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Abstract: We consider a generalized Starobinski inflationary model. We present a method for
computing solutions as generalized asymptotic expansions, both in the kinetic dominance stage
(psi series solutions) and in the slow roll stage (asymptotic expansions of the separatrix solutions).
These asymptotic expansions are derived in the framework of the Hamilton-Jacobi formalism where
the Hubble parameter is written as a function of the inflaton field. They are applied to determine
the values of the inflaton field when the inflation period starts and ends as well as to estimate the
corresponding amount of inflation. As a consequence, they can be used to select the appropriate
initial conditions for determining a solution with a previously fixed amount of inflation.

Keywords: Starobinski model; kinetic dominance; slow roll; psi series; separatrices

PACS: 98.80.Cq; 02.30.Mv

1. Introduction

The inflationary cosmology is an important ingredient for the description of the early
universe [1–3]. Many inflationary models have been considered which are formulated
in terms of an homogeneous spatially flat Friedman-Lemaître-Robertson-Walker (FLRW)
spacetime with scale factor a(t), and a time dependent single real field φ(t), known as the
inflaton field [4–6]. These models are described by the nonlinear ordinary second order
differential equation

φ̈ + 3Hφ̇ +
dV
dφ

(φ) = 0, (1)

where V = V(φ) is a given potential function and H = ȧ/a is the Hubble parameter which
depends on the inflaton field according to the equation

H2 =
1

3m2
Pl

(
1
2

φ̇2 + V(φ)

)
. (2)

Here mPl =
√

h̄c/8πG is the Planck mass and dots indicate derivatives with respect to the
cosmic time t.

One of the most interesting inflationary models is the Starobinski model [1,7], which
obtains from a modification of the Einsten-Hilbert action by an extra curvature quadratic
term. It is associated with the potential function

V(φ) = Λ4
(

1− e−
√

2
3

φ
mPl

)2

, (3)
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with Λ being constant. Several modifications and generalizations of this model have been
proposed, such as the α-attractor models [8–10], leading to power law inflation [11], or
models with exponential power law inflation in modified gravity [12]. Some of these
extensions (see for example [10] or [12]) can be written as particular cases of the potential

V(φ) = Λ1 e−
√

6 λ
mPl

φ − Λ2 e−
√

6 µ
mPl

φ
+ Λ3, (4)

where Λj, j = 1, 2, 3, λ and µ are positive coefficients with λ > µ. In particular, by setting
in µ = λ

2 = 1
3 , Λ1 = Λ3 = Λ2

2 = Λ4, the potential (4) reduces to (3). Figure 1 shows the
graphic of the potential (4) for several values of the parameters.
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Figure 1. Graphics of the potential (4) for λ = 2
3 (corresponding to the Starobinski model (3)) and µ

taking the values 1
3 (black line, also corresponding to the Starobinski model), 0.65 (red line) and 0.15

(blue line). The axes origin is (φmin, Vmin) with φmin being the inflaton value at which the potential
takes its minimum and Vmin := V(φmin).

In this work we use the Hamilton-Jacobi formalism to determine asymptotic solutions
of the model (4) for two different situations: the kinetic dominance (KD) and the slow-roll
(SR) stages.

The KD stage [13–15] is the period when the kinetic energy of the inflaton field
dominates over its potential energy.

φ̇2 � V(φ). (5)

It is a non-inflationary or pre-inflationary stage that is followed by a short fast-roll inflation
phase [16] and afterwards by the traditional SR inflation stage [5,17–24]. Recently, Han-
dley et al [14,15,25–27] have shown the relevance of the KD period (5) for setting initial
conditions. Indeed, as it was stablished in [14,16], for models with a smooth and positive
potential V the Hubble parameter is a positive monotonically decreasing function of t. As
a consequence, the functions φ(t) and H(t) corresponding to arbitrary finite initial data
are not singular forward in t. Nevertheless they may develop singularities backwards in t.
Thus, it can be proved [14] that for generic initial conditions the evolution backwards in
time starts by a KD regime followed by an inflationary regime.

The solutions of Equation (1) manifest generically branch point singularities of loga-
rithmic type related to the condition (5), and their presence is associated with the so-called
psi-series [28] asymptotic solutions. Handley et al. developed in [15] a general method to
compute psi-series expansions for the solutions of Equation (1) and the generalization of
Equation (2) for FLRW spacetimes with curvature. They referred to their series as logolinear
series. As it was discussed in Section 2-C of [16], the mathematical singularity t = t∗ does
not mean a real physical phenomenon. It is an extrapolation of the classical treatment of
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the inflaton models which is outside the validity region of the classical treatment. At this
point quantum cosmology has to be used.

In a previous work [29] we have presented an alternative method for computing
expansions of the solutions of (1)–(2) in the KD stage for wide classes of potentials. The
starting point of the method is the Hamilton-Jacobi formalism, we look for solutions of the

Hamilton-Jacobi equations as psi-series in eϕ (ϕ is the rescaled inflaton field ϕ ≡
√

3
2

φ
mPl

)
with polynomial coefficients. The potential (4) is not a particular case of the models studied
in [29], nevertheless we extend here our previous method by considering polynomial
coefficients depending on the two variables e−2λϕ and e−2µϕ. We refer to these series as
expolinear series. At this point we need to impose the exponents λ, µ and the quotient λ

µ to
be irrational numbers, however a simple limit operation shows that the results also apply
to rational exponents.

On the other hand, the SR stage is the period in which the potential energy dominates
over the kinetic energy

φ̇2 � V(φ). (6)

It is known [19,30] that many inflationary models exhibit separatrix solutions, these so-
lutions behave as “attractor solutions” in the sense that they determine the asymptotic
behaviour of all the solutions of the model as the cosmic time t is large enough. In particular
they provide us with asymptotic expansions in the Hamilton-Jacobi formalism for the SR
stage. In [31], we have studied the existence of separatrix solutions and have discussed
their asymptotic expansions for wide classes of inflationary models. The results of [31]
imply that the potential model (4) has a separatrix solution defined for φ > φmin for all
values of the parameters λ and µ, however, the existence of a separatrix solution defined
for φ < φmin requires that the condition λ < 1 is fulfilled.

The paper is organized as follows: In Section 2, we briefly introduce the Hamilton-
Jacobi formalism for the model (4). Section 3 describes the method for determining psi-
series solutions for the Hamilton-Jacobi equations. We defer to Appendix A the discussion
of how to derive from our psi-series in the inflaton field ϕ, the logolinear series for ϕ(t)
involving integer and irrational powers of (t− t∗). We devote Section 4 to obtain asymptotic
expansions of the separatrix solutions. The question of how to use the series solutions
obtained in Sections 3 and 4 to provide suitable approximations to the Hamilton-Jacobi
equations in the KD and SR stages is discussed in Section 5.1.

These approximations are applied in Section 5.2 to provide analytical approximations
of several relevant quantities. Note that we need to take the parameter Λ3 in (4) as

Λ3 = Λ1

(
λ

µ
− 1

)(
Λ2µ

Λ1λ

) λ
λ−µ

, (7)

so that it is satisfied that Vmin = 0 and consequently, the model exhibits solutions which
leave the inflation period and overlap a reheating phase [5,6,21,32–34]. Thus, we use the
psi-series to determine the value of the inflaton field at the initial moment of the inflation
period, and the separatrices to obtain the value of the inflaton field at the end of the inflation
period. Using both approximations we provide a formula for the amount of inflation. The
paper ends with a summary of conclusions in Section 6.

2. Hamilton Jacobi Formulation

Let us begin with the Hamilton Jacobi formulation of the inflationary models (1)
and (2). We use the rescaled variables

ϕ =

√
3
2

φ

mPl
, v(ϕ) =

3
m2

Pl
V(φ), h = 3H, (8)

and rewrite equations (1) and (2) as
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ϕ̈ + hϕ̇ +
1
2

v′(ϕ) = 0, (9)

and
h2 = ϕ̇2 + v(ϕ), (10)

respectively, where
v(ϕ) = c1 e− 2 λ ϕ − c2 e− 2 µ ϕ + c3, (11)

with cj = 3
m2

Pl
Λj, j = 1, 2, 3. Furthermore, due to (7) the parameter c3 is defined as

c3 = c1

(
λ

µ
− 1

)(
c2µ

c1λ

) λ
λ−µ

. (12)

In this work we use Plank units (G = c = h̄ = 1). Thus, for the Starobinski model (3)
we have that (see for example [15]) Λ4 = 10−10 m2

Pl , so the coefficients cj, j = 1, 2, 3 are
of order 10−10.

