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Abstract: We calculate the gravitational energy spectrum of the perturbations of a Schwarzschild
black hole described by quasinormal modes, in the framework of the teleparallel equivalent of
general relativity (TEGR). We obtain a general formula for the gravitational energy enclosed by a
large surface of constant radius r, in the region m << r << ∞, where m is the mass of the black
hole. Considering the usual asymptotic expression for the perturbed metric components, we arrive
at finite values for the energy spectrum. The perturbed energy depends on the two integers n and l
that describe the quasinormal modes. In this sense, the energy perturbations are discretized. We also
obtain a simple expression for the decrease of the flux of gravitational radiation of the perturbations.

Keywords: teleparallel equivalent of GR; gravitational energy; quasinormal modes

1. Introduction

The response of a black hole or neutron star to external, nonradial perturbations
is described by quasinormal modes. A comprehensive review of the physics related to
this interesting phenomena is found in [1,2]. These modes are damped oscillations of
the space-time geometry that may be used to characterize the intrinsic properties of the
physical system. Investigations on quasinormal modes are carried out both analytically
and numerically. The modes are characterized by a spectrum of discrete, complex valued
frequencies. The real part of the frequency is related to the oscillation frequency, and the
imaginary part yields the rate at which each mode is damped as a result of emission of
radiation. Thus, quasinormal modes may be important to gravitational waves astrophysics.
In addition, the study of these modes is, to some extent, a testing ground for ideas in
quantum gravity. Chandrasekhar once stated [3] that one relevant way of investigating a
physical system is by perturbing it, and then analyzing the response of the system. This is
precisely the role of QNM in the context of black holes.

In the analysis of Einstein’s equations for a perturbed Schwarzschild space-time, one
finds a number of equations that are eventually reduced to two one-dimensional wave
equations for the perturbed metric components (for axial and polar perturbations) [1].
However, the nature of the potential in these equations precludes exact solutions in terms
of known functions [4]. In particular, the equations for the metric perturbations admit solu-
tions provided the frequencies are discrete and under the imposition of special boundary
conditions. The solutions of these equations are the quasinormal modes.

In this article, we calculate the energy spectrum of the quasinormal modes in the
framework of the teleparallel equivalent of general relativity (TEGR). A proper defini-
tion for the energy–momentum of the gravitational field is of ultimate importance for a
comprehensive understanding of Einstein’s general relativity, and yet there is no general
agreement regarding an acceptable expression. There is no unique approach to the problem
(e.g., pseudotensors and quasilocal expressions), and even within each approach there is
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no preferred definition for the energy–momentum. In the context of the field equations of
the TEGR, however, one finds a suitable and consistent framework for the definitions of the
gravitational energy–momentum and 4-angular momentum [5,6], which satisfy the algebra
of the Poincaré group. This definition of the gravitational energy–momentum has been
applied to several configurations of the gravitational field, and leads to consistent results.
It satisfies important requirements that any gravitational energy–momentum definition
must satisfy [6].

We consider the perturbed Schwarzschild space-time and calculate the gravitational
energy enclosed by a surface of constant radius r. The energy contained within this
region of the unperturbed space-time is known and may be easily evaluated out of the
definition that arises in the TEGR, as well as by means of several quasilocal definitions
for the gravitational energy. Thus, by subtracting the unperturbed energy from the total
energy that includes the perturbations, we obtain the energy of the perturbations only.
In the present analysis, we will consider both axial and polar perturbations. We restrict
the analysis to gravitational perturbations (we do not address scalar and electromagnetic
perturbations). We find that the perturbed energy: (i) oscillates and at the same time is
damped; and (ii) depends on the integers n (the overtone number) and l (the angular
momentum number). To our knowledge, a similar analysis regarding the spectrum of
the energy perturbations of the Schwarzschild space-time has not been presented thus
far. We conjecture that the perturbed energy in arbitrary (nonspherical) volumes of the
Schwarzschild space-time is also characterized by integers.

Notation: space-time indices µ, ν, . . . and SO(3,1) indices a, b, . . . run from 0 to 3. Time
and space indices are indicated according to µ = 0, i, a = (0), (i). The tetrad field is
denoted ea

µ, and the torsion tensor reads Taµν = ∂µeaν − ∂νeaµ. The flat, Minkowski
space-time metric tensor raises and lowers tetrad indices and is fixed by ηab = eaµebνgµν =
(−1,+1,+1,+1). The determinant of the tetrad field is represented by e = det(ea

µ).

2. Review of the Gravitational Energy–Momentum Definition in the TEGR

We assume that the space-time geometry is defined by the tetrad field ea
µ only.

