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Abstract: We explore a unified model of dark matter and dark energy. This new model is a general-
ization of the generalized Chaplygin gas model and is known as a new generalized Chaplygin gas
(NGCG) model. We study the evolutions of the Hubble parameter and the distance modulus for the
model under consideration and the standard ΛCDM model and compare that with the observational
datasets. Furthermore, we demonstrate two geometric diagnostics analyses including the statefinder
(r, s) and Om(z) to the discriminant NGCG model from the standard ΛCDM model. The trajectories
of evolution for (r, s) and Om(z) diagnostic planes are shown to understand the geometrical behavior
of the NGCG model by using different observational data points.

Keywords: new GCG; statefinder diagnostic

1. Introduction

Cosmic observations [1,2] indicate that the expansion of the Universe is accelerating
at the present time. In this context, the most accepted idea is that a mysterious type of
energy with negative pressure, dubbed as dark energy (DE), is needed to describe this
acceleration mechanism (see [3–5] for reviews on DE). This mysterious DE is specified by
an equation of state (EoS) parameter ωde = pde

ρde
, where pde and ρde are the pressure and

energy density of DE, respectively. The simplest and most popular model for DE is the
concordance Lambda-Cold-Dark-Matter (ΛCDM) model and is consistent with most of the
observational datasets. Although this model has successfully explained many phenomena
while it indeed encounters some theoretical problems associated with cosmological con-
stant (ωΛ = −1), namely, fine-tuning and cosmic coincidence problems [6,7]. Additionally,
the local measurement of Hubble constant H0 by Hubble Space Telescope [8,9] and the
Lyman-α forest BAO measurement of Hubble parameter at redshift 2.34 by BOSS [10] are
in tension with each other if the standard ΛCDM is assumed (for more details, the reader
can see [11,12]). These issues motivate people to go deeper into theory for a better under-
standing of the unknown nature of the DE component. Therefore, some alternative DE
models have been proposed in the literature, such as quintessence (−1 < ωde < − 1

3 ) [13],
phantom (ωde < −1) [14], k-essence [15,16], tachyon [17,18], holographic DE [19–25], and
so forth. Besides these models, modified gravity theories were proposed to explain this
acceleration [3–5]. However, the true nature of DE and DM is still unknown and also we
do not have a concrete theoretical model that can provide a satisfactory solution to all
the problems.

Among several DE models, the Chaplygin gas (CG) model as a unification of DE
and DM is a good candidate [26,27]. The interesting feature of this model is that the CG
behaves as a pressure-less dark matter (dust) at early times and behaves like a cosmological
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constant in the late stage. This dual role is at the heart of the surprising properties of the
CG model. Another property of this model is that the CG model belongs to the category
of dynamical DE with a time-varying EoS parameter alleviating the cosmic coincidence
problem in ΛCDM cosmology. However, the CG model cannot explain the scenario of the
structure formation in the Universe [28,29]. Later, the CG model is generalized into the
generalized Chaplygin gas (GCG) model to solve this problem [30–32]. This model has
been widely studied in the literature and has been confirmed by several observations [33].
Since the GCG model can be equal to the interacting ΛCDM model [33], a new generalized
Chaplygin gas (NGCG) model which equals a kind of interacting XCDM model was
proposed in [34] as a unification of cold DM and X-type DE. In this model, the interaction
between DE and DM is characterized by a constant EoS parameter ωX . The basic properties
of this model are discussed in Section 2. Furthermore, the authors of [35,36] have also
performed the statistical likelihood analysis using different datasets on the NGCG model
and found some discrimination between the NGCG model and other DE models. In a
recent work, Salahedin et al. [37] obtained tight constraints on the the free parameters of
NGCG model based on the statistical Markov Chain Monte Carlo (MCMC) method by
using different combinations of the latest data samples. They also showed that the big
tension between the high- and low-redshift observations appearing in the ΛCDM model
to predict the present value of Hubble constant H0 can be alleviated in the NGCG model.
In this context, it should be mentioned here that, using various updated observational
datasets, recently Yang et al. [38,39] investigated unified dark fluid models based on CG
cosmologies. They reported that such models might be considered as a potential model in
the list of cosmological models alleviating the H0 tension.

