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Abstract: A version of the quantum theory of gravity based on the concept of the wave functional of
the universe is proposed. To determine the physical wave functional, the quantum principle of least
action is formulated as a secular equation for the corresponding action operator. Its solution, the wave
functional, is an invariant of general covariant transformations of spacetime. In the new formulation,
the history of the evolution of the universe is described in terms of coordinate time together with
arbitrary lapse and shift functions, which makes this description close to the formulation of the
principle of general covariance in the classical theory of Einstein’s gravity. In the new formulation of
quantum theory, an invariant parameter of the evolutionary time of the universe is defined, which is a
generalization of the classical geodesic time measured by a standard clock along time-like geodesics.

Keywords: universe; wave functional; time

1. Introduction

The idea of universe expansion, originated at the Big Bang, is widely accepted today,
being well founded on clear observational evidence. Arising as a result of solving the
equations of Einstein’s general theory of relativity (GR), it is the highest achievement of
classical (i.e., pre-quantum) physics. At the same time, the basic principles of quantum
theory were formulated as applied to atoms and molecules, and their spread to the level
of the universe as a whole was inevitable. Dirac laid the foundation for the synthesis of
relativistic and quantum principles with his exhaustive analysis of the canonical represen-
tation of dynamical theories with singular Lagrangian functions and their quantization [1].
When applied to general relativity, this leads to the modern quantum theory of gravity
(QTG) with the Wheeler–DeWitt (WDW) system of equations [2,3] for the wave function of
the universe. This theory is based on the canonical representation of the action of general
relativity, obtained by Arnovitt, Deser and Misner (ADM; see [4]):

IADM =
∫

dt
∫

Σ
d3x
( ·

gikπik − NH−NiHi
)

(1)

(for the case of a closed universe), where the three-dimensional integral is taken over the
3D spatial section Σ with the metric tensor gik, πik is the momentum canonically conjugate
to the metric, N, Ni are arbitrary lapse and shift functions that play the role of Lagrange
multipliers, and

H
(

πik, gik

)
=

1
√

g

[
Trπ2 − (Trπ)2

]
−√gR, (2)

Hi = −2πik
|k (3)

are Hamiltonian and momentum constraints. In this paper, we use the notations from [4].
In this work, we do not take into account the contribution of the matter fields. Taking it
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into account does not change the main results of the work. The ADM representation is
obtained using the 3 + 1-splitting of the 4D metric as follows:

ds2 = gik

(
dxi + Nidt

)(
dxk + Nkdt

)
− (Ndt)2. (4)

The shift functions are found by dropping the vector index of the components Nk

of the metric Ni = gik Nk. Thus, the Hamilton function in the case of a closed universe is
reduced to a linear combination of constraints, Equations (2) and (3), which in the classical
theory should be equated to zero as a consequence of the extremum of action (Equation (1))
with respect to N and Ni. Dirac’s main conclusion is that constraints (their quantum
analogs) should also vanish in quantum theory. More precisely, we arrive at the system of
WDW wave equations

Ĥψ = Ĥiψ = 0. (5)

for the wave function of the universe ψ, which ensure its independence from arbitrary
parameters N and Ni, including any external coordinate parameter of time. The constraint
operators are obtained by substituting the canonical momenta in Equations (2) and (3) to
the corresponding differentiation operators as follows:

π̂ik(x) =
}
i

δ

δgik(x)
. (6)

We do not discuss here the problem of ordering non-commuting factors.
Since the wave function of the universe does not depend on any external time param-

eter, the problem arises of its dynamic interpretation in terms of the fundamental dynamic
variables gik (and matter fields). This problem was solved by Hartle and Hawking, using
the representation of the wave function in the form of a Euclidean functional integral [5]
(no-boundary wave function). This integral includes integration over the lapse function N,
and in fact, over the parameter of the proper time of the universe, defined as the following
integral:

c =
∫

Ndt. (7)

Thus, the wave function is also independent of the proper time Equation (7). Hartle,
Hawking, and Hertog [6,7] obtained a classical picture of an expanding universe with
a scalar field within the framework of the semiclassical approximation for a functional
integral, in which the proper time (Equation (7)) takes on the meaning of an evolution
parameter. In subsequent works [8], the authors abandon the representation of the wave
function by a functional integral, formulating the semiclassical approximation directly for
the WDW equation. In [9], a modification of the quantization procedure and functional
integral is proposed, in which the (multi-arrow) proper time, without any approximations,
acquires the meaning of an evolution parameter. Together with its proper time, a set of
additional parameters is introduced into the theory, which forms the distribution of the
own mass of the universe. However, these constructions cannot get around the source
of the time problem in modern QTG: in correspondence with the physical state of the
universe, its Hamiltonian is zero. Thus, the implementation of the principle of general
covariance in QTG, proposed by Dirac, leads to the emergence of the problem of time.