In this case, the only possible nontrivial definition for the torsion tensor is given by
Taµν = ∂µeaν − ∂νeaµ. In the TEGR, it is possible to rewrite Einstein’s equations in terms of
ea

µ and Taµν. The Lagrangian density of the theory is defined by

L = −ke(
1
4

TabcTabc +
1
2

TabcTbac − TaTa)−
1
c

LM

≡ −keΣabcTabc −
1
c

LM , (1)

where k = c3/16πG, Ta = Tb
ba, Tabc = eb

µec
νTaµν and

Σabc =
1
4
(Tabc + Tbac − Tcab) +

1
2
(ηacTb − ηabTc) . (2)

LM stands for the Lagrangian density for the matter fields. The Lagrangian density L
is invariant under the global SO(3,1) group. Invariance under the local SO(3,1) group is
verified as long as we take into account the total divergence that arises in the identity

eR(e) ≡ −e
(

1
4

TabcTabc +
1
2

TabcTbac − TaTa

)
+ 2∂µ(eTµ) .

where R(e) is the scalar Riemannian curvature. However, the field equations derived
from Equation (1) are invariant under local SO(3,1) transformations and are equivalent to
Einstein’s equations. They read

eaλebµ∂ν(eΣbλν)− e(Σbν
aTbνµ −

1
4

eaµTbcdΣbcd) =
1

4kc
eTaµ , (3)
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where δLM/δeaµ = eTaµ.
The definition of the gravitational energy–momentum may be established in the

framework of the Lagrangian formulation defined by (1), according to the procedure of
ref. [5] (we make c = 1 = G). Equation (3) may be rewritten as

∂ν(eΣaλν) =
1
4k

e ea
µ(tλµ + Tλµ) , (4)

where Tλµ = ea
λTaµ and tλµ is defined by

tλµ = k(4ΣbcλTbc
µ − gλµΣbcdTbcd) . (5)

In view of the antisymmetry property Σaµν = −Σaνµ, it follows that

∂λ

[
e ea

µ(tλµ + Tλµ)
]
= 0 . (6)

The equation above yields the continuity (or balance) equation,

d
dt

∫
V

d3x e ea
µ(t0µ + T0µ) = −

∮
S

dSj

[
e ea

µ(tjµ + Tjµ)
]

. (7)

Therefore, we identify tλµ as the gravitational energy–momentum tensor [5],

Pa =
∫

V
d3x e ea

µ(t0µ + T0µ) , (8)

as the total energy–momentum contained within a volume V,

Φa
g =

∮
S

dSj (e ea
µtjµ) , (9)

as the gravitational energy–momentum flux [7,8], and

Φa
m =

∮
S

dSj (e ea
µTjµ) , (10)

as the energy–momentum flux of matter [8]. In view of (4), Equation (8) may be written as

Pa = −
∫

V
d3x∂jΠaj = −

∮
S

dSj Πaj , (11)

where Πaj = −4ke Σa0j. A summary of all issues discussed above can be found in [9].
Equation (11) is the definition for the gravitational energy–momentum presented

in [6], obtained in the framework of the vacuum field equations in Hamiltonian form. It
is invariant under coordinate transformations of the three-dimensional space and under
time reparameterizations. Note that (6) is a true energy–momentum conservation equation.
We also remark that for finite volumes of integration, the free index of the integral of the
energy–momentum 4-vector density must be a Lorentz index, such as a in the left hand
side of definition (11), because under a global SO(3,1) transformation both sides of (11)
transform consistently. In contrast, the integral on the right hand side of a hypothetical
quantity such as Pµ =

∫
d3x eVµ (with space-time index µ) would be coordinate dependent

(the integral of a space-time vector density eVµ is neither invariant nor covariant under
coordinate transformations), and therefore ill-defined for finite, three-dimensional volumes
of integration.

In the ordinary formulation of arbitrary field theories, energy, momentum, angular
momentum and the center of mass moment are frame dependent field quantities, which
transform under the global SO(3,1) group. In particular, energy transforms as the zero
component of the energy–momentum four-vector. These features of special relativity must
also hold in general relativity, since the latter yields the former in the limit of weak (or
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vanishing) gravitational fields. As an example, consider the total energy of a black hole,
represented by the mass parameter m. As seen by a distant observer, the total energy
of a static Schwarzschild black hole is given by E = mc2. However, at great distances,
the black hole may be considered as a particle of mass m, and, if it moves with constant
velocity v, then its total energy as seen by the same distant observer is E = γmc2, where
γ = (1− v2/c2)−1/2. Likewise, the gravitational momentum, angular momentum, and the
center of mass moment are naturally frame dependent field quantities, whose values vary
from frame to frame and are different for different observers in arbitrary space-times.

Before closing this section, we note that the existence of a scalar density (on a three-
dimensional spacelike hypersurface) such as ∂jΠaj = −4k∂j(e Σa0j) in Equation (11) is
natural in the framework of theories constructed out of third-order tensors such as the
torsion tensor Taµν. Naively, we observe that the contraction of two space-time indices in a
third order tensor yields a vector of the type φµ, and therefore ∂µ(eφµ) is a well defined
scalar density that under integration yields a well behaved surface integral, in similarity to
Equation (11). The existence of these well defined scalar densities is natural in the TEGR,
as in the identity below Equation (2), but, of course, after a number of manipulations and
rearrangements, these scalar densities could also be established in Einstein–Cartan type
theories.

