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Abstract: Motivated by the recent discoveries of compact objects from LIGO/Virgo observations,
we study the possibility of identifying some of these objects as compact stars made of dark
matter called dark stars, or the mix of dark and nuclear matters called hybrid stars. In particular,
in GW190814, a new compact object with 2.6 M� is reported. This could be the lightest black hole,
the heaviest neutron star, and a dark or hybrid star. In this work, we extend the discussion on the
interpretations of the recent LIGO/Virgo events as hybrid stars made of various self-interacting dark
matter (SIDM) in the isotropic limit. We pay particular attention to the saddle instability of the hybrid
stars which will constrain the possible SIDM models.
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1. Introduction

The LIGO/Virgo events GW170817 [1,2] and GW190425 [3] are in general considered as binaries
of neutron stars (BNSs), as well as the possibility of being binaries of hybrid stars. However, in [4],
a new binary coalescence event GW190814 is reported, while one is a black hole with 23 M�, and the
other is a compact object with only 2.6 M� (with a range between 2.50 and 2.67M�). Then, the question
is what is the identity of the secondary compact object? There are several possibilities: It could be the
lightest black hole, or the heaviest neutron star, or a dark star. In addition, there are also possibilities
for this compact object to be a hybrid star made of neutron and dark matter [5]. Below, we will extend
a few more discussions on the above possibilities, and then focus on elaborating more on the scenarios
of dark and hybrid stars in the rest of the paper.

The scenario of black hole—The black holes observed by LIGO/Virgo are all known to have
masses more than 5 M�. However, the remnant of GW170817, which is identified to be the BNS by
parameter estimation (PE), is estimated to have a mass of about 2.7 M�, and is believed to be a black
hole [2]. Thus, the black hole of mass less than 5 M� can be formed via the coalescence of BNS. Since no
information about tidal Love number is given in the released PE of GW190814, and no electromagnetic
follow-up is reported, we cannot exclude the possibility that this 2.6 M� object is the lightest black
hole, which could likely be either formed astronomically via the coalescence of BNS, or formed in
the early universe as a primordial black hole [6]. Alternatively, the light black hole may come from
core-collapse supernova of a massive normal star [7].

The scenario of neutron star—Before this GW190814 event, masses of neutron stars are generally
considered to be less than 2.3 M� [8,9]. In fact, within our galaxy, the most massive known pulsar
has 2.14+0.10

−0:09M� at 68.3% credible interval measured by the Shapiro time-delay of its white dwarf
companion [10]. Most known equations of state (EoSs) for the dense nuclear matter used in the
astronomical search of neutron stars cannot sustain such high mass as 2.3 M�, although this can also
be seen as a result of tuning the parameters of the EoSs to not violate the upper mass limit of the
astronomical observations. On the other hand, rapid spinning of neutron star [11,12] can increase the
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maximal mass up to ∼20%, which will lead to ∼2.7 M�. This case cannot be totally ruled out since
there is no constraint on the spin of the secondary object in GW190814. However, such high spin NSBH
system may hardly exist because of the expected subsequent collapse into black hole due to the loss of
spin via gravitational wave radiation.

The scenario of dark star and hybrid star—Currently, dark stars have not yet been confirmed
in observations so that it remains to pin down the accessible model space of dark matter and the
associated EoSs by the future observations in the coming era of gravitational wave astronomy. In light
of the varieties of dark matter models, it is easy for the resultant dark stars to cover a wide mass range,
say 1 to 5 M�, or even one order higher with proper parameters. This makes the dark stars or the
hybrid stars of dark and nuclear matters to be highly possible candidates to explain the companion
star of GW190814. In the remaining of this paper, we will explore this possibility by studying the
mass–radius relations for the dark and hybrid stars based on various dark matter models inspired
by the particle physics. Specifically, we consider the massive bosonic field φ with the following
self-interactions, φ4, φ6, their linear combinations and φ10.

One way to characterize a compact star is through its Tidal Love Number (TLN)1 [13,14],
which shows the star’s tendency to deform under an external quadrupolar tidal field. It is known that
the TLN of black holes in Einstein gravity is vanishing, and the overall TLN effect for a compact binary
coalescence event is a weighted average of the individual TLNs. Thus, for GW190814, the overall
tidal effect is insignificant in the resultant gravitational waveform due to the high mass ratio between
black hole and the companion star. For example, even if the 2.6 M� object has a large TLN such as
30,000, when combining with zero TLN of the companion black hole of 23 M�, the overall TLN Λ̃2

contributed to the gravitational waveform is about 43, which can hardly be observed. Since there is
no available information on TLN from this event anyway, we need more future events with much
smaller masses where the TLN judgement can be applied. For the above reason, we will not present
the mass-TLN relation in this work.

The rest of the paper is organized as follows. In the next section, we will sketch how we extract
the EoSs of the bosonic dark matter models in the isotropic limit. In Section 3, we discuss the stability
of the dark and hybrid stars based on the famous Bardeen–Thorne–Meltzer (BTM) criteria, especially
with the emphasis on the saddle instability when the mixed phase rule does not apply. The key result is
exposed in Section 4 by plotting the mass–radius relation for various EoSs extracted from the respective
dark matter models. Based on the mass–radius relation, we discuss the relevance to and interpretation
of GW190814. Finally, we conclude our paper in Section 5.