In this paper, a version of QTG is proposed, in which the action functional Equation (1)
becomes an operator in the space of wave functionals defined on the 4D spacetime ge-
ometries gµν (and matter fields). Thus, arbitrary lapse and shift functions N and Ni are
also included in this dependence, which ensures the general covariance of the theory—the
wave functional corresponding to the physical histories of the evolution of the universe
should be an invariant of arbitrary transformations of spacetime coordinates. The quantum
principle of least action (QPLA) is formulated, according to which the quantum state of the
evolution of the universe is determined by the eigenwave functionals of the action operator,
which also depend on the boundary data on the initial and final 3D spatial sections Σ. The
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eigenwave functional has the meaning of the probability density for different trajectories
of the evolution of the universe in terms of the internal (coordinate time) between fixed
boundary spatial sections. Comparing the new formulation with the standard QTG based
on WDW, we note that in the classical general relativity, constraints are integrals of motion.
In the same way, we regard canonical quantum gravity based on the WDW equations as a
kind of integral form of quantum theory based on the quantum principle of least action.

In Section 2, QPLA is obtained in nonrelativistic quantum mechanics as a formulation
of quantum dynamics, equivalent to the Schrõdinger equation. A formulation of the QPLA
in the theory of gravity is proposed. In Section 3, an invariant measure on the space of
4D geometries is introduced, and the probabilistic interpretation of the wave functional is
proposed. In Section 4, based on the probabilistic interpretation of the wave functional, the
mean proper time of evolution of the universe between fixed boundary spatial sections is
determined. By definition, this time is an invariant of general covariant transformations.

2. Quantum Principle of Least Action in Nonrelativistic Mechanics

To formulate new rules for quantizing the theory of gravity, let us consider the tran-
sition to QPLA in ordinary quantum mechanics, where there is no problem of time. It
suffices to consider the simplest system with one degree of freedom (particle) described by
the Hamiltonian (we assume m = 1) as follows:

H =
p2

2
+ U(q, t) (8)

In ordinary quantization, canonical variables are replaced by operators (in coordinate
representation) as follows:

q̂ ≡ q, p̂ ≡ }
i

∂

∂q
, (9)

which act in the space of wave functions ψ(q, t). The wave function completely defines the
state of the particle at time t. The evolution of a state in time is described by the Schrödinger
equation as follows:

i}∂ψ

∂t
= Ĥψ. (10)

where

Ĥ = −}2

2
∂2

∂q2 + U(q, t) (11)

is the Hamilton operator.
To change the quantization rules, let us look at the classical canonical form of this

theory from a different angle: we consider the trajectory of the particle q(t) as a whole,
together with the corresponding function p(t), as a complete set of canonical variables,
enumerated by a continuous parameter t [10]. Both of these functions are still found for
given boundary values from the condition for the extremum of the action in the canonical
form as follows:

I =
∫ T

0
dt
[ ·
qp− H(q, p, t)

]
. (12)

Let us formulate new quantization rules directly for action (Equation (12)) as a func-
tional of the mentioned continuous set of canonical variables. Now, one should expect that
the state of the system, instead of the wave function ψ(q, t) given at each time instant, is de-
scribed by the wave functional Ψ[q(t)], which depends on the entire trajectory. Accordingly,
we implement the generalized canonical variables by the following operators:

q̂(t) ≡ q(t), p̂(t) ≡ }̃
i

δ

δq(t)
, (13)
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acting in the space of wave functionals. Here, }̃ is the “generalized” Planck constant,
which differs from the “usual” dimension: [}̃] = J· sec2 . This follows from the fact that the
variational derivative, according to its definition,