3. Axial Perturbations of the Schwarzschild Black Hole

The analysis of the quasinormal modes in the Schwarzschild space-time consists in
solving the differential equations for the perturbed metric components, with appropriate
boundary conditions. These equations were first written down by Regge and Wheeler
[10]. They obtained the general form of the simplest nonspherical perturbations for the
Schwarzschild black hole, namely the axial and polar perturbations. Regge and Wheeler
showed that the equations that describe the axial perturbations may be separated if the
perturbed metric tensor hµν is expanded in tensorial spherical harmonics. The general
form of hµν is obtained and further simplified by taking into account the gauge symmetry
(coordinate invariance) of the field equations. The simplest form of the nonvanishing axial
perturbations are given by [10]

h03 = h0(t, r) sin θ ∂θ Pl(θ) , h13 = h1(t, r) sin θ ∂θ Pl(θ) . (12)

where Pl(θ) are the Legendre polynomials. The functions h0(t, r) and h1(t, r) satisfy the
equations [1,10]

1
f (r)

∂h0

∂t
− ∂[ f (r)h1]

∂r
= 0 , (13)

1
f (r)

[
∂2h1

∂t2 −
∂2h0

∂t∂r
+

2
r

∂h0

∂t

]
+

1
r2 [l(l + 1)− 2]h1 = 0 , (14)

f (r)
2

[
∂2h0

∂r2 −
∂2h1

∂t∂r
− 2

r
∂h1

∂t

]
+

1
r2

[
r

∂ f
∂r
− 1

2
l(l + 1)

]
h0 = 0 , (15)

where f (r) = 1− 2m/r. Equation (15) is a consequence of (13) and (14). The quantity
∂h0/∂t in (13) may be substituted in (14). Thus, (13) and (14) may be combined into one
equation. Defining Ψ(t, r) = (1/r) f (r)h1(t, r), the resulting equation reads

∂2Ψ
∂t2 −

f
r

∂

∂r

[
f

∂(rΨ)

∂r

]
+

2 f 2

r2
∂(rΨ)

∂r
+

f
r2 [l(l + 1)− 2]Ψ = 0 . (16)

In terms of the tortoise coordinate x = r + 2m ln(r/2m− 1), Equation (16) may be
rewritten as

∂Ψ2

∂t2 −
∂Ψ2

∂x2 + VRW(x)Ψ(t, x) = 0 . (17)
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VRW(x) is the Regge–Wheeler potential, which is given by

VRW(x) =
(

1− 2m
r

)(
l(l + 1)

r2 − 6m
r3

)
, (18)

and x = x(r).
The time dependence of hµν is assumed to be of the type e−iωt, where ω is a complex

frequency. Thus, it follows that Ψ(t, r) = e−iωtψ(r). As a consequence, the function ψ(r)
satisfies the time independent equation

d2ψ

dr2 + [ω2 −VRW(x)]ψ(x) = 0 . (19)

In view of the asymptotic behavior of the potential VRW(x), the expressions of ψ(x) in
the asymptotic limits x → ∞ (r → ∞) and x → −∞ (r → 2m) are given by ψ(x) ∼= Aeiωx

and ψ(x) ∼= Ae−iωx, respectively, where A << 1 in order to ensure the perturbative
character of the solution. Expressions with positive exponential correspond to waves that
are purely outgoing at infinity, and the ones with negative exponential to waves that are
purely ingoing at the horizon.

For weakly excited states, the quasinormal frequencies ω may be obtained from
the third-order WKB approximation. In the case of the gravitational perturbation, the
fundamental state is given by n = 0 and l = 2 [11,12]. These semi-analytic approximations
yield values very close to the numerical values [13]. The stable solutions decay with time.
Thus, if ωr and ωi represent the real and imaginary parts, respectively, of the complex
valued frequency, then we must have ωi < 0.

The possible values of ω for highly damped modes (large values of n) are independent
of l, and may be obtained by means of numerical investigations. They are given by [1]

ωn =
ln 3
8πm

− i
4m

(
n +

1
2

)
+ O(n−1/2) , (20)

where n is an integer. This expression has also been obtained by means of analytic procedure
in [14]. However, the frequency to be employed in the construction of the figures below, in
Sections 4 and 5, does not correspond to highly damped modes.

The problems regarding the divergent behavior of h1(t, r) in the limit r → ∞ were
discussed by ref. [1] (Section 4) and ref. [15]. However, the asymptotic behavior of h1(t, r)
poses no problem to the result of our analysis, since we integrate (11) over a surface of
constant (finite) radius r << ∞.

We need the asymptotic behavior of h0(t, r). Given that ∂0h0 = iω h0, and

∂0h0 = f
∂[ f (r)h1]

∂r
∼= ∂1h1 , (21)

which follows from (13) in the limit r → ∞, we find

h0 ≈
(

i f
ω
− r
)

Ψ ≈ −rΨ . (22)

The m/r correction to the expressions above is negligible in the development of our
analysis. By means of straightforward calculations, we obtain from (22) an expression that
holds in the limit r → ∞ and is useful in the following subsection. We find

(∂1h0 − ∂0h1) ≈ −
2
r

h1 ≈ −2Ψ . (23)
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4. The Gravitational Energy of the Axial Perturbations

In this section, we address the axially perturbed Schwarzschild space-time and calcu-
late the gravitational energy contained within a simple three dimensional volume, namely
a spherical volume of radius r. To simplify the calculations, we consider a large sphere
so that the field quantities are considered in the limit m/r << 1. The purpose is to find
the expression of the energy perturbations in this limit. To our knowledge, no expres-
sion for the gravitational energy perturbations has been obtained thus far in the present
physical context.