2. EoS for Bosonic SIDM in the Isotropic Limit

Most of the dark matter models are motivated by particle physics, which have either weak or no
interaction with the standard model particles. The former is called the WIMP, namely weak interacting
massive particles, and the latter will also include the self-interactions to explain the core profile of dark
halos well so that it is usually called SIDM, self-interacting dark matter. In this paper, we will mostly
focus on SIDM. The simplest model of SIDM is the massive φ4 bosonic field theory considered in [15].
Naively, one should solve the combined scalar-tensor field equations for the possible compact dark
star configurations. However, if we assume the scalar profile inside the star varies very slowly, we can
neglect the spatial profile and obtain an isotropic dark star configurations. In the low energy regime,
these kinds of isotropic configurations are more favored energetically than the nonisotropic ones. Thus,
for simplicity, we will only consider such kind of dark and hybrid stars. One additional advantage

1 The TLN denoted by Λ is defined by Qab = −M5Λ Eab, where M is the mass of the star, Qab is the induced quadrupole
moment, and Eab is the external gravitational tidal field strength.

2 Λ̃ = 16
13

(M1+12M2)M4
1 Λ1+(M2+12M1)M4

2 Λ2
(M1+M2)5 where Mi and Λi with i = 1 or 2 is the mass and TLN for the i-th component

compact object.
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for solving the isotropic dark stars is we can first extract the EoS in the isotropic limit, then solve the
Tolman–Oppemheimer–Volkoff (TOV) equations for the mass–radius relation. This is numerically far
easier than solving the scalar-tensor field equations by the shooting method3.

In the following, we sketch how to extract the EoS for the generic bosonic SIDM models by
generalizing the procedure given in [15]. The Lagrangian of the bosonic SIDM model considered in
this work is

L = −1
2

gµν∂µφ∗∂νφ−V(|φ|) (1)

from which we can obtain the field equation

0 = ∂µ(
√
−g∂µφ)−

√
−gV′(φ), (2)

where V′ := ∂φV.
We will consider the following metric ansatz with spherical symmetry for the dark or hybrid star

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ. (3)

This metric is sourced by the spherically symmetric scalar field configuration

φ(r, t) = Φ(r)e−iωt, (4)

which should solve (2) in the space-time (3), i.e.,

0 = ∂r(r2
√

AB
1
A

∂rΦ) + ω2(r2
√

AB
1
B

Φ)− r2
√

ABV′(Φ)

= ∂r(r2

√
B
A

∂rΦ) + r2
√

AB
[

ω2

B
Φ−V′(Φ)

]
. (5)

On the other hand, the stress tensor associated with Lagrangian (1) is

Tµ
ν =

1
2

gµσ (∇σφ∗∇νφ +∇σφ∇νφ∗)− δ
µ
ν (

1
2

gρλ∇ρφ∗∇λφ + V(|φ|)) (6)

which satisfies the conservation law

∇µTµ
ν = 0, (7)

and also sources the Einstein equation

Gµν = 8πGNTµν (8)

with Gµν the Einstein tensor and GN the Newton constant. The total configurations for a boson star
specified by A(r), B(r), and Φ(r) should be determined by solving (2) and (8) together. In general,
the stress tensor for the stationary configurations of (4) satisfying (5) in the space-time (3) takes the
following form in the co-moving frame

Tν
µ = diag(−ρ, p, p⊥, p⊥). (9)

However, in the isotropic limit, it will further reduce to the form of a perfect fluid, i.e., p⊥ = p.

3 A way for solving boundary value problems by changing them into initial value problems. One ’shoot’ out trajectories in
different directions until a trajectory with the desired boundary value is found, which usually costs a long machine time.
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Now, we consider the following concrete example of bosonic dark matter model with the
self-interactions as

V(φ) =
1
2

m2|φ|2 + 1
n

λn

Φn−4
0

|φ|n . (10)

This can be thought as a model possessing of a UV Zn symmetry, which is however mildly broken
at low energy by the mass term, that is, the Zn symmetry is approximately good at low energy if
Φ0 � m. For this bosonic SIDM model, its stress tensor is given by

Tµ
ν =



− 1
2 (

ω2

B + m2)Φ2 − 1
n

λn
Φn−4

0
Φn − (∂rΦ)2

2A 0 0 0

0 1
2 (

ω2

B −m2)Φ2 − 1
n

λn
Φn−4

0
Φn + (∂rΦ)2

2A 0 0

0 0 1
2 (

ω2

B −m2)Φ2 − 1
n

λn
Φn−4

0
Φn − (∂rΦ)2

2A 0

0 0 0 1
2 (

ω2

B −m2)Φ2 − 1
n

λn
Φn−4

0
Φn − (∂rΦ)2

2A


(11)

which takes the form of (9) as expected.
To perform the isotropic limit, we first introduce the following dimensionless variables

x = rm, Ω =
ω

m
, σ =

√
4π

Φ
MPl

. (12)

Here, MPl is the Planckian mass scale which is related to the Newton constant by GN = 1/M2
PL.