Based on the Ref. [37], in this paper, we will extend the analysis on the NGCG
model by performing the statefinder and Om diagnostic analysis to differentiate the NGCG
model from the standard ΛCDM model and other DE models. Furthermore, we study
the evolutions of the Hubble parameter and the distance modulus for the present model
and the ΛCDM model and compare that with the observational datasets. The paper is
organized as follows. In the next section, we give a brief introduction of the NGCG model.
Here, we also discuss some features of the present model. In Section 3, we performed
the two geometric diagnostics analysis to a discriminant NGCG model from the standard
ΛCDM model. Finally, we summarize our results in Section 4.

Throughout the paper, we use natural units such that G = c = h̄ = 1. In addition, the
symbol overhead dot indicates a derivative with respect to the cosmic time t, the symbol
prime indicates a derivative with respect to the scale factor (a), and a subscript zero refers
to any quantity calculated at the present time.

2. New Generalized Chaplygin Gas Model

In this section, we briefly describe the NGCG model. For details of this model, one
can look into Ref. [34]. In the framework of a flat Friedmann–Robertson–Walker (FRW)
cosmology, the EoS of NGCG fluid is given by [34]

pNGCG = − Ã(a)
ρα

NGCG
(1)

where Ã(a) is a function depends upon the scale factor (a) of the Universe and α is the
constant parameter of the NGCG fluid. This fluid smoothly interpolates between a DM
(dust) dominated phase ρ ∼ a−3 and a DE dominated phase ρ ∼ a−3(1+ωde), where ωde is
the EOS parameter. The energy density of the NGCG fluid can be expressed as [34]

ρNGCG = [Aa−3(1+ωde)(1+α) + Ba−3(1+α)]
1

1+α (2)

where A and B are positive constants and the function Ã(a) is defined as

Ã(a) = −ωde Aa−3(1+ωde)(1+α) (3)
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Now, Equation (2) can be re-written as

ρNGCG = ρNGCG0a3[1− As + Asa−3ωde(1+α)]
1

1+α (4)

where ρNGCG0 = (A + B)
1

1+α indicates the present value of ρNGCG and, for simplicity, we
have defined As =

A
A+B . For the NGCG model, as a scenario of the unification of DE and

DM, the NGCG fluid is decomposed into two components: the DE component and the DM
component, i.e., ρNGCG = ρde + ρdm and pNGCG = pde. Therefore, the energy density of the
DE and the DM ingredients can be respectively obtained as [34]

ρde = ρde0a−3[1+ωde(1+α)] × [1− As + Asa−3ωde(1+α)]
1

1+α−1 (5)

ρdm = ρdm0a−3 × [1− As + Asa−3ωde(1+α)]
1

1+α−1 (6)

where ρde0 and ρdm0 represent the present values of ρde and ρdm, respectively. It is interesting
to note that the NGCG will behave like GCG when we put ωde = −1. When α = 0 and
ωde = −1, the NGCG model reduces to the standard ΛCDM model as well. In addition,
the standard ωCDM model corresponds to the case α = 0. As shown in [34], the energy
is transferred from DE to DM when α < 0. On the other hand, the energy is transferred
from DM to DE, if α > 0. Therefore, α describes the interaction between DM and DE in the
NGCG model.

We assume a homogeneous isotropic and spatially flat FRW Universe filled by NGCG
fluid, baryonic matter, and radiation; then, the Friedmann equation can be expressed, in
terms of redshift z, as

E2(z) =
(

H(z)
H0

)2

= (1−Ωr0 −Ωb0)(1 + z)3 × [1− As(1− (1 + z)3ωde(1+α))]
1

1+α (7)

+Ωr0(1 + z)4 + Ωb0(1 + z)3

where H0 is the present value of H(z) and z = 1
a − 1 in which the scale factor is scaled to be

unity at the present epoch. In addition, Ωr0 and Ωb0 are the present values of dimensionless
energy densities of radiation and baryonic matter, respectively.

Next, we have used the above expression of H(z) to find the evolution of the decelera-
tion parameter q, which is defined as

q = − ä
aH2 = −1 +

(1 + z)
H(z)

dH(z)
dz

(8)

Furthermore, for a comprehensive analysis, we compare our model with the standard
ΛCDM model. The corresponding form of E(z) is given by [13]

E(z) =
H(z)
H0

=
√

Ωdm0(1 + z)3 + 1−Ωdm0 (9)

where Ωdm0 denotes the DM density parameter at the present epoch. Assuming the
base-ΛCDM cosmology, the Planck survey [40] put the constraints on the late-Universe
parameters are as Ωdm0 = 0.315 and H0 = 67.4 km/s/Mpc.