In the course of the calculations, we find that the perturbed gravitational energy
depends on the square of the field quantities h0 and h1 that appear in (12). Therefore, to
calculate the first-order contribution to the perturbed energy, we must keep the terms
quadratic in h03 and h13.

We start with the metric tensor [10]

ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 ++r2dθ2 + r2 sin2 θdφ2

+2h0 sin θ ∂θ Pl(cos θ) dtdφ + 2h1 sin θ ∂θ Pl(cos θ) drdφ . (24)

Definition (11) for the gravitational energy–momentum is frame dependent. Thus, we
choose a configuration of tetrad fields that has a clear physical interpretation. Tetrad fields
are interpreted as reference frames adapted to preferred fields of observers in space-time.
This interpretation is possible by identifying the e(0) µ components of the frame with the
four-velocities uµ of the observers, e(0) µ = uµ [16,17]. In the present analysis, we establish a
set of tetrad fields adapted to static observers in space-time. Therefore, we require e(0) i = 0.
This condition fixes three components of the frame. The other three components are fixed
by choosing a orientation of the frame in the three-dimensional space. Thus, e(0) µ is parallel
to the worldline of the observers and e(k) µ are the three unit vectors orthogonal to the
timelike direction. We fix e(k) µ such that e(1) µ, e(2) µ and e(3) µ in Cartesian coordinates are
unit vectors along the x, y and z directions. The tetrad field in (t, r, θ, φ) coordinates that
satisfies these conditions is given by

eaµ =


−A 0 0 −D

0 B sin θ cos φ r cos θ cos φ −Er sin θ sin φ + F sin θ cos φ
0 B sin θ sin φ r cos θ sin φ Er sin θ cos φ + F sin θ sin φ
0 B cos θ −r sin θ F cos θ

, (25)

with the following definitions:

A = (−g00)
1/2 ,

B = (g11)
1/2 ,

D = − g03

(−g00)1/2 , (26)

E2 = 1 +
g11g2

03 + g00g2
13

r2 sin2 θ
,

F =
g13

(g11)1/2 .

The frame above satisfies e(0) i = 0. It is possible to show that if we neglect g03 and g13,
the frame components e(k) µ(t, x, y, z) in the limit m/r << 1 are given by e(1) µ ∼= (0, 1, 0, 0) ,
e(2) µ ∼= (0, 0, 1, 0) , and e(3) µ ∼= (0, 0, 0, 1).
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We denote by g and e the determinants of gµν and ea
µ, respectively. We find g = −e2

=−r4 sin2 θ E2. Thus, we have

e = r2 sin θ

√
1 + f−1 g2

03

r2 sin2 θ
− f

g2
13

r2 sin2 θ
. (27)

The gravitational energy is given by the a = (0) component of (11). Transforming the
volume integral into a surface integral and considering the definition Πaj = −4k Σa0j, we
find that

P(0) = −
∮

S
dSj Π(0)j =

∮
S

dSj 4ke Σ(0)0j . (28)

The integration is carried out on a surface S of constant radius r.
The non-vanishing components of the torsion tensor that are relevant to the evaluation

of the gravitational energy are

T001 = A∂1 A ,

T301 = D∂1 A ,

T003 = −A∂0D ,

T103 = B∂0F ,

T303 = rE∂0(rE) sin2 θ − D∂0D + F∂0F , (29)

T013 = −A∂1D ,

T113 = B∂1F ,

T212 = r(1− B) ,

T313 = rE(∂1(rE)− B) sin2 θ − D∂1D + F∂1F ,

T223 = rF .

The evaluation of Σ(0)01 requires a large number of algebraic manipulations, but
otherwise it is simple. The full expression of eΣ(0)01 is given by

eΣ(0)01 = −r sin θ

√
1 +

1
f

g2
03

r2 sin2 θ
− f

g2
13

r2 sin2θ
×{

2( f 1/2 − 1)g2
03 + 2 f

[
f g2

13 + 2r2 f 1/2 sin2 θ

−r2 sin2 θ

(
1 +

√
1 +

1
f

g2
03

r2 sin2 θ
− f

g2
13

r2 sin2θ

)]
(30)

+r f 1/2g03(∂1g03 − ∂0g13)

}
×{

4
[
g2

03 + f
(
− f g2

13 + r2 sin2 θ
)]}−1

.