Then, the scalar field equation (5) is reduced into

0 = ∂x(x2

√
B
A

∂xσ) + x2
√

AB

[
Ω2

B
σ−

√
4π

m2MPl
V′
(

MPlσ√
4π

)]
. (13)

By further introducing a new dimensionless parameter Λn defined by

Λn =
(

λn
Φ2

0
m2

) 2
n−2
( MPl√

4πΦ0

)2
(14)

and the new scaled quantities
σ∗ =

√
Λnσ, x∗ = x/

√
Λn, (15)

then the energy density and pressures of of (11) in the form of (9) can be expressed as follows:

ρ =
m2M2

Pl
4πΛn

[1
2
(

Ω2

B
+ 1)σ2

∗ +
1
n

σn
∗ +

1
Λn

(∂x∗σ∗)
2

2A

]
, (16)

p =
m2M2

Pl
4πΛn

[1
2
(

Ω2

B
− 1)σ2

∗ −
1
n

σn
∗ +

1
Λn

(∂x∗σ∗)
2

2A

]
, (17)

p⊥ =
m2M2

Pl
4πΛn

[1
2
(

Ω2

B
− 1)σ2

∗ −
1
n

σn
∗ −

1
Λn

(∂x∗σ∗)
2

2A

]
, (18)

and (13) is also further reduced to

0 =
1√
Λn

∂x∗(x2
∗

√
B
A

∂x∗σ∗) +
√

Λnx2
∗
√

AB
[
(

Ω2

B
− 1)σ∗ − σn−1

∗

]
. (19)
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From (16) to (18), it is then easy to see that the isotropic limit can be achieved if Λn is large enough4

so that the spatial kinetic term can be neglected in comparison to the other terms5. Thus, the resultant
approximate energy density and isotropic pressure then become

ρ =
m2M2

Pl
4πΛn

[1
2
(

Ω2

B
+ 1)σ2

∗ +
1
n

σn
∗

]
, (20)

p = p⊥ =
m2M2

Pl
4πΛn

[1
2
(

Ω2

B
− 1)σ2

∗ −
1
n

σn
∗

]
. (21)

Moreover, in this isotropic limit, both ρ and p depend only on σ∗ and not on its spatial derivative,
and the first term of (19) is suppressed with respect to the second term6 so that it can be solved for σ∗
to yield

σn−2
∗ =

Ω2

B
− 1 . (22)

Using (22), the energy density and pressure can be expressed as a pure function of σ∗,

ρ = ρn,0

[
(

1
2
+

1
n
)σn
∗ + σ2

∗

]
, (23)

p = ρn,0(
1
2
− 1

n
)σn
∗ , (24)

where the overall energy density scale is given by

ρn,0 =
m2M2

Pl
4πΛn

= 4πm2Φ2
0(

m√
λnΦ0

)
4

n−2 . (25)

Note that (23) and (24) are already forming a parametric EoS for the dark matter model in the
isotropic limit. However, we can further eliminate the parametric function σ∗(r) to yield a compact
form of EoS as following (in the units of c = 1 and h̄ = 1):

ρ

ρn,0
=

n + 2
n− 2

( p
ρn,0

)
+
( 2n

n− 2
p

ρn,0

) 2
n

. (26)

One can then adopt this EoS to solve the TOV configurations for the dark or hybrid stars. Note that,
for n = 4, the above EoS reduces to the known result given in [15], namely,

ρ

ρ4,0
= 3

( p
ρ4,0

)
+ 2
√

p
ρ4,0

. (27)

For the other n’s, the resultant EoSs are new and not considered before in the literature. It is
interesting to see that, as n goes higher, the EoS becomes stiffer, e.g., as n −→ ∞, the EoS goes to p = ρ,
i.e., the causality limit.

4 Since the UV Zn symmetry is approximately good if Φ0 � m, then the isotropic limit Λn =
(

λn
Φ2

0
m2

) 2
n−2
(

MPl√
4πΦ0

)2
� 1 is

easier to achieve. It is noticed that a large derivative of σ∗ may balance the large Λn term, but here we only consider the
simplest case.

5 Naively, the comparison should also take into account the spatial profile of A(x), B(x) and σ∗(x). Here, we assume that Λn
is large enough as argued in the previous footnote so that the variation of the spatial profiles of A, B and σ∗ will not affect
the result. This of course can be justified after solving the TOV configurations.

6 The same assumption is adopted as in the previous footnote to justify the suppression.
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Even though we have arrived at the EoS (27), it is written in the unit of ρ0. For the convenience of
later use when solving TOV configurations, we will choose the following astrophysical units associated
with the solar mass M�:

r� = GN M�/c2, ρ� = M�/r3
�, p� = c2ρ�. (28)

Then, in terms of these units, the EoS (27) will turn into the following form [5]:

ρ

ρ�
= 3

( p
p�

)
+ B4

√
p

p�
(29)

with B4 := 0.08√
λ4
( m

GeV )
2 a free parameter. Similarly, the EoS (26) can be turn into

ρ

ρ�
=

n + 2
n− 2

( p
p�

)
+ Bn

( p
p�

) 2
n

(30)

where Bn := ( 2n
n−2 )

2
n (

ρn,0
p� )

1− 2
n is again a free parameter related to m and λn.