Clearly, the cosmological characteristics of the present model given in Equation (7)
strongly depends on values of the free parameters As, α, ωde and Ωb0. Given a cosmological
model with a set of free parameters and using a set of observational data points, one can
obtain the best fit values of the free parameters of the model. Given a set of data points
D and a cosmological model, M(x, θ), where vector θ includes the free parameters of the
model, the chi-squared (χ2) function is defined as

χ2 = ∑
i

[Di −M(xi|θ)]2

σ2
i

(10)
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where σi represents the error of the ith data point. In addition, the best fit values of the
free parameters θ are calculated by minimizing the χ2 function. It should be noted that the
above equation for obtaining χ2 function is valid when the observational data points are
not correlated. On the other hand, if we use correlated data points, then we should use the
following formula

χ2 = ∑
i,j
[Di −M(xi|θ)]Xi,j[Dj −M(xj|θ)] (11)

where Xi,j denotes the inverse of the covariance matrix.
Notice that we should sum all of the χ2 functions, when we compute different χ2

functions for different data sets. Therefore, we require the minimizing of the sum of
all the χ2 functions in order to find the best fit values of free parameters. In a recent
work, Salahedin et al. [37] obtained the observational constraints on the free parameters
of the present model by using different observational data samples including type Ia
supernovae (SNIa) from the Union 2.1 [41] catalog and the Pantheon [42] catalog, Baryon
acoustic oscillation (BAO), Big Bang nucleosynthesis (BBN) [43], and the Cosmic microwave
background (CMB) from the results of WMAP observations and observational Hubble
parameter data H(z) obtained from cosmic chronometers (for a detailed discussion, see
Ref. [37] and the references therein). By combining all data samples, Salahedin et al. [37]
performed a likelihood analysis based on the statistical MCMC algorithm to calculate
the minimum of χ2 and the best fit values of the cosmological parameters. Firstly, they
combined the SNIa (Pantheon) with H(z), BAO, CMB, and BBN data and, secondly, they
combined the SNIa (Union 2.1) with H(z), BAO, CMB, and BBN data. For both cases, they
obtained the best fit values of cosmological parameters leading to finding the minimum
of χ2 function. Notice that, for the ΛCDM model, the authors of [37] only used the H(z)
+ BAO + CMB + BBN + SNIa (Union 2.1) sample and obtained Ωcdm0(≡ Ωdm0 + Ωb0) =
0.2675 and H0 = 71.3 km/s/Mpc. The numerical results are presented in Table 1 and for
more discussion on this topic, see Ref. [37].

Table 1. Results of statistical likelihood analysis (minimum of χ2) obtained in [37] by using a different combination of
observational datasets such as (H(z) + BAO + CMB + BBN + SNIa (Pantheon)) and (H(z) + BAO + CMB + BBN + SNIa
(Union 2.1)), for the present model (for more details, one can look into Table 3 of [37]).

Parameters H(z) + BAO + CMB + BBN + SNIa (Pantheon) H(z) + BAO + CMB + BBN + SNIa (Union 2.1)

Ωb0 0.0460± 0.0017 0.0457± 0.0017
Ωdm0 0.2508± 0.0081 0.2353+0.0097

−0.0092
η = 1 + α 0.9443± 0.0097 0.981± 0.0018

ωde −1.041± 0.045 −1.021± 0.055
H0 70.15± 0.84 70.41± 0.92
As 0.7371± 0.0097 0.753± 0.010