By keeping terms of order (h0)
2 and (h1)

2 only in the integrand of (31), we obtain the
approximate expression that is relevant to the present analysis. The leading term in the
energy expression is m, the total Schwarzschild energy. It is easy to verify that

4k
∫

r→∞
dθ dφ [− sin θ(−g00)

1/2 r(1− B)] = m , (31)

which is a well known result. We recall that B is given by (27).
The gravitational energy of the perturbations is denoted by δP(0) and is obtained out

of the second-order terms in (31), assuming −g00 ∼= 1 and g11
∼= 1. Therefore, for fixed
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values of r such that m/r << 1, we obtain, after some simplifications,

δP(0) = k
∫

dθdφ
sin θ

r
(Pl(cos θ))2

[
h2

0 − 3h2
1 − rh0(∂1h0 − ∂0h1)

]
. (32)

Recalling that k = 1/16π (we are assuming c = 1 = G), we find

δP(0) =
1
8

∫
dθ

sin θ

r
(Pl(cos θ))2

[
h2

0 − 3h2
1 − rh0(∂1h0 − ∂0h1)

]
. (33)

Now, we make use of (22) and (23), and we arrive at

δP(0) ≈ − l(l + 1)
2l + 1

rΨ2 , (34)

where we use ∫ π

0
dθ sin θ∂θ(Pl(cos θ))2 =

2l(l + 1)
2l + 1

.

In the absence of the perturbation, i.e., when h0 = 0 = h1, δP(0) vanishes. The
approximate solution (34) may be compared with the numerical solution presented in
Figure 1. The numerical solution, represented by the continuous line, is obtained directly
from the exact expression for the total gravitational energy minus the black hole energy,
requiring the function ψ to be a solution of Equation (19). The boundary conditions for the
numerical solution of Equation (19) are ψ(r1) = A exp−iωx1 and ψ(r2) = A exp+iωx2 , where
x1 = r1 + 2m ln(r1/2m− 1), x2 = r2 + 2m ln(r2/2m− 1), r1 = 2m + m/4 and r2 = 200m.

In Figure 1, we display the initial instant of time of the perturbation. We see that
the larger is the value of the coordinate r, more intense is the energy of the perturbation,
probably because the farther one is from the black hole, the more energy is necessary to
perturb it. Note that r is not a dynamical coordinate, it is just a parameter of the coordinate
system that fixes the radius of integration. The evolution of the gravitational energy
perturbation is stable, i.e., the latter tends to zero when t→ ∞, as shown in Figure 2.

30 40 50 60
r

-0.00001

0.00001

0.00002

0.00003
δP0

Figure 1. Comparison between the real parts of the gravitational energy of the axial perturbation. The continuous line
represents the values of the numerical integration of the energy, whereas the dashed line represents the values obtained
from the approximate analytic expression (34). The parameters used are A = 10−6, m = 1. The frequency was required to
be the fundamental frequency (n = 0, l = 2) ω = 0.373162− i0.089217, obtained from the third-order WKB method. The
data represent the initial instant of time of the perturbation, i.e., t = 0.
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10 20 30 40
t

-0.00001

-5.×10-6

5.×10-6

δP0

Figure 2. Comparison between the real parts of the gravitational energy of the axial perturbation, as a function of time. The
continuous line represents the values of the numerical integration of the energy, whereas the dashed line represents the
values obtained from the approximate analytic expression (34). The parameters used are A = 10−6, m = 1. The frequency
was required to be the fundamental frequency (n = 0, l = 2) ω = 0.373162− i0.089217, obtained from the third-order WKB
method. The radius of integration was chosen to be r = 60, in natural units.

Considering the real part of the solution given by Equation (34), we have

δP(0) = − l(l + 1)
2l + 1

rA2 cos [2ωr(x− t)]e−2ωi(x−t) . (35)

We may calculate the variation of the perturbation energy in a half-life interval T/2, for
weakly damped solutions, but neglecting the damping effects, considering only ω = 2ωr.
By making use of

1
T/2

∫ T/2

0
dt sin(ωt) =

2
π

, (36)

we obtain

δP(0)
1/2 = −2rA2

π

l(l + 1)
2l + 1

. (37)

Since the black hole looses energy in the course of time, as shown in Figure 2, it is
important to analyze the rate at which the energy decay occurs. This issue may be described
by the energy flux of the radiated energy. The present formalism for the gravitational
energy–momentum allows a definition for the gravitational energy–momentum flux [8],
which is applied to the radiation of gravitational energy in the Bondi space-time. The
gravitational energy flux is given by the a = (0) component of Φa

g defined by (9), or
simply by

Φ(0)
g = −dP(0)

dt
= −d(δP(0))

dt
. (38)

In the present context, we find

Φ(0)
g =

2l(l + 1)
2l + 1

A2r
[

ωr sin[2ωr(x− t)]

+ωi cos[2ωr(x− t)]
]

e−2ωi(x−t) . (39)
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Again, we define ω = 2ωr and find that after the period T = 2π/ω the decrease
in the flux of gravitational radiation is Φ(0)

g (t + T) − Φ(0)
g (t) = −Φ(0)

g (t)(1− e2πωi/ωr ),
and therefore

Φ(0)
g (t + T) = Φ(0)

g (t) e2πωi/ωr . (40)

Expressions (39) and (40) are clearly connected to the variation in time of the axial
energy perturbation displayed in Figure 2.