The above method of extracting the EoS in the isotropic limit from a given scalar field theory can
be applied to the model with more general potentials other than (10). For example, for the model with
the following potential,

V(φ) =
1
2

m2|φ|2 − 1
4

λ4|φ|4 +
1
6

λ6

Φ2
0
|φ|6 . (31)

In this case, we have two scaling parameters Λ4 and Λ6 as defined in (14). However, it is easier to
parameterize the EoS in the isotropic limit by the following two parameters: Λ :=

√
Λ6 and β := Λ4

4Λ
so that the extracted EoS takes the following form in terms of the astrophysical units of (28):

ρ

ρ�
= B

(
2
3

σ6 − 3βσ4 + σ2
)

(32)

p
p�

= B
(

1
3

σ6 − βσ4
)

(33)

where B :=
m2 M2

pl
4πΛρ�

.
Some comments about the above EoS are in order: (i) one can see B > 0 but β can be either positive

or negative. When β = 0, it reduces to the case of pure φ6 model with B6 = (3B2)1/3; (ii) We should
require both ρ ≥ 0 for positive energy condition and p ≥ 0 for not considering the gravastars, thus the
corresponding physical range of σ should be chosen carefully. In particular, when β > 0, one should
require σ ≥

√
3β to keep p ≥ 0. An example for this case is shown in Figure 1. On the other hand,

both ρ and p are positive for all ranges of σ when β < 0.
Below, we will study the TOV configurations of dark and hybrid stars made of nuclear and dark

matters based on the above EoSs of bosonic SIDM model in the isotropic limit. In particular, we will
focus more on the hybrid stars with saddle instability which causes more marginal parameter space to
constrain the dark matter models by the observed LIGO/Virgo gravitational wave events. In this way,
we demonstrate how to constrain the particle physics models of dark matter by the gravitational wave
astronomical observations.
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Figure 1. An example of EoS given by (32) and (33) with B = 0.0006 and β = 0.1. Left: it shows the
region of p < 0 which should be excluded when solving TOV configurations of dark stars although it
may yield gravastar configurations. Right: the plot of EoS for the phsyical region. The unit of p is p�,
and the unit of ρ is ρ�, and σ is dimensionless.

3. BTM Criteria and Saddle Instability for Hybrid Stars

Neutron stars and some other compact stars are relativistic objects that their structure should be
analyzed using general relativity. TOV equations [16–18] can be applied for these kinds of calculations,
which are derived from the Einstein equations and the conservation of the energy–stress tensor,
assuming zero space velocity, spherical symmetry, and an ideal fluid model.

In this paper, we will mainly consider the hybrid stars by solving the following TOV configurations
with multiple component fluids inside the star [19,20]:

dpI
dr

= −(ρI + pI)
dφ

dr
,

dmI
dr

= 4πr2ρI ,
dφ

dr
=

m + 4πr3 p
r(r− 2m)

, (34)

where the index I labels the fluid components, and the total pressure and energy density are given by
p := ∑I pI and ρ := ∑I ρI , respectively; and m(r) = ∑I mI(r) is the mass profile inside the star, and the
Newton potential φ := 1

2 ln(−gtt) with gtt the tt-component of the metric. In this paper, we will
consider the cases with only two-component hybrid stars made of nuclear matter and dark matter.

The resulting configurations of hybrid stars depend on if there are strong interactions between
component fluids. If there are strong interactions, it is expected to form a domain wall between
phases of different fluids. Following our previous consideration in [5], we refer the hybrid stars with
neutron core and dark matter crust as scenario I, and the ones with dark matter core and neutron
crust as scenario II. On the other hand, if there is almost no interaction among component fluids,
then all components prevail inside the star and mix together right from the core. We refer to this case
as scenario III [5]. To solve the TOV equations, we need to provide the core pressure as the initial
condition, and then, by changing the initial pressure, we will obtain different TOV configurations to
plot the mass–radius relation. For scenarios I and II, one only needs to provide one initial condition for
the core pressure since only one kind of fluid dominating the core, but needs two for scenario III.

Not every TOV configuration is stable, and one needs to judge its stability by either solving
the Sturm–Liouville eigenmodes of radial oscillation (another method of judging the equilibrium
configuration is used in [21–23]) or by some equivalent empirical criteria. One set of such criteria
for single component fluid is the so-called BTM (Bardeen–Thorne–Meltzer) criteria [24], which states
that, in the direction of increasing core pressure along the mass–radius curve, whenever an extremum
is passed, one stable mode becomes unstable if the curve bends counterclockwise. Contrarily,
one unstable mode becomes stable if it rotates clockwise. These criteria were originally formulated by
starting from the stable planet configuration with low enough core pressure. It, however, will cause
some trouble if one does not start from such kind of planet configuration when solving the TOV
equations. Thus, in practicality, it is useful to formulate the reverse BTM criterion by traveling the
mass–radius curve in the direction of decreasing core pressure, and to require the consistency with the
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BTM ones. This then leads to following (Reverse) BTM stability criteria: Traveling the mass–radius
curve along either directions of increasing or decreasing core pressure, whenever passing an extremum,
one stable mode becomes unstable if the cure bends counterclockwise; otherwise, one unstable mode
becomes stable.