χ2
minimum 1065.2 591.4

We have shown the evolution of H(z) for the above-mentioned model in Figure 1
by considering the values of the model parameters, as given in Table 1 and compared
it with that of the standard ΛCDM model. In this figure, we have also plotted the data
points for H(z) measurements (within 1σ error bars) which have been calculated from the
latest compilation of 51 data points of H(z) data (for more details, see Ref. [44]). We have
observed from Figure 1 that the NGCG model reproduces the observed values of H(z)
quite effectively for each data point. Furthermore, in the inset diagram of Figure 1 (left
panel), we observed that ΛCDM models are negligible around redshift z ∼ 0.7. It has also
been found that HNGCG(z) > HΛCDM(z) at low redshifts, while HNGCG(z) < HΛCDM(z)
at relatively high redshifts. These scenarios are in good agreement with a recent work by
Mamon and Saha [45], in which they have observed that the relative difference between the
models (Lambert W single fluid model & ΛCDM model) are negligible around z ∼ 0.67.
Next, the best fit of distance modulus µ(z) for the present model (blue line) and the ΛCDM
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model (red line) are plotted in Figure 2. The 580 points of Supernovae Type Ia datasets
(black dots) are also plotted in Figure 2 for comparision. From this figure, it has been
observed that our model reproduces the observed values of µ(z) quite effectively.
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Figure 1. The evolution of the Hubble parameter (blue curve) is shown for the best-fit values of model parameters, as given
in Table 1, arising from the joint analysis of H(z) + BAO + CMB + BBN + SNIa (Pantheon) dataset (left panel) and H(z) +
BAO + CMB + BBN + SNIa (Union 2.1) dataset (right panel). Here, the red curve represents the corresponding evolution
of H(z) in a standard ΛCDM model with Ωcdm0 = 0.315, H0 = 67.4 km/s/Mpc [40] (left panel) and Ωcdm0 = 0.2675,
H0 = 71.3 km/s/Mpc [37] (right panel). In this plot, the green dots correspond to the 51 H(z) data points in the redshift
range 0.07 ≤ z ≤ 2.36, obtained from different surveys and the corresponding H(z) values are given in [44]. In the inset
diagram, the corresponding relative difference, ∆H(%) = 100× (HNGCG(z)− HΛCDM(z))/HΛCDM(z), is shown for the
best-fit model.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

34

36

38

40

42

44

46

z

Μ
Hz
L

Figure 2. The evolution of µ(z) is shown for the best-fit values of model parameters, as given in
Table 1, arising from the joint analysis of H(z) + BAO + CMB + BBN + SNIa (Union 2.1) dataset (blue
curve). The ΛCDM model (Ωcdm0 = 0.2675 and H0 = 71.3 km/s/Mpc [37]) is also shown in the
red line for model comparison. Here, µ(z) represents the distance modulus, which is the difference
between the apparent magnitude and the absolute magnitude of the observed supernova, is given
by [3] µ(z) = 25 + 5log10(dL/Mpc), where dL is the luminosity distance. In this plot, the black dots
correspond to the Error bar plot of 580 points of Union 2.1 compilation Supernovae Type Ia data
sets [41].
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3. Geometrical Diagnostics
3.1. Statefinder Diagnostics

Since various DE models have been constructed for describing or interpreting the
cosmic acceleration, the problem of discriminating between the various DE candidates
becomes very important. For this purpose, the authors of [46,47] have introduced a new
mathematical diagnostic pair (r, s), known as a statefinder parameter. This diagnostic pair
is a “geometrical” in the sense that it depends upon the scale factor directly and hence
upon the metric describing space-time. The parameters r and s are defined (in terms of
H(z) and its derivatives) as

r(z) =
...
a

aH3 = 1− 2(1 + z)
H′

H
+

{
H′′

H
+

(
H′

H

)2
}
(1 + z)2 (12)

s(z) =
(r(z)− 1)

3(q(z)− 1
2 )

(13)

It deserves to mention here that different combinations of r and s represent different
DE models [46,47]. For example,

• For ΛCDM→ (r = 1, s = 0).
• For Quintessence→ (r < 1, s > 0).
• For CG→ (r > 1, s < 0).
• For SCDM→ (r = 1, s = 1).

The evolutionary trajectories in s-r plane of holographic dark energy (HDE)
model [19–25] with future event horizon as IR cut off starts from the point s = 2/3, r = 1
and approaches towards ΛCDM fixed point (s = 0, r = 1) at late time [24]. In the case of
a quintessence DE model by taking constant EoS parameter [46,47] and Ricci DE (RDE)
model, the curves in s-r plane are vertical [48]. The trajectory in the s-r plane in Chaply-
gin gas (CG) lie in the regions s < 0, r > 1 [49], while the phantom model with power
law potential as well as the quintessence(inverse power-law) models (Q) lie in the regions
s > 0, r < 1 [46,47] and approach the ΛCDM fixed point in both cases at a late time. The tra-
jectory in s-r plane forms a swirl before reaching the attractor in the coupled quintessence
models [50]. Both the Agegraphic DE model [51] and Polytropic gas model [52] show
the ΛCDM behavior at an early time. The HDE model of DE with the model parame-
ter c = 1 and the ghost DE model both show the similar behavior in (s, r) plane [53].
This behavior also matches chaplygin gas [26,27], generalized chaplygin gas [30–32,54],
Yang–Mills [55], new agegraphic [51,56] and HDE [23–25] models of DE. In case of the
tachyon DE model [57] and HDE model with Granda–Oliveros IR cut-off (new holographic
model) [58], the curve of the s-r plane passes through the ΛCDM fixed point at the middle
of the evolution of the Universe. The trajectories of the s-r plane end at the ΛCDM fixed
point (s = 0, r = 1) at a late time, starting from matter-dominated (SCDM) s = 1, r = 1
through an arc segment, parabola (downward) in the case of Tsallis holographic dark
energy (THDE) model [59,60]. The evolutionary curve of the s-r plane starts and ends at
the ΛCDM fixed point (s = 0, r = 1) by making a swirl and shows the Chaplygin gas
behaviour in the case of an RHDE model [61]. Recently, one of the authors has investigated
the statefinder pair r(s) of SMHDE model, in which it always lies in Chaplygin gas region
and approaches the ΛCDM fixed point (r = 1, s = 0) in the late time evolution [62]. The
evolutionary curve of the s-r plane starts from a cosmological constant and goes around a
corner and proceeds towards another endpoint in case of the Tsallis agegraphic dark energy
model [63]. In this work, we have also studied the evolution of the (s, r) pair for the NGCG
model. However, one can also look into [64–66], where the authors have comprehensively
discussed about the statefinder pair analysis for various DE models.