2.1. The Hamilton-Jacobi Equations

In the Hamilton-Jacobi formulation of inflationary models the reduced Hubble param-
eter is determined as a function h(ϕ) of the inflaton field, consequently, we consider two
subsets in the phase space (ϕ, ϕ̇) where ϕ̇ has a constant sign.

D+ = {(ϕ, ϕ̇) : ϕ ≥ ϕmin, ϕ̇ < 0}, D− = {(ϕ, ϕ̇) : ϕ ≤ ϕmin, ϕ̇ > 0}. (13)

The diffeomorphims

T+ : D+ 7→ R+ := {(ϕ, h) ∈ R2 : ϕ ≥ ϕmin,
√

v(ϕ) < h < +∞}

defined as

T+(ϕ, ϕ̇) =

(
ϕ,
√

ϕ̇2 + v(ϕ)

)
, T−1

+ (ϕ, h) =

(
ϕ,−

√
h2 − v(ϕ)

)
, (14)

and
T− : D− 7→ R− := {(ϕ, h) ∈ R2 : ϕ ≤ ϕmin,

√
v(ϕ) < h < +∞},

where

T−(ϕ, ϕ̇) =

(
ϕ,
√

ϕ̇2 + v(ϕ)

)
, T−1

− (ϕ, h) =

(
ϕ,
√

h2 − v(ϕ)

)
, (15)

enable us to describe the dynamics of (9)–(10) on the regions R± of the (ϕ, h) plane (see
Figure 2 below).
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Figure 2. Regions D± in the left plot and R± in the right one. The black lines are representative
trajectories with initial condition in D− (left) and R− (right). Analogously, the blue lines are repre-
sentative trajectories with initial conditions in D+ (left) and R+ (right). The parameters of the model

are taken as λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10, c2 = 2.5× 10−10.
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From Equations (9) and (10) it follows that

ḣ = − ϕ̇2. (16)

Thus, the parts of each solution ϕ(t) of (9) in D± satisfy the equations

h′(ϕ)2 = h(ϕ)2 − v(ϕ), (17)

and
ϕ̇ = −h′(ϕ), (18)

Here primes denote derivatives with respect to ϕ and the reduced Hubble function h is
assumed to be the positive root

h =
(

ϕ̇2 + v(ϕ)
)1/2

. (19)

Equations (17) and (18) are referred to as the Hamilton-Jacobi formalism for inflationary
models [6,19,35,36].

The sets R± plays the role of the phase space of the formalism. Thus each solution
h = h(ϕ) of (17) determines a corresponding implicit solution ϕ(t) of (18) given by

t = −
∫ ϕ(t)

ϕ(0)

dϕ

h′(ϕ)
. (20)

2.2. The KD Period. Asymptotic Solutions

As a consequence of (16), it follows that the reduced Hubble parameter h is a positive
monotonically decreasing function of t. This property implies that for smooth and positive
potential functions v, the solutions ϕ(t) of (9) with arbitrary finite initial data do not
have singularities forward in the cosmic time t. Nevertheless, the function h(t) increases
without bound backwards in time, so that we may expect that h(t) and ϕ(t) may develop
singularities. Thus, if the KD condition (5) holds then we may neglect v and v′ in the
inflaton equations and from (9) we have

ϕ̈ + |ϕ̇| ϕ̇ ∼ 0, (21)

and we obtain two families of approximate solutions

ϕ ∼ ∓ log(t− t∗) + ϕp as t→ (t∗)+, (22)

where t∗ and ϕp are arbitrary constants. Consequently, the asymptotic form of the reduced
Hubble parameter (19) is

h ∼ 1
(t− t∗)

as t→ (t∗)+. (23)

These approximate solutions of the inflaton equations are the dominant terms of the psi
series expansions that we will consider below. The corresponding approximate solutions
of (17) take the form

h ∼ e±ϕ

b
as ϕ→ ±∞, (24)

where b is an arbitrary strictly positive parameter (b = e±ϕp ). We will denote by h(+)(ϕ)
the solutions of (17) which emerge from the KD region with asymptotic behaviour

h(+)(ϕ) ∼ eϕ

b
as ϕ → ∞. (25)

Note that h(+)(ϕ) is indeed solution of the equation
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h′ =
√

h2 − v(ϕ). (26)

We also use the notation ϕ(+)(t) for the associated solution of (18) which blows up at a
finite time t∗ given by

t∗ = −
∫ ∞

ϕ(0)

dϕ

(h(+))′(ϕ)
. (27)

and denote h(+)(t) = h(+)(ϕ(+)(t)). The asymptotic forms of ϕ(+)(t) and h(+)(t) near the
blow up time are given by

ϕ(+)(t) ∼ − log
(

t− t∗

b

)
as t → (t∗)+, (28)

and
h(+)(t) ∼ 1

t− t∗
as t → (t∗)+. (29)

Analogously, we denote by h(−)(ϕ) the solutions of (17) which emerge from the KD region
with asymptotic behaviour

h(−)(ϕ) ∼ e−ϕ

b
as ϕ → −∞. (30)

We point out that only if λ < 1 the Equation (17) with potential (11) may admit solutions
with asymptotic behaviour (30). Otherwise the potential function v(ϕ) is a dominant term
with respect to h(ϕ)2 and h′(ϕ)2 in (17) as ϕ→ −∞. We assume that λ < 1, then it is clear
that h(−)(ϕ) is a solution of the equation

h′ = −
√

h2 − v(ϕ). (31)

Now ϕ(−)(t) stands for the associated solution of (18) which blows up at a finite time given
by

t∗ =
∫ ϕ(0)

−∞

dϕ

(h(−))′(ϕ)
. (32)

and h(−)(t) = h(−)(ϕ(−)(t)). The asymptotic behaviours of ϕ(−)(t) and h(−)(t) near the
blow up time are given by

ϕ(−)(t) ∼ log
(

t− t∗

b

)
as t → (t∗)+, (33)

and
h(−)(t) ∼ 1

t− t∗
as t → (t∗)+. (34)

2.3. Slow-Roll Stage and Separatrix Solutions

In our previous work [31] we proved that for a potential v(ϕ) such that

lim
ϕ→∞

v′(ϕ)

2v(ϕ)
= α for 0 ≤ α < 1, (35)

the Equation (17) has a unique solution h(+)
s (ϕ) satysfying

h(+)
s (ϕ) ∼

√
v(ϕ)√

1− α2
as ϕ → ∞. (36)

Furthermore, using the symmetry (v(ϕ), h(ϕ), ϕ(t)) 7→ (v(−ϕ), h(−ϕ),−ϕ(t)) of Equations (17)
and (18), we have that provided



Universe 2021, 7, 500 7 of 25

lim
ϕ→−∞

v′(ϕ)

2v(ϕ)
= − β for 0 ≤ β < 1, (37)

the Equation (17) has a unique solution h(−)s (ϕ) such that

h(−)s (ϕ) ∼
√

v(ϕ)√
1− β2

as ϕ → −∞. (38)

The trajectories in the (ϕ, ϕ̇) phase space associated to these solutions are boundaries
of the regions filled by the solutions with asymptotic behaviour given by either (28) or (33)
(see Figure 3 below). Moreover, h(+)

s (ϕ) (resp. h(−)s (ϕ))) is the boundary in the phase
spaces R+ (resp. R−) between solutions of (17) defined for all ϕ > ϕmin (resp. ϕ < ϕmin)
and solutions of (17) which leave R+ for a certain ϕ∗ > ϕmin (resp. which leave R− for
a certain ϕ∗ < ϕmin). These important solutions are referred to as separatrix solutions
and it turns out that, for wide sets of initial conditions, the solutions of the model reduce
asymptotically to these special solutions [19,30]. Thus, they provide us with accurate
approximations to the solutions in the SR stage.