By applying the (reverse) BTM criteria, one can make sure that, for the unstable regions on the
mass–radius curve, not even one starts from a known stable region. However, one can only pin down
the stable regions if one starts from a stable region, or knows how many unstable modes there are.
For example, for the curve O′A′D′B′C′ on the left panel of Figure 2, one can apply the (reverse) BTM
criteria criteria to make sure O′A′D′ is unstable regardless if D′B′C′ is stable or not, even if seems
impossible to apply the original BTM criterion as there is no asymptotic stable region. On the other
hand, for the curve OABC in Figure 2, one cannot be sure if ABC is stable even if one can make sure
that OA is unstable by applying the (reverse) BTM criteria.

Figure 2. The various curves and intersections of mass–radius relations used to demonstrate the
(reverse) BTM criteria in the main text. Solid lines indicate stable parts, while the dotted lines are for
unstable parts. Left panel: Various mass–radius curves. The thick arrows indicate the directions of
increasing core pressures for each branch. Right panel: Summary of the situations of intersections.
X1 is a stable point where both the neutron branch (black) and the dark branch (brown) are stable. X2

is unstable since both branches are unstable. X3 and X4 show the saddle instability that one of the
two branches is unstable. In some cases, the two branches may cross twice like points Y and Z; then,
at least one of them is a fake intersection.

Importantly, the above criteria is only checked rigorously for the stars with single component
fluid. One should be careful when applying the (reverse) BTM criteria to judge the stability of hybrid
stars. For the hybrid stars of scenarios I and II, there is only one dominant fluid component in each
region, one will then expect that the (reverse) BTM criteria should still work without the need of much
modification; see [25] for the recent discussion.

On the other hand, for the hybrid stars of scenario III, one needs to set the core pressures for both
fluid components, say one for nuclear matter and one for dark matter. Thus, one needs to plot two
kinds of mass–radius curves, namely, one by fixing the neutron core pressure but tuning the dark
matter core pressure, and the other by fixing the dark matter core pressure but tuning the neutron core
pressure. Let us call the former the dark branch and the latter the neutron branch. In the left panel of
Figure 2, we show some representatives of both branches, e.g., the curve o′a′b′c′ is the neutron branch,
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and the three curves in the same figure are the dark branches7. For any intersection point of dark and
neutron branches, e.g., point X1 to X4 on the right panel of Figure 2, there could be saddle instability8 if
one of the branches is unstable at this intersection point. The difficulty is how to judge the stability for
each branch. Without rigorous study of the Sturm–Liouville eigenmodes of radial oscillation, it is hard
to answer this question. In this work, we assume that the (reverse) BTM criteria still work for each
dark or neutron branch, and apply the criteria to find out the saddle unstable regions. Furthermore,
we shall also assume that the cusp points such as B and B′ (B′ is not even an extremum) on the left
panel of Figure 2 will not induce the change of stability of any radial oscillation eigenmode. Otherwise,
there could be more complications [26].

Even with the above assumptions holding when traveling along the mass–radius curve, to judge
the stability with (reverse) BTM criteria, it is better to start from some known stable region. One such
region is the stable part of the pure neutron star curve, and the other is the stable part of the pure
dark star curve. We then need to further assume that the small doping with the other component will
not change the stability; it then implies that the nearby regions of the stable part of single component
fluid stars are also stable. For example, if the curve o′a′b′c′ is a nearby curve around the pure neutron
star, and its stable part (the solid line a′b′) is inherited from the stable part of the pure neutron star,
then one can infer the unstable part (the dashed line o′a′ and b′c′) by applying the (reverse) BTM
criteria. Furthermore, the nearby regions such as C′B′D′ and CBX should also be stable. The reason
is as follows: these two regions branch out from an almost pure neutron star curve, and are at the
ends of dark branches, this means that the core pressures of the dark matter component are negligible.
Thus, these two parts are indeed almost pure stable neutron stars. We can then infer that: (1) D′A′O′

is unstable because B′D′A′O′ bends counterclockwise when passing around local extrema D′ and
A′; and (2)XA is stable as there is no local extremum on it. (3) A′O′ is unstable because it bends
counterclockwise when passing through the local maximum A.

Based on the above discussions, we can then apply the reverse BTM criteria to the intersection
points of the neutron and dark branches, such as the point A on the right panel of Figure 2 to judge
if the intersection point is saddle stable or not. Both curves crossing at A being stable is a necessary
condition for A to be stable. In addition, there are some fake intersection points such as point X for the
case when one curve intersects with the other curve more than once. Then, only the end point/branch
point is real intersection and others are fake. We have summarized these situations in the right panel
of Figure 2. We will apply the lessons from the above discussions to the case studies in the next section
to judge the stability of hybrid stars, especially the saddle instability of scenario III.