The evolution of the deceleration parameter q against the redshift parameter z, ac-
cording to the values of the model parameters given in Table 1, is plotted in Figure 3 (blue
curve). For comparison, the evolution of q as a function of z for a flat ΛCDM, GCG and
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CG models are also shown. It is observed from Figure 3 that q gives the same prediction
of the evolution of the Universe which is undergoing an accelerated expansion phase at
the current epoch and experiences a transition from a decelerated expansion phase (q > 0)
to an accelerated expansion phase (q < 0) at the transition redshift zt ∼ 0.72 for best-fit
values of model parameters. This result is in good agreement with the current cosmological
observations (0.5 < zt < 1) [67–73].

0 2 4 6

-1.0

-0.5

0.0

0.5

z

q

LCDM

CG

GCG

NGCG

Figure 3. Plot of q as a function of z is shown by considering the values of model parameters, as
given in Table 1, arising from the joint analysis of H(z) + BAO + CMB + BBN + SNIa (Pantheon)
dataset (blue curve). Here, the red, green, and dotted (purple) curves represent the corresponding
evolution of q in a standard ΛCDM, GCG, and CG models, respectively.

We have reconstructed the evolution of the statefinder pair (s, r) according to the
best fitted values of the parameters given in Table 1 for the present model. The plot of
statefinder pair (s, r) is shown in the left panel of Figure 4. The evolutionary trajectories
of statefinder pair of the NGCG model start its evolution along the line r = 1 and pass
through the ΛCDM fixed point (s = 0, r = 1) as time passes. After making a swirl, it lies
in the Chaplygin gas region (s < 0, r > 1) in the future for the best-fit values of model
parameters, as given in Table 1, arising from the joint analysis of H(z) + BAO + CMB +
BBN + SNIa (Pantheon) dataset (blue curve). Hence, Figure 4 shows that the evolutionary
trajectories of the statefinder pair of the NGCG model exhibit only the Chaplygin gas
behavior and shows different behavior from other DE models. We have also shown the
evolutionary trajectories of another statefinder pair (q, r) for the NGCG model in Figure 4
(right panel) for the best-fit values of model parameters, as given in Table 1, arising from
the joint analysis of the H(z) + BAO + CMB + BBN + SNIa (Pantheon) dataset. The fixed
point (q = 0.5, r = 1) corresponds to the SCDM model and the de Sitter expansion is
represented by point (q = −1, r = 1) in the q-r plane. The evolutionary curve of the q-r
plane of NGCG model starts from the SCDM ( r = 1, q = 0.5) in the past and reaches above
the de Sitter expansion (SS) (q = −1, r = 1) in the future, and it also shows the Chaplygin
gas behavior throughout the evaluation. Since q changes its sign from positive to negative,
it also reveals the recent phase transition of the Universe. For comparison, the evolutions of
(s, r) and (q, r) pair for a NGCG, GCG, and CG models are also shown in Figure 5. Hence,
these graphs (Figures 4 and 5) illustrate that, from the statefinder perspective, the NGCG
model is different from various other DE models.
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Figure 4. The time evolutions of the statefinder pair (s, r) (left panel) and the pair (q, r) (right panel) for this model
are shown using the H(z) + BAO + CMB + BBN + SNIa (Pantheon) dataset, as indicated in each panel. The red point
(s = 0, r = 1) in the left panel corresponds to the ΛCDM model, while, in the right panel, the green point (q = 0.5, r = 1)
represents the matter dominated Universe (SCDM). In addition, the black dots on the curves show present values (s0, r0)

(left panel) and (q0, r0) (right panel) for the NGCG model.