For the inflationary model with the generalized Starobinski potential (11) we have
that

lim
ϕ→∞

v′(ϕ)

2v(ϕ)
= 0 and lim

ϕ→−∞

v′(ϕ)

2v(ϕ)
= − λ. (39)

Consequently, a separatrix solution arises with asymptotic behaviour

h(+)
s (ϕ) ∼

√
v(ϕ) as ϕ → ∞. (40)

Furthermore, provided that λ < 1 there is another separatrix solution such that

h(−)s (ϕ) ∼
√

v(ϕ)√
1− λ2

as ϕ → −∞. (41)

-4 -2 2

-3⨯10-5

-2⨯10-5

-10-5

10-5

2⨯10-5

3⨯10-5

φ

φ


Figure 3. Phase portrait of (9), (11), the blue and green lines stand for the separatrices, the orange lines
plot trajectories associated to solutions satisfying (28) while the brown lines corresponds to solutions

with asymptotic behaviour (33). The model parameter values are λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10,
c2 = 2.5× 10−10.

2.4. The Amount of Inflation

The inflation period of the universe evolution is characterized by an accelerated
universe expansion ä > 0. From the identity
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ä
a
=

1
3m2

Pl

(
V(φ)− φ̇2

)
, (42)

it follows that this period is determined by the constraint

φ̇2 < V(φ). (43)

Then, the inflation regions (43) in R± are characterized by

√
v < h <

√
3v
2

. (44)

It is well known that a successful solution to the horizon and flatness cosmological
problems requires that the amount of inflation

N =
∫ φend

φin

H
φ̇

dφ =
1
3

∫ ϕin

ϕend

h
h′

dϕ, (45)

should be close to N ∼ 60 [6,37–39]. Thus, given a solution h = h(ϕ) of (17) it is essential
to determine the values ϕin, ϕend for which inflation starts and ends. Now, due to (44) both
values satisfy

h(ϕ) =

√
3v(ϕ)

2
. (46)

As we will show in Section 5.2, we obtain faithful approximations of ϕin if we use KD
approximations for h(ϕ) in (46) supplied by appropriately truncated psi-series expansions.
Moreover, ϕend is accurately approximated in terms of the SR approximations determined
through separatrix expansions. Both approximations will be applied to determine the
amount of inflation N as a function of the free parameter b.

3. Expolinear Series for the Reduced Hubble Parameter h(ϕ) in the KD Period

We consider the KD period and look for solutions of (17) with asymptotic behaviour (25).
Thus we substitute the psi-series expansion

h(+)(ϕ) =
eϕ

b
+

∞

∑
n=1

b2n−1 γ
(+)
n

(
c1 e−2 λ ϕ, c2 e− 2 µ ϕ

)
e− (2n−1) ϕ, (47)

in (17), where γ
(+)
n (ϕ) are polynomials on c1 e−2 λ ϕ and c2 e− 2 µ ϕ. By inserting (47) into (17)

we obtain

∞

∑
n=1

b2n−1
[
λ xγ

(+)
n,x + µ y γ

(+)
n,y + n γ

(+)
n

]
e−(2n−2)ϕ−

−
∞

∑
n=2

b2n−2
[

∑
j+k=n, j,k≥1

(
(λxγ

(+)
j,x + µyγ

(+)
j,y + (j− 1

2
)γ

(+)
j )(λxγ

(+)
k,x − µyγ

(+)
k,y + (k− 1

2
)γ

(+)
k )

− 1
4

γ
(+)
j γ

(+)
k

)]
e−(2n−2) ϕ =

1
4
(x − y + c3),

(48)

where we have introduced the variables

x := c1 e− 2 λ ϕ, y := c2 e− 2 µ ϕ. (49)

Henceforth, we will assume that

λ, µ and
λ

µ
are irrational numbers. (50)
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Nevertheless a simple limit operation shows that the results below also apply to rational
exponents, or irrational exponents λ and µ such that λ/µ is rational. From (50) we have
that the powers of x, y and e−ϕ are linearly independent functions; consequently we may
identify the coefficients of e−2nϕ for n = 0, 1, . . . on both sides of Equation (48). Thus, for
n = 0 we obtain that γ

(+)
1 verifies the linear first order PDE

λ x γ
(+)
1,x + µ y γ

(+)
1,y + γ

(+)
1 =

1
4
(x − y + c3), (51)

which can be solved by the characteristic method [40] and, after the change of variables

ξ = y x−
µ
λ , η = x. (52)

it reduces to the linear first order ordinary differential equation

γ
(+)
1,η +

1
λ η

γ
(+)
1 =

1
4 λ

(
1 − ξ η

µ
λ−1 + c3 η−1

)
,

whose general solution is

γ̂
(+)
1 (ξ, η) = P1(ξ) η−

1
λ +

1
4(1 + λ)

η − 1
4(1 + µ)

ξ η
µ
λ +

c3

4
,

where P1 is an arbitrary function. In terms of the variables (x, y), the general solution can
be written as

γ̂
(+)
1 (x, y) = P1

(
y x−

µ
λ

)
x−

1
λ +

x
4(1 + λ)

− y
4(1 + µ)

+
c3

4
.

Thus, Equation (51) has a unique polynomial solution given by

γ
(+)
1 (x, y) =

x
4(1 + λ)

− y
4(1 + µ)

+
c3

4
. (53)

Furthermore, identifying the coefficients of e−2nϕ, n ∈ N in both sides of Equation (48)
leads to the recursion relation

λ x γ
(+)
n+1,x + µ y γ

(+)
n+1,y + (n + 1) γn+1 =

∑
j+k=n+1, j,k≥1

[
(λxγ

(+)
j,x + µyγ

(+)
j,y + (j− 1

2
)γ

(+)
j )(λxγ

(+)
k,x + µyγ

(+)
k,y + (k− 1

2
)γ

(+)
k )

− 1
4

γ
(+)
j γ

(+)
k

]
.

(54)

The Equations (54) are nonhomogeneous linear first order PDE, whose nonhomoge-
neous terms depend on the coefficients γ

(+)
j with j = 1, . . . , n. We now use induction

to prove that the coefficients γ
(+)
n (x, y) in Equation (47) are recursively determined from

Equation (54) as polynomials of degree n on (x, y) i.e.

γ
(+)
n (x, y) = ∑

j+k≤n
γ
(+)
n,j,kxjyk. (55)

From Equation (53) we have that γ
(+)
1 is of the form (55) with

γ
(+)
1,0,0 =

c3

4
, γ

(+)
1,1,0 =

1
4 (1 + λ)

, γ
(+)
1,0,1 = − 1

4(µ + 1)
. (56)
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By using the induction hypothesis, we can write the right-hand side of Equation (54)
as

∑
j+k≤n+1

q(+)
n+1,j,kxjyk, (57)

where the coefficients q(+)
n+1,j,k depend on γ

(+)
l,j,k for l = 1, . . . , n and j, k such that j + k ≤ l.

The change of variables (52) transforms (54) and (57) into

γ
(+)
n+1,η +

n + 1
λ η

γ
(+)
n+1 =

1
λ ∑

j+k≤n+1
q(+)

n+1,j,kξkη j+ µ
λ k−1.

with general solution

γ̂
(+)
n+1(ξ, η) = Pn+1(ξ)η

− n+1
λ + ∑

j+k≤n+1

q(+)
n+1,j,k

jλ + kµ + (n + 1)
ξkη j+ µ

λ k.

Here Pn+1 denotes an arbitrary function on ξ. Thus, in terms of the variables (x, y) the
unique polynomial solution of Equation (54) is given by

γ
(+)
n+1(x, y) = ∑

j+k≤n+1

q(+)
n+1,j,k

jλ + kµ + (n + 1)
xjyk. (58)

For example, we have that the first Equation (54) are

λxγ
(+)
2,x + µyγ

(+)
2,y + 2γ

(+)
2 =

(
λxγ

(+)
1,x + µyγ

(+)
1,y +

1
2

γ
(+)
1

)2
− 1

4
(γ

(+)
1 )2,

λxγ
(+)
3,x + µyγ

(+)
3,y + 3γ

(+)
3 = 2

(
λxγ

(+)
1,x + µyγ

(+)
1,y +

1
2

γ
(+)
1

)(
λxγ

(+)
2,x + µyγ

(+)
2,y +

3
2

γ
(+)
2

)

−1
2

γ
(+)
1 γ

(+)
2 ,

(59)

and the second coefficient in (47) is given by

γ
(+)
2 (x, y) =

λ x2

32(1 + λ)2 +
xy(λ + µ + 2λµ)

16(1 + λ)(1 + µ)(2 + λ + µ)

+
µy2

32(1 + µ)2 +
c3 λ x

16(1 + λ)(2 + λ)
+

c3 µ y
16(1 + µ)(2 + µ)

.