5. Polar Perturbations of the Schwarzschild Black Hole

In this section, we repeat the analysis developed in the previous section for the axial
perturbations. In the context of polar perturbations, the calculations are more intricate,
despite the similarities with the calculations carried out for the axial perturbations. We
consider the perturbed metric tensor as given by gµν = ḡµν + hµν. The line element for the
unperturbed metric ḡµν tensor is

ds2 = − f dt + f−1dr2 + r2(dθ2 + sin2 θdφ2) , (41)

and the polar perturbations hµν are described by [10]

hµν = e−iωtPl(cos θ)


H0 f H1 0 0
H1 H2 f−1 0 0
0 0 r2K 0
0 0 0 r2K sin2 θ

 , (42)

where f = 1− 2m/r and H0, H1, H2, and K are functions of t, r. Therefore, the perturbed
metric tensor is written as

gµν =


− f (1− H′0) H′1 0 0

H1
′ f−1(1 + H′2) 0 0

0 0 r2(1 + K′) 0
0 0 0 r2(1 + K′) sin2 θ

 , (43)

where we define
H′0 = H0e−iωtPl(cos θ) ,

H′1 = H1e−iωtPl(cos θ) ,

H′2 = H2e−iωtPl(cos θ) ,

K′ = Ke−iωtPl(cos θ) .

Einstein’s equations reduce to seven non-trivial equations: one algebraic equation,
three first-order differential equations for the metric tensor components, and three second-
order equations. The algebraic equation is eventually reduced to [10]

H2 = H0 ≡ H . (44)

The three first-order differential equations are [18]

dK
dr

+
r− 3m

r(r− 2m)
K− 1

r
H +

1
2

l(l + 1)
iωr2 H = 0 , (45)

dH
dr

+
r− 3m

r(r− 2m)
K− r− 4m

r(r− 2m)
H +

[
iωr

r− 2m
+

1
2

l(l + 1)
iωr2

]
H1 = 0 , (46)

dH1

dr
+

iωr
r− 2m

K +
iωr

r− 2m
H +

2m
r(r− 2m)

H1 = 0 . (47)
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The three remaining equations eventually yield the algebraic equation

−
[

6m
r

+ 2λ

]
H +

[
2λ− 2ω2r3

r− 2m
+

2m(r− 3m)

r(r− 2m)

]
K

+

[
2iωr + M

l(l + 1)
iωr2

]
H1 = 0 , (48)

where λ ≡ 1
2 (l − 1)(l + 2).

By rewriting the field quantities according to [18]

K = α(r)ψ + β(r)Θ , (49)

and
R ≡ 1

ω
H1 = γ(r)ψ + ρ(r)Θ , (50)

and defining the tortoise coordinate x as

dx =
1
f

dr ⇒ x = r + 2m ln
( r

2m
− 1
)

, (51)

we obtain the relations

α(r) =
λ(λ + 1)r2 + 3λmr + 6m2

r2(λr + 3m)
, (52)

β(r) = 1 , (53)

γ(r) = i
−λr2 + 3λmr + 3m2

(r− 2m)(λr + 3m)
, (54)

ρ(r) = −i
r2

r− 2m
. (55)

It follows that
Θ =

dψ

dx
(56)

and
d2ψ

dx2 +
(

ω2 −VZe

)
ψ = 0 , (57)

where

VZe = f (r)
2λ2(λ + 1)r3 + 6λ2mr2 + 18λm2r + 18m3

r3(λr + 3m)2

is the Zerilli potential.
Although the algebraic forms of the Zerilli and Regge–Wheeler potentials are quite

distinct, they share strong similarities [1]. For very large values of the coordinate r, we
have VZe → 0. Thus, in the limit r >> m, we obtain a simple solution for the function ψ,
given by

ψ(x) ∝ eiωx ⇒ ψ(x) = Aeiωx , (58)

where A is a constant with dimension of length. To ensure the perturbative character of
the solution, the amplitude A is required to satisfy A << 1, in natural units. In the limit
r >> m, the solution ψ grows with the radial distance. Thus, since the approximations are
made assuming |ψ2| << |ψ|, we must ensure that |A2e2iωx| << |Aeiωx|. The frequencies
of the polar perturbations are the same as for the axial perturbations [19], provided we
consider the same values of (n, l) when comparing the frequencies. Considering as usual
ω = ωr + iωi, we have

|Aeiωr xe−ωix| << 1⇒ A << eωix = e−|ωi |x . (59)
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It is important to remark that the stability of the solutions demand that the function
Ψ = e−iωtψ decay sufficiently quickly with time. Consequently, the stable solutions are
those for which ωi < 0. The solutions obtained in the following approximations are valid
as long as

x <<
1

|ωi| ln A
. (60)

Therefore, the approximate analytic solutions are valid provided the condition−∞ <<
x << 1

|ωi | ln A is satisfied.
As in the axial case, we must find the asymptotic limits for the perturbative functions.