4. Dark Star and and Hybrid Star Interpretations

In this section, we consider the dark stars and hybrid stars of all three scenarios based on the EoSs
extracted from the bosonic SIDM models discussed in Section 2 in the isotropic limit. For the EoS of
the nuclear matter, the standard phenomenological neutron EoS SLy4 [27,28] is employed, which has a
maximum mass of 2.05 M�, and the radius at 1.4 M� is about 12 km. This EoS is offered as discrete sets
of pressure and energy density, which is convenient to be dealt with numerically. The main purpose
is to see if some of the dark or hybrid stars can reach the mass of 2.6 M� or so to explain the smaller
companion compact object of GW190814. It is easy to see that this purpose can be easily achieved
for the dark stars and hybrid stars of scenarios I and II by choosing appropriate parameters of SIDM.

7 Neutron branches could also look like the two midlle curves O′A′D′B′C′ and OABC, but with oppisite pressure directions,
like the solid curves in Figures 4–7.

8 For a single-component star, the stability is solely determined by altering the core pressure. When the core pressure has
some perturbation, if the radial oscillation is stable, then the star is stable. However, for a two-component star, the core
pressure is a sum of two partial pressures of each component. Then, a necessary condition for such a star being stable is that
it is stable when changing either of the partial pressure while keeping the other fixed. It might happen that a star is stable
when changing the neutron (or dark matter) pressure but unstable when changing the other partial pressure. This will still
lead to an unstable star and we call it the saddle instability.



Universe 2020, 6, 231 10 of 16

On the other hand, it is more difficult for the hybrid stars of scenario III to reach such a mass because of
the saddle instability. It is interesting to see that the astronomical observations of gravitational waves
can rule out some theoretical scenarios of hybrid stars and the associated dark matter models. Thus,
we will focus more on scenario III in the later discussions of this section.

Now, we present the mass–radius relations case by case.
Bosonic φ4 model. We first consider dark and hybrid stars based on the φ4 EoS, i.e., (29), which is

extracted from the φ4 dark SIDM in the isotropic limit. For scenarios I and II, i.e., assuming interactions
exist between neutron and dark matter, it is easy to form a 2.6 M� star, as shown in Figure 3, in which
we also show the TLN-mass relations for one’s reference. Pure neutron stars of SLy4 EoS are marked
in red, and pure dark stars with B4 = 0.035 and 0.045 are marked in blue and green, respectively.
The other lines represent hybrid stars of neutron and dark matter with these EoS. When B4 = 0.035,
they are labelled by aRN = rW (brown) for neutron core case and by aRD = rW (black) for dark matter
core case. Here, rW stands for the core radius. Similarly, when B4 = 0.045, they are labelled by
bRN = rW (brown) and bRD = rW (black)). For example, bRN = 6 means the radius of neutron core is
6km, and B4 = 0.045. The unstable configurations are denoted by dashed lines.

We find that this dark star model can cover any mass range by adjusting the free parameter B4.
In particular, for B4 ≤ 0.047, the maximal mass exceeds 2.6 M�. The maximal mass grows without an
upper limit as the value of B4 drops, and, for example, when B4 = 0.035, we have 3.5 M�. Since for
scenarios I and II the 2.6 M� hybrid stars can always be achieved as long as the pure dark star has
a maximal mass higher than 2.6 M�, in the following, we only concentrate on the more nontrivial
scenario III, which is more realistic since it is assumed that there is no interaction between SIDM and
baryonic matter.

For scenario III, by applying the (reverse) BTM stability criteria to the resultant mass–radius
relation shown in Figure 4, no stable stars around 2.6 M� can be formed. The pure SLy4 neutron stars
are marked in red as the reference configurations. For the hybrid stars, B4 = 0.045 case is denoted
by the brown lines, and 0.035 case by the green lines. Now, we need the core pressures for both
dark and nuclear matters to solve the TOV configurations. By tuning one of the core pressures and
fixing the other, we can obtain the so-called dark branch and neutron branch as discussed in Section 3.
In Figure 4, the dark branches are denoted by the dash-dotted lines and the neutron branches by the
solid lines.

To apply the method in Section 3 to check the saddle (in)stability, we can apply the (reverse)
BTM criteria to both neutron and dark branches and then determine the saddle stability for their
intersection points. As discussed in Section 3, we also need to assume that the nearby regions of the
pure stable star configurations are stable when applying (reverse) BTM criteria. After checking this
way for most of the intersections in Figure 4, we can determine the stable regions and unstable regions.
For example, the point A is unstable because the line BDA turns counterclockwise at point D towards
A, which makes the DA part unstable. It turns out that the stable regions are small and confined near
the pure neutron star configurations9, which for B4 = 0.045 is roughly indicated by the regions inside
the highlighted blue closed line. From the above analysis, we can conclude that, for the bosonic φ4

model, however the parameter B4 varies, the stable region cannot yield the mass of the star more than
2.1 M�, which is just the maximal mass of pure neutron star associated with SLy4 EoS. This could be
due to the fact that the EoS associated with φ4 model is not stiff enough when compared with SLY4.
This can also be seen from the fact that the radius of a dark star of 2.6 M� is at least 25 km, far larger
than the standard neutron star’s radius around 11 km.