(60)

Recalling Equations (47), (49) and (55) we get that the reduced Hubble parameter is

h(+)(ϕ) =
eϕ

b
+

∞

∑
n=1

∑
j+k≤n

b2n−1γ
(+)
n,j,kcj

1ck
2e(−2jλ−2kµ−2n+1)ϕ. (61)

On the other hand, if λ < 1 we can use the symmetry (v(ϕ), h(ϕ), ϕ(t)) → (v(−ϕ),
h(−ϕ),−ϕ(t)) of Equations (17) and (18) to find that the psi-series corresponding to
solutions with asymptotic behaviour (30) are given by

h(−)(ϕ) =
e−ϕ

b
+

∞

∑
n=1

∑
j+k≤n

b2n−1γ
(−)
n,j,kcj

1ck
2e(−2jλ−2kµ+2n−1)ϕ. (62)

where
γ
(−)
n,j,k = γ

(+)
n,j,k

∣∣∣
λ→−λ,µ→−µ

n ∈ N, j = 0, . . . , n, k = 0, . . . , n− j. (63)
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Note that as 0 < µ < λ < 1 we have for the exponents in (62) that −2jλ −
2kµ + 2n − 1 > −2(j + k)λ + 2n − 1 > −1 and consequently the terms in the sum are
subdominant with respect to e−ϕ as ϕ→ −∞.

4. Asymptotic Series for Separatrix Solutions

In this section we determine asymptotic expansions for the separatrix solutions of
Equation (17). According to (36) the solution h(+)

s (ϕ) of (17) satisfies

h(+)
s (ϕ) ∼

√
v(ϕ) ∼

√
c3

(
1 − c2

2 c3
e− 2 µ ϕ +

c1

2 c3
e− 2 λ ϕ + ...

)
, ϕ → ∞. (64)

where the dots stand for lower order terms as ϕ → ∞. We next prove that the asymptotic
expansion for the separatrix solution is of the form

h(+)
s (ϕ) =

√
c3

∞

∑
n=0

∞

∑
l=0

Sn,lcn
1 cl

2 c−n−l
3 e− 2 n λϕ e− 2 l µ ϕ, (65)

where the coefficients Sn,l can be recursively determined. Equivalently, in terms of the
variables (x, y) (49) we have

h(+)
s (ϕ) =

√
c3

∞

∑
n=0

∞

∑
l=0

Sn,lc−n−l
3 xn yl . (66)

Substitution of (66) into (17) leads us to the equation

∞

∑
n=0

∞

∑
l=0

c1−n−l
3

(
n

∑
j=0

l

∑
k=0

[4(jλ + kµ)((n− j)λ + (l − k)µ)− 1]Sj,kSn−j,l−k

)
xn yl

= − x + y − c3.

(67)

Since the powers of x and y are linearly independent, we can identify the coefficient of
each monomial xn yl in both sides of Equation (67). For example, by setting (n, l) = (0, 0),
(1, 0) and (0, 1), it follows that

S0,0 = 1, S1,0 =
1
2

, S0,1 = − 1
2

, (68)

which is in agreement with (64). On the other hand, if (n, l) /∈ {(0, 0), (1, 0), (0, 1)},
equating the coefficient of xn yl in both sides of (67) provides us with

Sn,l =
1
2 ∑

(j,k)∈ Tn,l

[4(jλ + kµ)((n− j)λ + (l − k)µ)− 1]Sj,kSn−j,l−k, (69)

where Tn,l = {(j, k) : 0 ≤ j ≤ n, 0 ≤ k ≤ l} \ {(0, 0), (n, l)}. As a consequence, the
Equations (68) and (69) supply a recursion formula to determine all the coefficients in (65).

Analogously, if we assume that λ < 1, taking into account the asymptotic behaviour (41)
of the separatrix solution h(−)s (ϕ) one finds

h(−)s (ϕ) ∼
√

v(ϕ)√
1−λ2 ∼

√
c1

1−λ2 e−λϕ
(

1 − c2
2 c1

e2(λ−µ)ϕ + c3
2 c1

e2λϕ + ...
)

for ϕ → −∞, (70)

where the dots stand for lower order terms. Then, we look for an expansion of the form

h(−)s (ϕ) =

√
1

1− λ2 x
1
2

[
1 +

∞

∑
n=1

rn(y)x−n

]
, (71)
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where the coefficients rn(y) are polynomials in y. Substitution of (71) into (17) leads us to
the equation

∞

∑
n=1

[
2λµyr′n −

(
(2n− 1)λ2 + 1

)
rn

]
x1−n =

1
2
(1− λ2)(y− c3)

− 1
2

∞

∑
n=2

(
∑

j+k=n, j,k≥1

[
(2µyr′j − (2j− 1)λrj)(2µyr′k − (2k− 1)λrk)− rjrk

])
x1−n.

(72)

As the powers of x and y are linearly independent, we can equate the coefficient of
each power of x in both sides of (72). Thus, from the coefficient of x0 we have that

2 λ µ r′1 − (λ2 + 1) r1 =
1
2
(1 − λ2) (y − c3). (73)

The only polynomial solution of (73) is given by

r1(y) =

(
λ2 − 1

)
y

2(λ2 − 2λµ + 1)
−

c3
(
λ2 − 1

)
2(λ2 + 1)

(74)

The coefficient of x1−n with n > 1 implies the equation

2λµyr′n −
(
(2n− 1)λ2 + 1

)
rn =

−1
2 ∑

j+k=n, j,k≥1

[
(2µyr′j − (2j− 1)λrj)(2µyr′k − (2k− 1)λrk)− rjrk

]
, n = 2, 3, . . . .

(75)

We now use induction in n to prove that equations (75) determine recursively rn(y)
as a polynomial of degree at most n. First, from (74) we have that r1(y) is a polynomial of
degree 1 in y. Next, we have that the right hand sides of equations (75) depend only on rj
j = . . . , n− 1, moreover using the induction hypothesis, these terms are polynomials in y
of degree less or equal than n. Consequently rn(y) is determined by (75) as a polynomial of
degree at most n. For example, for n = 2 (75) takes the form

2 λ µ r′2 − (3 λ2 + 1) r2 = −2 µ2 y2(r′1)
2 + 2 λ µ y r1 r′1 +

1
2
(1 − λ2)r2

1, (76)

whose polynomial solution is

r2(y) = −
c2

3
(
λ2 − 1

)3

8(−3λ2 − 1)(λ2 + 1)2 +
c3
(
λ2 − 1

)2(
λ2 − 2λµ− 1

)
y

4(λ2 + 1)(λ2 − 2λµ + 1)(−3λ2 + 2λµ− 1)

−
(
λ2 − 1

)2(
λ2 − 4λµ + 4µ2 − 1

)
y2

8(λ2 − 2λµ + 1)2
(−3λ2 + 4λµ− 1)

.

(77)

In general, it can be written that

rn(y) =
n

∑
j=0

rn,jyj, (78)

where the coefficients rn,j depend on λ, µ and c3. In this way, the expansion of the separatrix

solution h(−)s (ϕ) takes the form

h(−)s (ϕ) =

√
c1

1− λ2

[
e−λϕ +

∞

∑
n=1

n

∑
j=0

rn,j e[(2n−1)λ−2jµ]ϕ

]
. (79)
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Note that as µ < λ the exponents in (79) satisfy (2n− 1)λ− 2jµ > −λ so the terms
in the sum are subdominant terms with respect to e−λϕ as ϕ→ −∞.

5. Aplications

In this section we apply the expansions obtained in Sections 3 and 4 to get suitable
approximations to the solutions of the Hamilton-Jacobi Equation (17) with v(ϕ) given
by (11) in both the KD and the SR stages, as well as to the determination of the duration of
the inflation period and the amount of inflation.