Thus, in the limit r >> m, Equations (52)–(55) become

α(r) ≈ λ + 1
r

, (61)

β(r) = 1 , (62)

γ(r) ≈ −i , (63)

ρ(r) ≈ −ir . (64)

As a consequence, Equations (49) and (50) are approximated by

K ≈ Θ =
dψ

dx
=

(
λ + 1

r
+ iω

)
ψ (65)

and
H1 ≈ ω2rψ . (66)

Making use of Equation (48) in the limit r >> m, together with Equations (65) and (66),
we obtain

H ≈ −ω2rψ . (67)

The expressions above given by Equations (65)–(67) are used in the following subsec-
tion, where we evaluate the gravitational energy of the polar perturbations.

5.1. The Gravitational Energy of the Polar Perturbations

Similar to the analysis in Section 4 , where we address the gravitational energy of the
axial perturbations, here we construct a set of tetrad fields adapted to static observers (with
respect to the asymptotic flat space-time limit of the black hole), which yields the metric
tensor (43). A set of tetrad fields that satisfy the necessary conditions is given by

eaµ =


−A −B 0 0

0 C sin θ cos φ Dr cos θ cos φ −Dr sin θ sin φ
0 C sin θ sin φ Dr cos θ sin φ Dr sin θ cos φ
0 C cos θ −Dr sin θ 0

 , (68)

where

A = f 1/2(1− H′)1/2 ,

AB = −H′1 ,

AC = [1− H
′2 + H′1

2]1/2 , (69)

D = (1 + K′)1/2 ,

and whose determinant is e = D2 ACr2 sin θ.
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The components of the torsion tensor Tλµν and the tensor Σλµν that are needed in the
calculations below are

T212 =
1
2

∂1(D2r2)− DCr ,

T313 =
1
2

∂1(D2r2 sin2 θ)− DCr sin2 θ ,

T202 =
1
2

∂0(D2r2) , (70)

T303 =
1
2

∂0(D2r2 sin2 θ) ,

and

Σ001 = −1
2
(g01g01 − g00g11)(g22T212 + g33T313) ,

Σ101 =
1
2
(g01g01 − g00g11)(g22T202 + g33T303) . (71)

With the help of these quantities, we find

Π(0)1 = 4k sin θ

[
r2

2C
∂1(D2) +

D2r
C
− Dr− Br2

2AC
∂0(D2)

]
. (72)

The expression above leads to the gravitational energy given by Equation (11). An
approximate analytic expression for the quantity above may be obtained by considering
terms up to the second order in H0, H1 and K. The unperturbed expression of the mo-
mentum given by Equation (72) is simply Π(0)1

g = 4k sin θr( f 1/2 − 1). The integration of
this quantity on a surface at spacelike infinity yields the expected expression for the total
gravitational energy, E = m. Thus, the quantity that yields the gravitational energy of
the perturbations is δΠ(0)1 = Π(0)1 −Π(0)1

g . The approximate analytic expression of the
latter is

δΠ(0)1 ≈ 4k sin θ

[
r2

2
f 1/2∂1K′ + rK′

(
f 1/2 − 1

2

)
− 1

2
r f 1/2H′

]
+ 4k sin θ

[
r
2

f 1/2
(

3
4

H
′1 − H

′2
1 − K′H′

)
+

r
8

K′2

+
r2

2
f−1/2H′1∂0K′ − r2

4
f 1/2H′∂1K′

]
. (73)

The first line in (73) contains the first order terms δΠ(0)1
f irst, whereas the other terms

correspond to the second-order terms δΠ(0)1
sec . The total energy within a spherical surface

of radius r is obtained by summing these two quantities, δΠ(0)1 = δΠ(0)1
f irst + δΠ(0)1

second and
integrating over the spherical surface. The first-order terms depend on the variable θ in
the form Pl(cos θ). The integration of this quantity vanishes, i.e.,

∫ π
0 d(cosθ)Pl(cos θ) = 0.

Therefore, only the second-order terms yield a non-trivial result when integrated over the
whole spherical shell.

Using the results given by Equations (65)–(67), we integrate (73) over a spherical
surface of radius r and obtain the gravitational energy of the perturbation. We find

δP(0) ≈ − 1
16

r3ω4Ψ(t, r)2
∫ π

0
Pl(cos θ)2 sin θdθ , (74)
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where Ψ(t, r) = e−iωtψ(r). In view of the orthogonality property of the Legendre polynomials,∫ π

0
Pl(cos θ)2 sin θdθ =

2
2l + 1

,

we obtain

δP(0) ≈ −1
8

r3ω4

2l + 1
Ψ(t, r)2 . (75)

Similar to the axial case, the final result given by Equation (75) has real and imaginary
parts, both in the exponential and in the frequency ω. As before, we take the real part of
the whole expression. In the case of highly damped oscillations, we have ωr << ωi, and
therefore we may use ω ≈ ωi.