9 It is interesting to notice that the region near pure dark star (like point A) is unstable. This should be understood that,
although the dark matter components are stable, the neutron parts are unstable, which makes the total configuration unstable.
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Figure 3. Mass-Radius (up) and TLN-Mass (down) relations for the hybrid stars of scenarios I and
II. The red line stands for the pure neutron stars with SLy4 EoS, while the green and blue lines stand
for the pure dark stars of EoS given by (29) with B4 = 0.035 and 0.045, respectively. The other lines
represent hybrid stars of neutron and dark matters associated with the above EoSs. For B4 = 0.035, they
are labelled by aRN = rW (thin brown lines) for hybrid stars of neutron core, and aRD = rW (thin black
lines), where rw is the core radius. Similarly, for B4 = 0.045, they are by bRN = rW (thick brown
lines) and bRD = rW (thick black lines). For example, bRN = 6 labels the hybrid stars of rW = 6 km.
The unstable configurations are denoted by the dashed lines. The bottom panel is presented to show
the orders of the corresponding TLN, and we find that 2.6 M� stars are well below 4000, which are
negligible after averaging with a 23 M� black hole for GW190814. The unit of mass is M�, and the
unit of radius is km, and TLN Λ is dimensionless.
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Figure 4. Mass–radius relation for the hybrid stars of scenario III, with SLy4 EoS for neutron and
φ4 model EoS given by (29) for dark matter. The pure SLy4 neutron stars are marked in red for
one’s reference. The hybrid star configurations are shown in brown for B4 = 0.045, and in green for
B4 = 0.035. Solid lines represent the neutron branches, and dash-dotted lines the dark branches.
The blue-circled regions roughly indicate the stable hybrid star configurations for B4 = 0.045.
Saddle instabilities can be checked at each intersection point of solid and dash-dotted lines with
the same color. For example, point A is unstable since the solid brown line on it is unstable, though the
dash-dotted line on it is stable. The unit of mass is M�, and the unit of radius is km.

Bosonic φn model. From the expression of φn EoS, i.e., (30), we know it becomes stiffer as n grows.
This makes it possible to have more massive stable hybrid star configurations. Indeed, from Figures 5
and 6, we confirm that the hybrid stars with the same maximal mass have much smaller radius than
the φ4 case. For example, considering the curves with the maximal mass 2.6 M�, we find that the
radius is 16 km for φ6 model and 13 km for φ10 one, which are all much shorter than the 25 km of
φ4 model.

In Figure 5, it shows the mass–radius relations for the hybrid stars of scenario III made of nuclear
matter of SLy4 EoS and dark matter of φ6 model’s EoS with B6 = 0.011 (brown lines) and 0.008 (green
lines). The pure SLy4 neutron stars are marked in red as before. Similarly, the neutron and dark
branches are denoted by solid and dash-dotted lines, respectively; and then we apply the (reverse)
BTM criteria to judge the saddle (in-)stabilities as before. We find that the BDA line marked in Figure 5
bends higher than that in Figure 4, but still point A is unstable because of the existence of the minimum
point D, as Section 3 tells us. Again, the stable regions are near the pure star configurations, and for
the case of B6 = 0.011 are circled by the blue closed path. Again, we find that the maximal mass of the
stable hybrid stars of this kind cannot be higher than the maximal mass, i.e., 2.1 M� of pure neutron
stars, similar to the φ4 case.

However, we see the above mass bound is lifted when considering the hybrid stars of scenario III
made of nuclear matter SLy4 EoS and the dark matter of φ10 model’s EoS, and the maximal mass can
be around 2.6 M� to explain GW190814. We have also considered the hybrid star configurations of
scenario III for φ8 model (not shown here) and reach a maximal mass about 2.3 M�. The mass–radius
relations are shown in Figure 6 for φ10 model’s EoS with B10 = 0.0036 (brown lines) and 0.0028 (green
lines). The line styles are the same as in Figures 4 and 5. The main reason for the lifting of the mass
bound is the disappearance of the local minimum D in Figures 4 and 5, and now we see that the
intersection point A in Figure 6 is no longer a saddle point so that the stable region is extended beyond
the nearby region of the pure neutron star curve (the red curve). The stable region for B10 = 0.0036 is
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again circled by the blue closed path, however, in which we see the maximal mass is about 2.6 M�.
This can then be used to explain the heavy companion of the black hole in GW190814.

Figure 5. Mass–radius relation for the hybrid stars of scenario III, with SLy4 EoS for neutron and φ6

model EoS given by (30) with n = 6 for dark matter. The line styles are the same as in Figure 4 but with
the brown lines for B6 = 0.011 and the green lines for B6 = 0.008. The blue-circled regions roughly
indicate the stable hybrid star configurations for B6 = 0.011. Saddle instabilities can be checked at each
intersection point of solid and dash-dotted lines with the same color. The unit of mass is M�, and the
unit of radius is km.