5.1. Approximate Solutions

We define the m-order approximation h(+)
approx,m(ϕ, b) to h(+)(ϕ) (resp. h(+)

s,approx,m(ϕ)

to h(+)
s (ϕ)) as the truncated series (61) (resp. (65)) in which we keep all the terms in e−cϕ

with c ≤ m− 1 and remove the terms with c > m− 1. Thus, as the expansion (61) for
h(+)(ϕ) contains terms in e(−2jλ−2kµ−2n+1)ϕ with j and k being greater than or equal than
zero, only the terms with n ≤ [m

2 ] determine the m-order approximation. Here [.] stands
for the integer part of a real number. More precisely, taking into account that 0 ≤ j, k ≤ n
and j + k ≤ n it follows that

h(+)
approx,m(ϕ, b) =

eϕ

b
+ ∑

(n,j,k)∈ I(+)
m

b2n−1γ
(+)
n,j,kcj

1ck
2e(−2jλ−2kµ−2n+1)ϕ, (80)

where I(+)
m is the finite set of indeces

I(+)
m := {(n, j, k) : n ≤

[m
2

]
, j + k ≤ n, jλ + kµ ≤ m

2
− n}. (81)

Analogously, the expansion (65) for h(+)
s (ϕ) contains terms in e−2(nλ+lµ)ϕ with n, l =

1, . . . so that the corresponding m-order approximation is given by

h(+)
s,approx,m(ϕ) =

√
c3 ∑

(n,l)∈I(+)
s,m

Sn,lcn
1 cl

2 c−n−l
3 e− 2 n λϕ e− 2 l µ ϕ. (82)

where I(+)
s,m denotes the set

I(+)
s,m = {(n, l) : n, l = 0, 1, . . . , 2nλ + 2lµ ≤ m− 1}, (83)

Figure 4 shows the 6-order approximations for h(+)(ϕ) and h(+)
s (ϕ) together with the

numerical solution. We observe that h(+)
approx,6(ϕ) represents a very good approximation in

the KD region while h(+)
s,approx,6(ϕ) gives a very good approximation in the SR region.

To get suitable approximations of h(−)(ϕ) and h(−)s (ϕ) for λ < 1, we can proceed
in a similar way. Thus we define the m-order approximation h(−)approx,m(ϕ, b) to h(−)(ϕ)

(resp. h(−)s,approx,m(ϕ) to hs(ϕ)) as the truncated series (62) (resp. (79) in which we keep the
terms in ecϕ for c ≤ m− 1 and remove the terms with c > m− 1. The expansion (62) for
h(−)(ϕ) contains terms in e(−2jλ−2kµ+2n−1)ϕ for n = 1, . . . , j, k,≤ n, thus by recalling that
0 < µ < λ < 1, it is clear that

n − j λ − k µ > n − (j + k) λ ≥ n (1 − λ),

and consequently, only terms with n ≤
[

m
2(1−λ)

]
determine the m-order approximation.

More precisely,
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h(−)approx,m(ϕ, b) =
e−ϕ

b
+ ∑

(n,j,k)∈ I(−)m

b2n−1γ
(−)
n,j,kcj

1ck
2e(−2jλ−2kµ+2n−1)ϕ. (84)

with I(−)m being the finite set of indeces

I(−)m := {(n, j, k) : n ≤
[

m
2 (1 − λ)

]
, j + k ≤ n, jλ + kµ ≥ n− m

2
}. (85)

-4 -2 2 4 6

5⨯10-6

10-5

1.5⨯10-5

2⨯10-5 happrox,6
(+)

(φ ,b0)

hs,approx,6
(+)

(φ )

Figure 4. The green line shows the numerical solution of (17) with initial conditions ϕ0 = 6,
h0 = happrox,6(ϕ0, b0) with b0 = 1.48× 107. The black line shows the six order KD approximation

h(+)
approx,6(ϕ, b0). The brown line shows the six order approximation hs,approx,6(ϕ) for the separatrix.

The values of the parameters are λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10, c2 = 2.5× 10−10. We notice
that the green line (numerical approximation) overlappes the black line (KD approximation) in the
KD region and overlappes the brown line (separatrix approximation) in the SR region. The region
between the blue and red dotted lines is the inflation region.

Analogously, the expansion (79) of h(−)s (ϕ) contains terms in e[(2n−1)λ−2jµ]ϕ for n =
1, . . . and j = 0, . . . , n. Then, as

(2 n − 1) λ − 2 j µ ≥ 2 n (λ − µ) − λ,

the m-order approximation h(−)s,approx,m(ϕ) only contains terms with n ≤
[

m+ λ− 1
2 (λ− µ)

]
. Thus,

h(−)s,approx,m(ϕ) =

√
c1

1 − λ2

e−λ ϕ + ∑
(n,j)∈I(−)s,m

rn,je[(2n−1)λ−2jµ]ϕ

. (86)

with I(−)s,m being the finite set of indeces

I(−)s,m = {(n, j) : 0 ≤ n ≤
[

m + λ − 1
2 (λ − µ)

]
, 0 ≤ j ≤ n, (2n− 1)λ− 2jµ ≤ m− 1}. (87)

In order to compare the approximations h(−)approx,m(ϕ, b) and h(−)s,approx,m(ϕ) with a nu-
merical solution h(−)(ϕ) it is convenient to use the modified Hubble parameter

h(ϕ) :=
h(ϕ)√

v(ϕ)
. (88)

In terms of h = h(ϕ), the Equation (31) reads

h′ = −
√

h2 − 1− v h, (89)
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where

v :=
v′(ϕ)

2v(ϕ)
. (90)

The Equation (89) allows us to avoid the numerical instabilities due to the expo-
nential growth of the solutions of (31) as ϕ → −∞. Figure 5 shows the graphics of
h(−)approx,6(ϕ, b)/

√
v(ϕ) and h(−)s,approx,6(ϕ)/

√
v(ϕ) together with the numerical solution h

of (89). We point out that h(−)approx,6(ϕ, b)/
√

v(ϕ) provides a very good approximation in

the KD region while h(−)s,approx,6(ϕ)/
√

v(ϕ) provides a very good approximation in the SR
region.

-100 -80 -60 -40 -20

φ

happrox,6
(-) (φ , b0)

v (φ )

hs,approx,6
(-) (φ )

v (φ )

0

1

2

3

Figure 5. The green line shows the numerical solution of Equation (89) with initial conditions

ϕ0 = −100, h0 = h(−)approx,6(ϕ0, b0)/
√

v(ϕ0) with b0 = 2× 1024. The black line shows the six -order

KD approximation h(−)approx,6(ϕ, b0)/
√

v(ϕ). The brown line shows the sixth -order approximation

h(−)s,approx,6(ϕ)/
√

v(ϕ) to the separatrix. The orange dotted line corresponds to the asymptotic be-

haviour of the separatrix solution hs(ϕ) ∼ (1− λ2)−1/2 as ϕ → −∞. The values of the parameters

are λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10, c2 = 2.5× 10−10. We notice that the green line (numerical
approximation) is overlapped by the black line (KD approximation) in the KD region and by the
brown line (separatrix approximation) in the SR region. The region between the blue and red dotted
lines is the inflation region.

It is worth noticing that in terms of the modified Hubble parameter the inflation region
is given by

1 < h <

√
3
2

,

and as we will show next, it takes place for ϕ along an interval about (−100, 0). Due to
the exponential growth of

√
v(ϕ) as ϕ→ −∞, it is not possible to appreciate the inflation

region (44) in the (ϕ, h) plane.

5.2. Aplications to the Inflation Period

Let us now look for appropriate approximations to the values ϕin(b) and ϕend of the
inflation period as well as to the amount of inflation N(b). For a solution h(+)(ϕ) of (17)
satisfying (25), its m-order approximations h(+)

approx,m(ϕ, b) in the KD period allows us to get
an approximate value of ϕin as a function of the parameter b through the equation

h(+)
approx,m(ϕ, b) =

√
3v(ϕ)

2
. (91)

On the other hand, as h(+)
s,approx,m(ϕ) gives a suitable approximation for h(+)(ϕ) in the

SR stage, ϕend can be approximated by means of the equation
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h(+)
s,approx,m(ϕ) =

√
3v(ϕ)

2
. (92)

We denote the solutions of (91) and (92) by ϕin,m(b) and ϕend,m, respectively. Then,
to calculate N(b) we need a value ϕ∗m(b) such that the KD approximation holds for the
interval ϕ ∈ (ϕ∗(b), ϕin,m(b)), while the SR approximation holds for the remaining part of
the inflation period. To this end, we choose the value of ϕ for which the function(

h(+)
approx,m(ϕ, b) − h(+)

s,approx,m(ϕ)
)2

,

reaches its minimum. Thus, we can estimate the amount of inflation as a function of b as

Nm(b) ≈
1
3

∫ ϕ∗m(b)

ϕend

h(+)
s,approx,m(ϕ)

(
d

dϕ
h(+)

s,approx,m(ϕ)

)−1
dϕ

+
1
3

∫ ϕin,m(b)

ϕ∗m(b)
h(+)

approx,m(ϕ, b)
(

∂

∂ϕ
h(+)

approx,m(ϕ, b)
)−1

dϕ.