δΨ =
∫ T

0
dt

δΨ
δq(t)

δq(t), (14)

has a dimension that differs from the dimension of the ordinary partial derivative with
respect to the coordinate by exactly the factor sec−1 [11]. We write the following:

}̃ = } · ε, (15)

where ε is some value of the dimension of time. The new implementation of generalized
canonical variables allows, after substituting them in Equation (12), to define the action
operator on the space of wave functionals as follows:

Î =
∫ T

0
dt

[
}̃
i
·
q(t)

δ

δq(t)
+

}̃2

2
δ2

δq2(t)
−U(q(t), t)

]
. (16)

Using this operator, we formulate the basic law of motion of a particle in quantum
mechanics instead of Schrödinger’s equation (Equation (10)) as follows. The physical
state of motion of a particle is described by an eigenfunctional for the action operator
(Equation (16)) as follows:

ÎΨ = ΛΨ, (17)

where Λ is the corresponding eigenvalue. This quantity, by definition, does not depend on
the specific trajectory q(t), except for its boundary points q0 = q(0) and qT = q(T). This
statement is called the quantum principle of least action.

Let us show that a consequence of the QPLA for the simplest theory considered here
is the Schrödinger equation (Equation (10)). The correspondence is established for some
singular family of wave functionals in the limit ε → 0. We define this family as follows.
Any trajectory q(t) can be approximated by a broken line. For this, we divide the time
interval [0, T] into small intervals of length ε = T/N by points tn = nε. Take a broken line
with vertices qn = q(tn), which is an approximation of the trajectory q(t) and coincides
with it in the limit ε→ 0. Let ψ(q, t) be some wave function. Consider the function of the
vertices of the polyline as follows:

Ψ(qn) =
N

∏
n=0

ψ(qn, tn). (18)

In the limit N → ∞, we obtain the trajectory functional Ψ[q(t)]. We write the wave
function in an exponential form as follows:

ψ(q, t) = exp
[

i
}R(q, t)

]
, (19)

where R(q, t) is some complex function. Then Equation (18) can be represented as follows:

Ψ(qn) = exp

[
i
}ε

N

∑
n=0

εR(qn, tn)

]
. (20)

In the limit ε→ 0, we obtain the wave functional of the exponential form as follows:

Ψ[q(t)] = exp
[

i
}̃

∫ T

0
dtR(q(t), t)

]
, (21)
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in which, however, the infinitely small quantity ε is explicitly present. This is the singu-
larity of the considered class of wave functionals. Nevertheless, the operator of action
Equation (16) on this class of functionals is defined insofar as it also contains this infinitesi-
mal quantity and their mutual cancellation will occur.

Consider the expression

Λ =
ÎΨ
Ψ

(22)

on an arbitrary trajectory q(t) with given boundary points and find a condition under
which it does not depend on the interior points of this trajectory. The first term in the action
operator Equation (16) gives the following contribution to Equation (22):∫ T

0
dt
·
q(t)

∂R(q(t), t)
∂q

= R(qT , T)− R(q0, 0)

−
∫ T

0
dt

∂R(q(t), t)
∂t

. (23)

The second term in Equation (16) requires more attention. Its calculation rests on the
following expression:

1
2

∫ T

0
dt

[
−
(

∂R(q(t), t)
∂q

)2
+ i}̃δ∂R(q(t), t)

δq(t)∂q

]
. (24)

Here the second term is determined if we take into account the following:

δ

δq(t)
q(t) =

δ

δq(t)

∫ T

0
dt′δ

(
t− t′

)
q
(
t′
)
= δ(0) =

1
ε

(25)

as ε → 0 (more precisely, on an interval of length ε of our partition of the time interval
[0, T]). Then, taking into account Equation (15), the second term is equal to the following:

1
2

∫ T

0
dti}∂2R(q(t), t)

∂q2 (26)

Putting everything together (including the contribution of the third term in
Equation (16), we obtain the following:

Λ = R(qT , T)− R(q0, 0)

+
∫ T

0
dt

[
−∂R(q(t), t)

∂t
− 1

2

(
∂R(q(t), t)

∂q

)2

+
i}
2

∂2R(q(t), t)
∂q2 −U(q(t), t)

]
(27)

It is easy to verify that if the wave function (Equation (19)) is a solution to the
Schrödinger equation (Equation (10)), the integral in Equation (27) is equal to zero for
any trajectory q(t), and Λ depends only on the boundary points of this trajectory. Thus,
singular exponential wave functionals in the form of Equation (21) satisfy the QPLA (Equa-
tion (17)) if the wave function (Equation (19)) is a solution to the Schrödinger equation
(Equation (10)).