Figure 6. Mass–radius relation for the hybrid stars of scenario III, with SLy4 EoS for neutron and φ10

model EoS given by (30) with n = 10 for dark matter. The line styles are the same as in Figure 4 but
with the brown lines for B10 = 0.0036 and the green lines for B10 = 0.0028. The blue-circled regions
roughly indicate the stable hybrid star configurations for B10 = 0.0036. Saddle instabilities can be
checked at each intersection point of solid and dash-dotted lines with the same color. The unit of mass
is M�, and the unit of radius is km.

Bosonic φ4 + φ6 model. The EoS for this model is given in (32) and (33). Naively, it seems to be
the intermediate model between φ4 and φ6 models. However, as we have seen in Section 2, it contains
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two tuning parameters B and β which lead to some novelty: there are some regions with p < 0 or even
ρ < 0. We will only consider the region for positive p and ρ.

In Figure 7, it shows the mass–radius relations for the hybrid stars of scenario III made of nuclear
matter of SLy4 EoS and dark matter of this EoS with B = 0.0006, β = 0.1 (brown lines), B = 0.0004,
β = 0.1 (green lines) and B = 0.0006, β = −0.1 (purple lines). The line styles are the same as in
Figure 4. We then run through the same check of saddle (in-)stabilities as before to pin down the stable
and unstable regions by applying the (reverse) BTM criteria. As a result, we find that the maximal
mass is mainly affected by the value of B, with lower B leads to higher mass, similar to the behavior of
Bn. On the other hand, β affects the compactness, namely, the radius becomes smaller as β grows from
negative values to the positive ones. However, the change of radius significantly slows down when
β ≥ 0.1. Though the β = 0 case is not included in Figure 7, this case is equivalent to φ6 model with
B6 = (3B2)1/3 as discussed in Section 2. For example, B = 0.0006 corresponds to B6 = 0.010, which is
comparable to the B6 = 0.011 case (brown lines) in Figure 5.

As shown in Figure 7, although the EoS becomes considerably stiffer when β increases, we still
cannot have stable stars around 2.6 M� because there is a local minimum at D so that A is a saddle
point. The blue closed path roughly encloses the stable region for B = 0.0006, β = 0.1. By varying B
and β, the maximal mass of the stable region is about 2.4 M�, when B = 0.0007 and β = 0.1.

Figure 7. Mass–radius relation for the hybrid stars of scenario III, with SLy4 EoS for neutron and
φ4 + φ6 model EoS given by (32) and (33) for dark matter. The line styles are the same as in Figure 4
but with the brown lines for B = 0.0006, β = 0.1, the green lines for B = 0.0004, β = 0.1, and purple
lines for B = 0.0006, β = −0.1. The blue-circled regions roughly indicate the stable hybrid star
configurations for B = 0.0006, β = 0.1. Saddle instabilities can be checked at each intersection point of
solid and dash-dotted lines with the same color. The unit of mass is M�, and the unit of radius is km.

5. Conclusions

In this paper, we have extended the usual study of dark and hybrid stars for φ4 SIDM to more
general types of bosonic SIDM models by extracting their EoSs in the isotropic limit so that we can
have more access to the complete mass–radius relations for the TOV configurations. Among them,
we are especially interested in the φn models which can have a stiff EoS when n is large enough,
say n = 10. These kinds of models can be motivated by the UV Zn flavor symmetry, which may be a
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natural symmetry for some higher theories. It is fascinating to further explore this connection between
particle physics and the resultant astrophysical compact objects in the future.

In general, it is easy to tune the parameters in SIDM to yield compact objects with masses
comparable to or higher than the ones of neutron stars. Therefore, it is interesting to check the dark star
possibilities by the future observations of the compact objects via the gravitational wave observations.
Similar conclusions can be reached for the hybrid stars of scenarios I and II made of nuclear and
bosonic SIDMs. In particular, many such kinds of dark and hybrid stars can have masses more than
2.6 M�, and thus can be adopted to explain the recent GW190814 in which one companion compact
object with such a mass has been identified by parameter estimation, which is hard to be explained by
the usual EoSs for neutron stars.

On the other hand, the hybrid stars of scenario III are subjected to the saddle instability, and it is
difficult for such kind of stars to have higher mass such as 2.6 M�. However, in this paper, we do find
such a stable massive configuration when the n of the φn model rises up to 10 for which the saddle
instability around 2.6 M� is lifted. Although in practice it is hard to tell if a compact object can be the
hybrid stars of scenario III in the near future, we may hope that the obstacle will be overcome in the
long run to have precise measurements on the structure of the stars via gravitational wave detection to
pin down the scenarios. Despite that, theoretically, it is interesting to see the existence of some mass
bound by the saddle instability. In this paper, we simply assume that the BTM criteria still work for
the mixing fluids without the mutual interaction, applying it to judge the saddle instability. It will
be illuminating to study the saddle instability by directly examining the eigenspectrum of the radial
oscillation modes.

Overall, our work demonstrates the intriguing interplay between the particle physics models of
dark matter and the astrophysical observations via the gravitational wave detection. We hope this will
encourage more works to explore the dark matter physics via the study of dark and hybrid stars in the
new era of gravitational astronomy.
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