-1.0 -0.5 0.0 0.5

1.0

1.2

1.4

1.6

1.8

2.0

q
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Figure 5. The time evolutions of the statefinder pair (s, r) (left panel) and the pair (q, r) (right panel) for different models
are shown using the H(z) + BAO + CMB + BBN + SNIa (Pantheon) dataset. Here, the blue, green, and dotted (purple)
curves are for the NGCG, GCG, and CG models, respectively.

3.2. Om(z) Diagnostics

Another important and useful diagnostic tool constructed from the Hubble parameter
is the Om diagnostic parameter which provides a null test of the standard ΛCDM model.
Interestingly, constant behavior of Om(z) with respect to redshift z implies that DE is a
cosmological constant (ωΛ = −1). On the other hand, the positive slope of Om(z) signifies
that DE is phantom (ωde < −1), whereas the negative slope implies that DE behaves
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like quintessence (ωde > −1). Following [74,75], the Om(z) parameter for a spatially flat
Universe is defined as

Om(z) =
(H(z)

H0
)2 − 1

(1 + z)3 − 1
(14)

Note that it can differentiate a dynamical DE model from the ΛCDM model, with and
without reference to matter density. For this model, Om(z) evolves as a function of z as

Om(z) =
(1−Ωr0 −Ωb0)(1 + z)3 × [1− As(1− (1 + z)3ωde(1+α))]

1
1+α + Ωr0(1 + z)4 + Ωb0(1 + z)3 − 1

(1 + z)3 − 1
(15)

It is evident that, for a spatially flat ΛCDM model Om(z) = Ωm0, irrespective of the
redshift, which means that, for any two distinct redshifts, say zi and zj, Om(zi)−Om(zj) = 0
is the test for ΛCDM. Currently, for any deviation from this condition, a deviation from
ΛCDM is indicated. The graphical representation of Om(z) parameter of NGCG model
(blue curve) is shown in Figure 6 for the values of model parameters, as given in Table 1,
arising from the joint analysis of H(z) + BAO + CMB + BBN + SNIa (Pantheon) dataset. It
depicts that the decay of Om(z) at a lower redshift supports the flourishing DE model.
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Figure 6. Evolution of Om(z) is shown for different models, as indicated in the panel.

4. Conclusions

In the present article, we have examined a new generalized Chaplygin gas (NGCG)
model. The main objective of this article is to distinguish the NGCG model from other
DE models through the statefinder and Om diagnostic for the best-fit values of model
parameters, as given in Table 1, arising from the joint analysis of H(z) + BAO + CMB +
BBN + SNIa (Pantheon) dataset. We can summarize this as:

• We have plotted the deceleration parameter q by getting its numerical solution, which
exhibits a transition at zt ∼ 0.72, from the early decelerated phase to a late time
accelerated phase. This is in good agreement with the current cosmological observa-
tions [67–73].

• The evolutionary curve in the (s, r) plane of NGCG model shows Chaplygin gas
behaviour at a late time, while starting its evolution along the line r = 1 and passes
through the ΛCDM fixed point (s = 0, r = 1) by making a swirl initially.

• The curve of the q-r plane of the NGCG model shows that it evolves from the matter-
dominated Universe i.e., SCDM ( q = 0.5, r = 1) initially and approaches above the de
Sitter expansion (SS) (q = −1, r = 1) at a late time, and it always lies in the Chaplygin
gas region throughout the evaluation.

• The evolutionary trajectory of Om(z) of NGCG model backs the growing DE model.



Universe 2021, 7, 362 10 of 12

• Finally, we investigated the evolutions of the Hubble parameter and the distance
modulus for the model under consideration and the standard ΛCDM model and
compare that with the observational datasets (see Figures 1 and 2). For the best-fit
case, it has been observed that the relative differences (∆H) between the two models
(NGCG & ΛCDM) are negligible around z ∼ 0.7 (see inset diagram of Figure 1 (left
panel)). Furthermore, we have found from Figure 2 that the present model reproduces
the observed values of the distance modulus quite effectively.

We now conclude that the NGCG model provides some interesting consequences in
the cosmological perspective. Furthermore, it would be interesting to investigate the effect
on the growth of perturbations for the NGCG model. However, this study lies beyond the
scope of the present work and is left for future works.
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