The probabilistic interpretation of the wave functional Ψ[q(t)] follows from the prob-
abilistic interpretation of the wave function: it determines the probability of a particle
moving along trajectories from a small neighborhood q(t) (more precisely, it represents
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the probability of locating the particle in a succession of T/ε measurements of the position
near the assigned points q(nε), with n = 1, ..., T/ε) by the formula

dP[q(t)] = |Ψ[q(t)]|2 ∏
t

dq(t) (28)

under the following appropriate normalization condition:∫
|Ψ[q(t)]|2 ∏

t
dq(t) = 1. (29)

3. Quantum Principle of Least Action in the Theory of Gravity

We can transfer all the previous constructions in full to the QTG, taking as the initial
the canonical form of the ADM action (Equation (1)). As a complete set of canonical
variables, we now consider the trajectories of motion in time of the 3D geometry and the
corresponding canonical momentum

(
gik(x, t), πik(x, t)

)
as a whole. Thus, time, along

with the spatial coordinates, now plays the role of a numbering index. The lapse and shift
functions N and Ni remain arbitrary functions of spacetime coordinates. Accordingly, we
introduce another operator realization of canonical momenta in quantum theory in the
form of partial variational derivatives with respect to time

π̂ik(x, t) =
}̃
i

δ

δ0gik(x, t)
(30)

in the space of wave functionals Ψ[gik(x, t)]. The partial variational derivative in Equation
(30) is defined as follows:

δΨ =
∫ T

0
dt
∫

Σ
d3x

δΨ
δ0gik(x, t)

δgik(x, t). (31)

Spatial coordinates in this definition play the role of numbering indices. Operators
of momenta of matter fields are realized in a similar way. For comparison, we recall that
in the generally accepted implementation of QTG, the wave function of the universe ψ is
actually the functional of the 3D metric gik(x) (and matter fields) on the spatial section Σ,
and the variational derivative is determined by the following relation:

δψ =
∫

Σ
d3x

δψ

δ0gik(x)
δgik(x). (32)

In such an implementation, modification (Equation (15)) of the Planck constant is not
required. Substituting the operators of momenta (Equation (30)) into action (Equation (1)),
we obtain the operator of the action of the ADM in the modified QTG as follows:

ÎADM =
∫

dt
∫

Σ
d3x
( ·

gikπ̂ik − NĤ−NiĤi
)

, (33)

where, as we agreed, the momentum operators (Equation (30)) in all expressions are on the
right. Now, let us formulate the quantum principle of least action in the theory of gravity
as a spectral problem for the action operator:

ÎADMΨ = ΛADMΨ. (34)

Here, the eigenvalue ΛADM is a (complex) function of 3D geometries g0
ik, gT

ik on two
boundary spatial sections Σ0, ΣT of 4D Lorentz spacetime. The eigenvector—the wave
functional Ψ—depends on all components of the 4D spacetime metric between the bound-
ary spatial sections, including arbitrary Lagrange multipliers N and Ni. The desired wave
functional Ψ

[
gµν(x, t)

]
, which describes the physical history of the evolution of the uni-
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verse, must be an invariant of general covariant transformations, and this is ensured by its
dependence on N and Ni.

4. Interpretation of the Wave Functional of the Universe and Time

As it should be in quantum theory, the wave functional describes the evolution of the
universe in a probabilistic way. However, this description must be covariant. Since the
wave functional itself is an invariant, one should also introduce an invariant measure of
integration on the set of 4D spacetime geometries between the given boundary spatial sec-
tions Σ0, ΣT . Such a measure was constructed in the works of Faddeev and Popov [12,13],
and here we use the ready result:

dµFP
[
gµν

]
= ∆h

[
gµν

]
×

×∏
x

(
∏

β

δ
(

∂α

(√
−ggαβ

))
×

×(−g)
5
2 ∏

µ6ν

dgµν

)
, (35)

where additional gauge harmonicity conditions are used, and ∆h
[
gµν

]
is the correspond-

ing Faddeev–Popov determinant. Thus, the probability that the universe evolved in a
small neighborhood of a given 4D spacetime geometry gµν(x, t) is given by the following
expression:

dP
[
gµν(x, t)