(93)

The approximation (93) can be used to select an appropriate value of the parameter
b and, consequently, to determine the initial conditions, corresponding to a solution of
Equation (17) with a previously fixed value of N.

Figures 6 and 7 illustrate the application of this method. The values for the parameters
of the potential are the same as those chosen in Section 5.1 and we are using again the
six-order approximations. In particular, for N(b) = 60, we obtain b60 ≈ 2.28186× 107

while for N(b) = 70, we obtain b70 ≈ 2.80532× 107. In Figure 7, we plot the numerical
solution of (17) with initial conditions ϕ0 = 12, h0 = h(+)

approx,6(ϕ0, b60) (left) and ϕ0 = 12,

h0 = h(+)
approx,6(ϕ0, b70) (right). Numerical computation of the amount of inflation for the

solution leads to Nnum ≈ 59.044 and Nnum ≈ 68.995 respectively.

1.5⨯107 2⨯107 2.5⨯107 3⨯107

-1

1

2

3

4

5

6

b

φin,6

φ6
*

φend,6

KD approximation

SR approximation

107 1.5⨯107 2⨯107 2.5⨯107 3⨯107

40

50

60

70

b

N6

Figure 6. The left figure shows the graphs of the functions ϕin,6(b) (black line), ϕ∗6(b) (blue line), and

ϕend,6 (red line) for the solutions (25) of (17) with potential (11) and λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10,
c2 = 2.5× 10−10. It also shows the regions in the (b, ϕ) plane corresponding to the KD approximation
(gray region) and the SR approximation (blue region). The right figure shows the amount of the
inflation N6(b). The blue dots indicate the values N = 55, 60, 65, and 70.

In the case λ < 1 we can proceed in the same way for solutions h(−)(ϕ) of (17) with
asymptotic behaviour (30). For these solutions ϕin,m(b) and ϕend.m(b) are taken as the
solutions of the equations

h(−)approx,m(ϕ, b) =

√
3v(ϕ)

2
, h(−)s,approx,m(ϕ) =

√
3v(ϕ)

2
.

The value ϕ∗m(b) is taken as the minimum of the function(
h(+)

approx,m(ϕ, b) − h(+)
s,approx,m(ϕ)

)2
,
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and the amount of inflation is estimated by

Nm(b) ≈
1
3

∫ ϕin,m(b)

ϕ∗m(b)
h(−)approx,m(ϕ, b)

(
∂

∂ϕ
h(−)approx,m(ϕ, b)

)−1
dϕ

+
1
3

∫ ϕ∗m(b)

ϕend

h(−)s,approx,m(ϕ)

(
d

dϕ
h(−)s,approx,m(ϕ)

)−1
dϕ.

(94)

-2 2 4 6

5⨯10-6

10-5

1.5⨯10-5

2⨯10-5

2.5⨯10-5

happrox,6
(+)

(φ ,b60)

hs,approx,6
(+)

(φ )

φin,6

φend,6

φ6
*

-2 2 4 6

5⨯10-6

10-5

1.5⨯10-5

2⨯10-5

2.5⨯10-5

φ

happrox,6
(+)

(φ ,b70)

hs,approx,6
(+)

(φ )

φin,6

φend,6

φ6
*

Figure 7. The green lines show the numerical solution h(+)(ϕ) of (26) with initial conditions ϕ0 =

12, h0 = h(+)
approx,6(ϕ0, b60) (left) and ϕ0 = 12, h0 = h(+)

approx,6(ϕ0, b70) (right) for the model with

potential (11) and λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10, c2 = 2.5× 10−10. The black lines show the KD

approximation h(+)
approx,6(ϕ, b60) (left) and h(+)

approx,6(ϕ, b70) (right) and the brown lines represent the SR

approximation h(+)
s,approx,6(ϕ). The regions between blue and red dotted lines are the inflation regions.

The gray dots correspond (from right to left) to ϕin,6(b60), ϕ∗6(b60) and ϕend,6 (left) and ϕin,6(b70),
ϕ∗6(b70) and ϕend,6 (right).

The results are exhibited in Figures 8 and 9 for the same values of the parameters. In
this case a solution with N = 60 corresponds to b = 1.88634× 1026 while a solution with
N = 70 corresponds to b = 3.32729× 1029. The numerical solution with initial conditions
ϕ0 = −100, h0 = h(−)approx,m(ϕ0, b60) gives an amount of inflation Nnum ≈ 59.9639 and that

with initial conditions ϕ0 = −300, h0 = h(−)approx,m(ϕ0, b70) gives an amount of inflation
Nnum ≈ 69.9637.

1029 2⨯1029 3⨯1029

-120

-100

-80

-60

-40

-20

b

φin,6

φ6
*

φend,6

KD approximation

SR approximation

1029 2⨯1029 3⨯1029

55

60

65

70

b

N6

Figure 8. The left figure shows the lines ϕin,6(b) (black line), ϕ∗6(b) (blue line), and ϕend,6 (red line)

for the solutions (30) of (31) with potential (11) for λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10, c2 = 2.5× 10−10.
Note that in this case the distance between the lines ϕin,6(b) and ϕ∗6(b) is very small by comparison
with the distance between the lines ϕ∗6(b) and ϕend,6. It also shows the regions in the (b, ϕ) plane
corresponding to the KD approximation (gray region) and the SR approximation (blue region). The
right figure shows the amount of the inflation N6(b). The blue dots indicate the values N = 55, 60, 65,
and 70.



Universe 2021, 7, 500 18 of 25

-120 -100 -80 -60 -40 -20

happrox,6
(-) (φ , b60)

v (φ )

hs,approx,6
(-) (φ )

v (φ )
φin,6 φend,6

φ6
*

1

1.2

1.4

1.6

1.8

2

-120 -100 -80 -60 -40 -20

happrox,6
(-) (φ , b70)

v (φ )

hs,approx,6
(-) (φ )

v (φ )
φin,6 φend,6

φ6
*

1

1.2

1.4

1.6

1.8

2

Figure 9. The green lines show the numerical solution h(−)(ϕ) of (89) with initial conditions ϕ0 =

−100, h0 = h(−)approx,6(ϕ0, b60)/
√

v(ϕ0) (left) and ϕ0 = −300, h0 = h(−)approx,6(ϕ0, b70)/
√

v(ϕ0) (right)

for the model with potential (11) with λ =
√

2
3 , µ =

√
3

4 , c1 = 2× 10−10, c2 = 2.5× 10−10. The black

lines show the KD approximation h(−)approx,6(ϕ, b60)/
√

v(ϕ) (left) and h(−)approx,6(ϕ, b70)/
√

v(ϕ) (right)

and the brown lines the SR approximation h(−)s,approx,6(ϕ)/
√

v(ϕ). The regions between blue and red
dotted lines are the inflation regions. The orange dotted lines correspond to the asymptotic behaviour
of the separatrix solution hs(ϕ) ∼ (1− λ2)−1/2 as ϕ → −∞. The gray dots correspond (from left
to right) to ϕin,6(b60), ϕ∗6(b60) and ϕend,6 (left figure) and ϕin,6(b70), ϕ∗6(b70) and ϕend,6 (right figure).

6. Conclusions

We have analysed the asymptotic properties of the solutions of a generalization of the
Starobinski inflationary model determined by the potential (4). We have considered both
the kinetic dominance and the slow roll periods within the Hamilton-Jacobi formalism,
which provides a natural framework to determine generalized asymptotic expansions of
the Hubble parameter as a function of the inflaton field.

We have found that the Hamilton-Jacobi Equation (17) in the KD period admits
asymptotic expansion solutions as ϕ → ∞ which can be written as series in the variable
e−2ϕ with polynomial coefficients in the variables e−2λϕ and e−2µϕ. Moreover, if λ < 1
we have proved that Equation (17) in the kinetic dominance period admits asymptotic
expansions solutions as ϕ → −∞, which can be written as series in e2ϕ with have also
polynomial coefficients in e−2λϕ and e−2µϕ. These asymptotic expansions depend on a free
parameter b, and the polynomial coefficients can, in both cases, be recursively obtained
(see Equation (58)), and indeed this recursion formula is easily programmed.

