2)ψ2

0δψ∗. (A79)

The gravitational potential defined by Equation (A72) can be written as

Φ = uG ∗ ρ = uG ∗ |ψ|2, (A80)

where ∗ denotes the product of convolution. According to Equation (A78), we have

Φ0 = uG ∗ ρ0 = uG ∗ |ψ0|2 and δΦ = uG ∗ δρ = uG ∗ (ψ0δψ∗ + ψ∗0 δψ). (A81)
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Substituting Equation (A81) into Equation (A79), we find that the equation of motion for δψ(r, t) is

ih̄
∂δψ

∂t
=

[
− h̄2

2m
∆ + mV′(|ψ0|2) + mV′′(|ψ0|2)|ψ0|2 + muG ∗ |ψ0|2 + mΦext − E0

]
δψ

+m [uG ∗ (ψ0δψ∗ + ψ∗0 δψ)]ψ0 + mV′′(|ψ0|2)ψ2
0δψ∗. (A82)

We obtain a similar equation of motion for the complex conjugate δψ(r, t)∗. Solving these two
equations with the ansatz

δψ(r, t) = u(r)e−iωt − v∗(r)eiωt, (A83)

we obtain the following pair of coupled equations for u(r) and v(r):

h̄ωu =

[
− h̄2

2m
∆ + mV′(|ψ0|2) + mV′′(|ψ0|2)|ψ0|2 + muG ∗ |ψ0|2 + mΦext − E0

]
u

+m [uG ∗ (−ψ0v + ψ∗0 u)]ψ0 −mV′′(|ψ0|2)ψ2
0v, (A84)

h̄ωv = −
[
− h̄2

2m
∆ + mV′(|ψ0|2) + mV′′(|ψ0|2)|ψ0|2 + muG ∗ |ψ0|2 + mΦext − E0

]
v

+m [uG ∗ (ψ∗0 u− ψ0v)]ψ∗0 + mV′′(|ψ0|2)(ψ∗0 )2u, (A85)

which will be referred to as the gravitational Bogoliubov equations. Regrouping the terms in u and v,
they can be rewritten more symmetrically as[

− h̄2

2m
∆ + mV′(|ψ0|2) + mV′′(|ψ0|2)|ψ0|2 + muG ∗ |ψ0|2 + mΦext − E0 − h̄ω

]
u

+m[uG ∗ (ψ∗0 u)]ψ0 = mV′′(|ψ0|2)ψ2
0v + m[uG ∗ (ψ0v)]ψ0, (A86)

[
− h̄2

2m
∆ + mV′(|ψ0|2) + mV′′(|ψ0|2)|ψ0|2 + muG ∗ |ψ0|2 + mΦext − E0 + h̄ω

]
v

+m[uG ∗ (ψ0v)]ψ∗0 = mV′′(|ψ0|2)(ψ∗0 )2u + m[uG ∗ (ψ∗0 u)]ψ∗0 . (A87)

For the nongravitational standard BEC, we recover the usual Bogoliubov equations[
− h̄2

2m
∆ + 2mg|ψ0|2 + mΦext − E0 − h̄ω

]
u = mgψ2

0v, (A88)

[
− h̄2

2m
∆ + 2mg|ψ0|2 + mΦext − E0 + h̄ω

]
v = mg(ψ∗0 )

2u, (A89)

with g = 4πas h̄2/m3. We now come back to the GPP Equations (A71) and (A72) and take Φext = 0.
For a spatially homogeneous equilibrium state, for which ψ0(t) = ψ0, the eigenenergy E0 is given by
[see Equation (A74)]23

E0 = mV′(|ψ0|2) + muG ∗ |ψ0|2, (A90)

23 The gravitational potential must be modified as explained in footnote 12 to avoid the Jeans swindle.
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and the gravitational Bogoliubov Equations (A86) and (A87) reduce to[
− h̄2

2m
∆ + mV′′(ρ)ρ− h̄ω

]
u + m(uG ∗ u)ρ = mV′′(ρ)ρv + m(uG ∗ v)ρ, (A91)

[
− h̄2

2m
∆ + mV′′(ρ)ρ + h̄ω

]
v + m(uG ∗ v)ρ = mV′′(ρ)ρu + m(uG ∗ u)ρ, (A92)

where we have denoted the equilibrium density by ρ instead of ρ0. Considering plane-wave solutions
of the form

u(r) = ueik·r and v(r) = veik·r, (A93)

the foregoing equations become[
h̄2k2

2m
+ mV′′(ρ)ρ− h̄ω + mρ(2π)3ûG(k)

]
u−

[
mV′′(ρ)ρ + mρ(2π)3ûG(k)

]
v = 0, (A94)

[
h̄2k2

2m
+ mV′′(ρ)ρ + h̄ω + mρ(2π)3ûG(k)

]
v−

[
mV′′(ρ)ρ + mρ(2π)3ûG(k)

]
u = 0. (A95)

These two equations are consistent only if the determinant of the coefficients vanishes. This leads
after simplification to the condition

ω2 =
h̄2k4

4m2 + V′′(ρ)ρk2 + ρ(2π)3ûG(k)k2. (A96)

Recalling the identity from Equation (20), and introducing explicitly the Fourier transform of the
gravitational potential given by

(2π)3ûG(k) = −
4πG

k2 , (A97)

we obtain the quantum Jeans dispersion relation

ω2 =
h̄2k4

4m2 + c2
s k2 − 4πGρ. (A98)
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