]
=
∣∣Ψ[gµν(x, t)

]∣∣2dµFP
[
gµν(x, t)

]
(36)

with the following additional normalization condition:∫ ∣∣Ψ[gµν(x, t)
]∣∣2dµFP

[
gµν(x, t)

]
= 1. (37)

Now we can answer the question: what physical (invariant) time separates the bound-
ary spatial sections Σ0, ΣT? Here the parameter T is an arbitrary coordinate time, which is
fixed by us for convenience. As a physical measure of time between two spatial sections, it
is natural to take geodesic time, measured by a clock moving along a time-like geodesic.
More precisely, in a given 4D spacetime geometry gµν(x, t), we take a family of geodesics
orthogonal to the initial spatial section Σ0 and calculate the average over this family (in-
tegral over Σ0) of the geodesic distance between the boundary spatial sections Σ0, ΣT as
follows: 〈∫ ΣT

Σ0

√
−gµνdxµdxν

〉
Σ0

. (38)

Now this value should be averaged over all possible 4D spacetime geometries between
the given boundary spatial sections Σ0, ΣT as follows:

S =
∫ 〈∫ ΣT

Σ0

√
−gµνdxµdxν

〉
Σ0

dµFP
[
gµν

]
. (39)

Integral Equation (39) gives the mathematical expectation for the proper time between
two boundary states of the universe on the spatial sections Σ0, ΣT .

The construction proposed here also allows one to determine an analog of the no-
boundary of the Hartle and Hawking wave function. To do this, one should go to the
Euclidean form of the action of ADM, Equation (1), and QPLA, Equation (34). The transition
to the Euclidean 4D metric in the representation of Equation (4) is achieved by a simple
replacement:

N −→ iN. (40)

The canonical momentum of the 3D ADM metric, according to its definition (see [4]),
changes as follows: π → −iπ. As a result, the canonical action of ADM is transformed into
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the Euclidean form: IADM −→ −iIE
ADM. In the Euclidean form of QPLA, one can search

for a solution in the form of a real wave functional defined on 4D Euclidean geometries
with one boundary spatial section or no boundaries at all. The return to the Lorentzian
signature of the 4D metric is carried out in the found solution by rotating in the N complex
plane (where possible), inverse to Equation (40).

In conclusion, we note that the singular character of the QPLA in this formulation,
which assumes the passage to the limit ε → 0 in Equation (15), admits regularization by
adding to the Hilbert–Einstein action with the Lagrange function −1/κ2√−gR the square
of scalar curvature (the theory with the Lagrangian function −1/κ2R + σ2R2 ). In this
theory, the Lagrange function contains second-order derivatives of the metric. Its canonical
analysis and standard quantization are carried out in [14] based on the approach developed
by Ostrogradsky for theories with higher derivatives [15]. The modified Lagrange function
contains an additional dimensional parameter κσ, which serves as a measure of the
theory’s nonlocality. Within the framework of the approach proposed in this paper to the
formulation of the QPLA, the nonlocality of the dynamics does not prevent the possibility
of determining the set of generalized canonical variables formed by their values at all times.
In this case, the canonical momenta conjugate to the metric gik(x, t) should be defined as
the variational derivatives of the action with respect to the velocities

·
gik(x, t). The resulting

canonical action are nonlocal, and in the QPLA formulation, the modified Planck constant
should be set equal to the following:

}̃ = } ·κσ. (41)

In the limit σ→ 0, we return to the original singular form of the QPLA.