On the other hand, the solutions of (17) in the SR period behaves as separatrix solu-
tions [19,30], when these separatrix solutions exist. Using the results of a previous work [34]
we know that the inflation model (4) admits separatrix solution defined for ϕ > ϕmin

for all λ > 0 (we have denoted this separatrix solution by h(+)
s (ϕ)), and admits also a

separatrix solution defined for ϕ < ϕmin provided that 0 < λ < 1 (we have used here
the notation h(−)s (ϕ)).

It has been found that the separatrix solution h(+)
s (ϕ) can be determined as an asymp-

totic expansion in powers of e−2λϕ and e−2µϕ while the asymptotic expansion for the
separatrix solution h(−)s (ϕ) can be written in powers of e2λϕ with polynomial coefficients
in e−2µϕ. Again the coefficients in these expansions can be recursively determined and the
recursive method is easily programmed.

All these expansions prove to be useful to obtain approximations to the solutions
of (17) in the KD and SR periods. Thus given m ∈ N only a finite number of terms in
the expansions as ϕ → ∞ (resp. ϕ → −∞) are proportional to e−cϕ (resp. e−cϕ) with
c ≤ m− 1.

In particular, we have considered the model for the value of the parameter Λ3 in (4)
corresponding to V(φmin) = 0. The corresponding expansions have been applied to
determine the values of the inflaton field when the period of inflation starts ϕin and ends
ϕend, as well as to compute the amount of inflation as a function of the free parameter b
in the KD period. Thus, this function can be used to select the appropriate value of the
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free parameter, and consequently the appropriate initial conditions, for a solution with a
previously fixed amount of inflation.

Finally, we mention that many of the results in this work could be easily formulated
for models with an exponentially potential well

V(φ) = Λ1 eλ φ + Λ2 e− µ φ − Λ3,

with 0 < λ, µ < 1 and Λ1, Λ2, Λ3 > 0 (see for instance the models consider in [41]).
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Appendix A. Logolinear Series for the Reduced Inflation Field ϕ(±)(t) and the
Reduced Hubble Parameter h(±)(t)

We discuss in this appendix how to derive logolinear series for the solutions of (9)
from our psi series solutions. By replacing (61) into (18) we have that ϕ(+)(t) is a solution
of the equation

ϕ̇ = − eϕ

b
+

+
∞

∑
n=1

∑
j+k≤n

(2jλ + 2kµ + 2n− 1)b2n−1γ
(+)
n,j,kcj

1ck
2e(−2jλ−2kµ−2n+1)ϕ.

(A1)

We look for a solution of (A1) of the form

ϕ(+)(t) = − log
(

t− t∗

b

)
+

∞

∑
n=1

ϕ
(+)
n (z, w)(t− t∗)2n, (A2)

where ϕ
(+)
n are polynomials in the variables

z := c1

(
t− t∗

b

)2λ

, w := c2

(
t− t∗

b

)2µ

. (A3)

From (A2)–(A3) we have for the left-hand side of (A1)

ϕ̇(+) = − 1
t− t∗

+ 2
∞

∑
n=1

[λzϕ
(+)
n,z + µwϕ

(+)
n,w + nϕ

(+)
n ](t− t∗)2n−1. (A4)

In order to expand the right-hand side of Equation (A1) in odd powers of (t− t∗) we
introduce the Bell’s polynomials [42] defined through

exp

(
∞

∑
n=1

xnsn

)
=

∞

∑
n=0

Cn(x1, . . . , xn)sn. (A5)
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Then, for n ∈ N and j, k such that j + k ≤ n we have that

b2n−1cj
1ck

2e(−2jλ−2kµ−2n+1)ϕ(+)
= zjwk

∞

∑
r=0

Cr(Φ
(+)
r,n,j,k)(t− t∗)2r+2n−1, (A6)

where we are introducing the vectorial functions

Φ(+)
r,n,j,k(z, w) := (−2jλ− 2kµ− 2n + 1)

(
ϕ
(+)
1 (z, w), . . . , ϕ

(+)
r (z, w)

)
.

Substitution of (A4) and (A6) into (A1) leads to

∞

∑
n=1

(λzϕ
(+)
n,z + µwϕ

(+)
n,w + nϕ

(+)
n )(t− t∗)2n−1 = − 1

2

∞

∑
n=1

Cn(Φ
(+)
n,0,0,0)(t− t∗)2n−1

+
∞

∑
n=1

∑
j+k≤n,j,k≥0

∞

∑
r=0

(
jλ + kµ + n− 1

2

)
γ
(+)
n,j,kzjwkCr(Φ

(+)
r,n,j,k)(t− t∗)2r+2n−1.

(A7)

Since we assume that λ, µ and λ
µ are irrational numbers, the powers of z, the powers

of w and the powers of (t− t∗)2n are linearly independent functions, so that the coefficients
of (t− t∗)2n for n = 0, 1, . . . on both sides of Equation (A7) must be equal. Consequently,
ϕn satisfies the first order linear PDE

λzϕ
(+)
n,z + µwϕ

(+)
n,w +

(
n +

1
2

)
ϕ
(+)
n =

1
2

(
ϕ
(+)
n − Cn(Φ

(+)
n,0,0,0)

)

+
n

∑
s=1

∑
j+k≤s,j,k≥0

(
jλ + kµ + s− 1

2

)
γ
(+)
s,j,kzjwkCn−s(Φ

(+)
n−s,s,j,k).

(A8)

As the right-hand side of (A8) depends only on ϕj, j = 1, . . . , n− 1, this equation
shows that the coefficients ϕn can be recursively determined. Furthermore, using induction
and applying the method of characteristics we can prove that the coefficients ϕ

(+)
n (z, w)

can be determined as polynomials in the variables z and w of degree at most n. To prove
this, let us start with the first Equation (A8)

λzϕ
(+)
1,z + µwϕ

(+)
1,w +

3
2

ϕ
(+)
1 =

1
2

γ
(+)
1,0,0 +

2λ + 1
2

γ
(+)
1,1,0z +

2µ + 1
2

γ
(+)
1,0,1w, (A9)

which in terms of the variables

σ := z−
µ
λ w, ζ := z, (A10)

reduces to the ODE

ϕ
(+)
1,ζ +

3
2λζ

ϕ
(+)
1 =

1
2λ

γ
(+)
1,0,0ζ−1 +

2λ + 1
2λ

γ
(+)
1,1,0 +

2µ + 1
2λ

γ
(+)
1,0,1σζ

µ
λ−1.

Its general solution is given by

ϕ̂
(+)
1 (σ, ζ) = R1(σ)ζ

− 3
2λ +

1
3

γ
(+)
1,0,0 ++

2λ + 1
2λ + 3

γ
(+)
1,1,0ζ +

2µ + 1
2µ + 3

γ
(+)
1,0,1σζ

µ
λ ,

with R1 being an arbitrary function. Taking into account (56) and coming back to the
variables (z, w) we have that the general solution of (A9) is

ϕ̂
(+)
1 (z, w) = R1(z−

µ
λ w) z−

3
2λ +

c3

12
+

2λ + 1
4(λ + 1)(2λ + 3)

z − 2µ + 1
4(µ + 1)(2µ + 3)

w,
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so that the only polynomial solution takes the form

ϕ
(+)
1 (z, w) =

c3

12
+

2λ + 1
4(λ + 1)(2λ + 3)

z − 2µ + 1
4(µ + 1)(2µ + 3)

w. (A11)

If we now use the induction hypothesis in (A8) we find that its right-hand side can be
written as a polynomial in the variables (z, w) of degree n, i.e.

∑
j+k≤n,j,k≥0

s(+)
n,j,kzjwk. (A12)

Now, using again the variables (A10) we write (A8) as

ϕ
(+)
n,ζ +

2n + 1
2λζ

ϕ
(+)
n =

1
λ ∑

j+k≤n,j,k≥0
s(+)

n,j,kσkζ j+ µ
λ k−1,

whose general solution is

ϕ̂
(+)
n (σ, ζ) = Rn(σ)ζ

− 2n+1
2λ + ∑

j+k≤n,j,k≥0

s(+)
n,j,k

jλ + kµ + n + 1
2

σkζ j+ µ
λ k,

with Rn being an arbitrary function. Thus, the only polynomial solution of (A8) in the
variables (z, w) is given by the polynomial of degree less or equal to n

ϕ
(+)
n (z, w) = ∑

j+k≤n,j,k≥0

s(+)
n,j,k

jλ + kµ + n + 1
2

zjwk, (A13)

which completes the proof. For example

ϕ
(+)
2 (z, w) =

7c2
3

1440
−

c3
(
4λ3 + 8λ2 + 5λ + 7

)
z

24(λ + 2)(2λ + 3)(2λ + 5)
+

c3
(
4µ3 + 8µ2 + 5µ + 7

)
w

24(µ + 2)(2µ + 3)(2µ + 5)

−
(
16λ4 + 36λ3 + 28λ2 + 17λ + 7

)
z2

32(4λ + 5)(2λ2 + 5λ + 3)2 −
(
16µ4 + 36µ3 + 28µ2 + 17µ + 7

)
w2

32(4µ + 5)(2µ2 + 5µ + 3)2

+
wz

8(2λ2 + 5λ + 3)(2µ2 + 5µ + 3)(λ + µ + 2)(2λ + 2µ + 5)

[
λ4(8µ + 4)

+12λ3(2µ + 1) + λ2
(
−4µ2 + 20µ + 13

)
+λ
(

8µ4 + 24µ3 + 20µ2 + 19µ + 12
)
+ 4µ4 + 12µ3 + 13µ2 + 12µ + 7

]

(A14)

Thus, we can write
ϕ
(+)
n (z, w) = ∑

j+k≤n,j,k≥0
α
(+)
n,j,kzjwk, (A15)

with α
(+)
n,j,k j, k = 0, . . . , n, n ∈ N real numbers depending on λ, µ and c3. Consequently

the reduced inflation field can be written as

ϕ(+)(t) = − log
(

t− t∗

b

)
+

∞

∑
n=1

n

∑
j+k≤n,j,k≥0

α
(+)
n,j,kcj

1ck
2b−2jλ−2kµ(t− t∗)2(n+jλ+kµ). (A16)
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Now, if we substitute (A2) into (61) and take into account (A6) we find for the reduced
Hubble parameter that

h(+)(t) =
1

t− t∗
+

∞

∑
n=1

h(+)
n (z, w)(t− t∗)2n−1, (A17)

where

h(+)
n (z, w) = Cn(Φ

(+)
n,0,0,0) +

n

∑
s=1

∑
j+k≤s,j,k≥0

γ
(+)
s,j,kzjwkCn−s(Φn−s,s,j,k), (A18)

are polynomials in (z, w) of degree n. For example

h(+)
1 (z, w) = ϕ

(+)
1 (z, w) + γ

(+)
1 (z, w) =

c3

3
+

z
2λ + 3

− w
2µ + 3

,

h(+)
2 (z, w) = ϕ

(+)
2 (z, w) +

1
2

ϕ
(+)
1 (z, w)2 + γ

(+)
2 (z, w)+

−[γ(+)
1,0,0 + (2λ + 1)γ(+)

1,1,0z + (2µ + 1)γ(+)
1,0,1w]ϕ

(+)
1 (z, w)

= −
c2

3
45
−

c3
(
2λ2 − 3λ + 4

)
z

6(3 + 2λ)(5 + 2λ)
+

c3
(
2µ2 + 3µ + 4

)
w

6(3 + 2µ)(5 + 2µ)

−
(
4λ3 + 8λ2 + 5λ + 2

)
z2

2(3 + 2λ)2(λ + 1)(4λ + 5)
−

(
4µ3 + 8µ2 + 5µ + 2

)
w2

2(µ + 1)(2µ + 3)2(4µ + 5)

+
wz
(
2λ3(2µ + 1) + 5λ2(2µ + 1) + λ

(
4µ3 + 10µ2 + 16µ + 7

)
+ 2µ3 + 5µ2 + 7µ + 4

)
2(λ + 1)(2λ + 3)(µ + 1)(2µ + 3)(2λ + 2µ + 5)

.

(A19)

Thus, we have for the coefficients of the reduced Hubble parameter

h(+)
n (z, w) = ∑

j+k≤n
β
(+)
n,j,kzjwk,

with β
(+)
n,j,k j, k = 0, . . . , n, such that j + k ≤ n, n ∈ N real numbers depending on λ, µ and

c3. As a consequence,

h(+)(t) =
1

t− t∗
+

∞

∑
n=1

∑
j+k≤n

β
(+)
n,j,kb−2jλ−2kµcj

1ck
2(t− t∗)2jλ+2kµ+2n−1. (A20)

Again, provided that λ < 1, we can use the symmetry (v(ϕ), h(ϕ), ϕ(t)) → (v(−ϕ),
h(−ϕ),−ϕ(t)) of Equations (17) and (18) to derive the logolinear series corresponding to
solutions with asymptotic behaviour (30). These psi series are given by

ϕ(−)(t) = log
(

t− t∗

b

)
+

∞

∑
n=1

n

∑
j+k≤n,j,k≥0

α
(−)
n,j,kcj

1ck
2b2jλ+2kµ(t− t∗)2(n−jλ−kµ). (A21)

and

h(−)(t) =
1

t− t∗
+

∞

∑
n=1

∑
j+k≤n

β
(−)
n,j,kb2jλ+2kµcj

1ck
2(t− t∗)(−2jλ−2kµ+2n−1). (A22)

where
α
(−)
n,j,k = − α

(+)
n,j,k

∣∣∣
λ→−λ,µ→−µ

, β
(−)
n,j,k = β

(+)
n,j,k

∣∣∣
λ→−λ,µ→−µ

, (A23)

for n ∈ N and j, k = 0, . . . , n with j + k ≤ n.
Expansions (A16), (A21) (A20), and (A22) can be appropriately truncated to get suitable

approximations for ϕ(±)(t) and h(±)(t). To this end, we define the m-order approximations
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ϕ
(±)
approx,m(t, b, t∗) (resp. h(±)

approx,m(t, b, t∗)) as the truncated series (A16), (A21) (resp. (A20),
(A22)) in which we keep the terms in (t− t∗)c with c ≤ m (resp. c ≤ m− 1) and remove
those with c > m (resp. c > m− 1). Recalling our discussion in Section 5.1, it is clear that

ϕ
(+)
approx,m(t, b, t∗) = − log

(
t− t∗

b

)
+ ∑

(n,j,k)∈ I(+)
m

α
(+)
n,j,kb−2(jλ+kµ)cj

1ck
2(t− t∗)2(n+jλ+kµ),

h(+)
approx,m(t, b, t∗) =

1
t− t∗

+ ∑
(n,j,k)∈ I(+)

m

β
(+)
n,j,kb−2(jλ+kµ)cj

1ck
2(t− t∗)2(jλ+kµ+n)−1,

ϕ
(−)
approx,m(t, b, t∗) = log

(
t− t∗

b

)
+ ∑

(n,j,k)∈ I(−)m

α
(−)
n,j,kb−2(jλ+kµ)cj

1ck
2(t− t∗)2(n−jλ−kµ),

h(−)
approx,m(t, b, t∗) =

1
t− t∗

+ ∑
(n,j,k)∈ I(−)m

β
(−)
n,j,kb−2(jλ+kµ)cj

1ck
2(t− t∗)−2jλ−2kµ+2n−1.

(A24)

Figure A1 (resp. Figure A2) shows the 6-order approximations for ϕ(+)(t) and h(+)(t)
(resp. ϕ(−)(t) and h(−)(t)) together with the corresponding numerical solutions
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Figure A1. The green lines show the numerical solutions ϕ(t) of (9) (left) and h(t) (10) (right)

with initial conditions t0 = 1000, ϕ0 = ϕ
(+)
approx,6(t0, b0, 0) with b0 = 1.48 × 107 and ϕ̇0 =

−
√

h(+)
approx,6(t0, b0, 0)2 − v(ϕ0). The black lines show the 6-order approximations ϕ

(+)
approx,6(t, b0, 0)

(left) and h(+)
approx,6(t, b0, 0) (right). The model parameter values are λ =

√
2

3 , µ =
√

3
4 , c1 = 2× 10−10,

c2 = 2.5× 10−10.
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Figure A2. The green lines show the numerical solutions ϕ(t) of (9) (left) and h(t) (10) (right)

with initial conditions t0 = 10−13, ϕ0 = ϕ
(−)
approx,6(t0, b0, 0) with b0 = 2 × 1024 and ϕ̇0 =√

h(−)
approx,6(t0, b0, 0)2 − v(ϕ0). The black lines show the 6-order approximations ϕ

(−)
approx,6(t, b0, 0)

(left) and h(−)
approx,6(t, b0, 0) (right). We also take λ =

√
2

3 , µ =
√

3
4 , c1 = 2× 10−10, c2 = 2.5× 10−10.
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