5. Conclusions

The wave function in the generally accepted QTG, if we follow the canonical structure
of the ADM action (Equation (1)), describes the state of the universe at a particular moment
of coordinate time. However, the formulation of the principle of general covariance in
quantum theory, according to Dirac, requires the removal of this time parameter from
consideration as being non-physical. This is achieved by the conditions for the vanishing
of quantum constraints. In this case, the wave function contains information about the
history of the evolution of the universe only in integral form in its phase. Recovery of this
information is possible in the semiclassical approximation, and this procedure is called the
holographic principle in [7,8]. The introduction of the wave functional, which is an atlas of
the history of the universe in coordinate time, allows us to speak about this history explicitly.
QPLA allows one to define a solution that is invariant with respect to general covariant
transformations. Thus, an alternative embodiment of the principle of general covariance in
the quantum theory of gravity is proposed, which includes coordinate time together with
arbitrary lapse and shift functions. This implementation is close to its formulation in the
classical GR theory of Einstein. This makes it possible to determine in the quantum theory
the invariant parameter of the evolutionary time of the universe, which generalizes the
concept of proper time measured along time-like geodesics.

In this paper, we do not discuss the nonlocal version of the theory of gravity associated
with the addition of terms that are quadratic in curvature. The probabilistic interpretation
of the wave functional in the nonlocal theory requires more attention. In the case of the
nonlocal modification of the theory of gravity, a connection between the time of nonlocality
and the scale of energies in the universe takes place. However, this is the subject of a
separate study.

Author Contributions: Investigation, N.G. and A.L.; Draft review and editing, N.G., A.L. and A.V.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Universe 2021, 7, 452 9 of 9

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to thank V.A. Franke for the useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dirac, P.A.M. Lectures on Quantum Mechanics; Yeshiva Universitry: New York, NY, USA, 1964.
2. Wheeler, J.A. Einsteins Vision; Springer: Berlin/Heidelberg, Germany, 1968.
3. DeWitt, B.S. Quantum Theory of Gravity. II. The Manifestly Covariant Theory. Phys. Rev. 1967, 162, 1195. [CrossRef]
4. Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman and Company: San Francisco, CA, USA, 1973.
5. Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960. [CrossRef]
6. Hartle, J.B.; Hawking, S.W.; Hertog, T. Classical universes of the no-boundary quantum state. Phys. Rev. D 2008, 77, 123537.

[CrossRef]
7. Hartle, J.B.; Hawking, S.W.; Hertog, T. Quantum Probabilities for Inflation from Holography. J. Cosmol. Astropart. Phys. 2014,

2014, 15. [CrossRef]
8. Halliwell, J.J.; Hartle, J.B.; Hertog, T. What is the no-boundary wave function of the Universe? Phys. Rev. D 2019, 99, 043526.

[CrossRef]
9. Gorobey, N.N.; Lukyanenko, A.S.; Goltsev, A.V. Nauchno Tehnicheskie Vedomosti SPbGPU. Fis.-Mat. Nauk. 2021, 14, 118–129.
10. Jaen, X.; Jauregui, R.; Llosa, J.; Molina, A. Hamiltonian formalism for path-dependent Lagrangians. Phys. Rev. D 1987, 36, 2385.

[CrossRef] [PubMed]
11. Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill Book Company: New York, NY, USA, 1965.
12. Faddeev, L.D.; Popov, V.N. Covariant quantization of the gravitational field. Usp. Fiz. Nauk. 1973, 111, 427–450. [CrossRef]
13. Konopleva, N.P.; Popov, V.N. Kalibrovochnye Polya; Atomizdat: Moscow, Russia, 1972; 240p.
14. Buchbinder, I.L.; Lyahovitch, S.L. Canonical quantization of theories with higher derivatives. Quantization of R2-gravity. Theor.

Math. Phys. 1987, 72, 204–218.
15. Ostrogradsky, M.V. Variatzionnye Printsipy Mehaniky; Fizmatgiz: Moscow, Russia, 1959.

http://doi.org/10.1103/PhysRev.162.1195
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1103/PhysRevD.77.123537
http://dx.doi.org/10.1088/1475-7516/2014/01/015
http://dx.doi.org/10.1103/PhysRevD.99.043526
http://dx.doi.org/10.1103/PhysRevD.36.2385
http://www.ncbi.nlm.nih.gov/pubmed/9958447
http://dx.doi.org/10.3367/UFNr.0111.197311b.0427

	Introduction
	Quantum Principle of Least Action in Nonrelativistic Mechanics
	Quantum Principle of Least Action in the Theory of Gravity
	Interpretation of the Wave Functional of the Universe and Time
	Conclusions
	References