The solution given by Equation (75) may be compared with the one obtained directly
from the numerical integration of Equation (72). In Figure 3, the continuous line represents
the numerical solution, whereas Equation (75) is represented by the dashed line. In the
numerical solution, the function ψ was obtained by considering the full expression of the
Zerilli potential, and the boundary conditions are exactly the same as considered in the
case of axial perturbations. As before, the numerical solution was obtained considering
r1 = 2m + m/4 and r2 = 200m in the boundary conditions for Equation (57). We believe
that the errors in the approximate analytic solution, compared to the numerical solution, are
due to the approximation made in Equation (57), where we neglected the Zerilli potential
in the limit r >> m. In Figure 3, we consider the initial instant of time of the perturbation.
The time evolution of the energy of the perturbation is stable, since the gravitational energy
of the perturbation is damped in the course of time, as shown in Figure 4.

30 40 50 60
r

-0.00002

0.00002

0.00004

0.00006

δP0

Figure 3. Comparison between the real parts of the gravitational energy of the polar perturbation. The continuous line
represents the numerical value of the evaluation, and the dashed line corresponds to the value resulting of the approximate
analytic expression (75). The parameters used in the analysis are A = 10−6, m = 1, and the frequency considered is the
fundamental one (n = 0, l = 2) ω = 0.373162− i0.089217, obtained by means of the third-order WKB method. The data
represent the initial instant of time of the perturbation, i.e., t = 0.
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10 20 30 40
t

-0.00001

-5.×10-6

5.×10-6

0.00001

δP0

Figure 4. Comparison between the real parts of the gravitational energy of the polar perturbation. The continuous line
represents the numerical value of the evaluation, and the dashed line corresponds to the value resulting of the approximate
analytic expression (75). The parameters used in the analysis are A = 10−6, m = 1, and the frequency considered is
the fundamental one (n = 0, l = 2) ω = 0.373162− i0.089217, obtained by means of the third-order WKB method. The
integration is made on a surface of radius r = 60, in natural units.

6. Final Remarks

In this paper, we obtain the expression of the gravitational energy of the perturbations
due the quasinormal modes in the Schwarzschild space-time. The expressions given
by (34) and (75) hold in the limit m << r << ∞ and depend on the integers n and l.
The variation in space and time of these quantities are displayed in Figures 1–4. These are
the major results of the present analysis. The dependence on the coordinate r in expressions
(34) and (75) is due to the very nature of the QNM. The functions h0 and h1 diverge at
spacelike infinity, which is a feature of the QNM. However, the perturbation is assumed
to be localized and does not make sense in the limit r → ∞. In our understanding, the
axial and polar quasinormal perturbations represent ripples in the space-time geometry, as
they do represent in the metric formulation of general relativity. However, the physical
description and results displayed in Figures 1–4 can only be obtained in the TEGR, since
the the gravitational energy–momentum Pa given by Equations (8) and (11) cannot be
established in the standard formulation of general relativity.

One conclusion is that the gravitational energy of the black hole oscillates. However,
since the energy of the perturbations is concentrated far from the event horizon, as shown
in Figures 1 and 3, we conclude that the mass of the black hole does not vary in time, i.e.,
the mass of the black hole (restricted to interior of the event horizon) neither increases nor
decreases with time. Figures 2 and 4 show that energy of the perturbations rapidly decays
for large instants of time. Here, we make a distinction between the gravitational energy of
the black hole (the zeroth component of the gravitational energy–momentum 4-vector Pa)
and the mass of the black hole (an invariant of the Poincaré group, PaPa = −m2). Note,
in addition, that m is the mass of the black hole established in a frame where the black
hole is at rest. In view of these considerations, we may conclude that the energy of the
perturbations is a non-local effect, since it takes place sufficiently far from the event horizon.
We may conjecture that the farther one is from the black hole, i.e., the farther an external
perturbation is imparted to the black hole, the more energy is required to perturb it.
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The dependence of expressions (34) and (75) on the integers n and l implies a dis-
cretization of the energy perturbations. This discretization must be further investigated.
However, it is known that the very discretization of the QNM leads to a discretization of the
area of the black hole’s event horizon [20]. A possible interplay between the discretizations
of the energy perturbations and of the area of the black hole is an issue of relevant interest.

The flux of gravitational radiation emitted in the process of damping of the quasi-
normal modes of a Schwarzschild black hole is investigated in [21–23], by means of the
Landau–Lifshitz pseudotensor [24], assuming that at large distances from the black hole
the space-time perturbation is represented by a plane gravitational wave. The analysis
in the latter references was made assuming n = 0 , l = 2. In the present investigation,
the expression for the flux of gravitational radiation given by Equation (9) is invariant
under coordinate transformations, in contrast to the pseudotensors, which are coordinate
dependent expressions. It would be interesting to address a specific physical configuration,
such as the collision of two black holes, and compare the energy radiated after the collision:
(i) by means of Equation (39); and (ii) through the approach based on the latter references,
in the context of the Landau–Lifshitz pseudotensor. This issue will be addressed elsewhere.

The amplitude A in the function ψ arises as a constant of integration in the solutions
of Equations (19) and (57). Let us consider the tortoise coordinate x = r + 2M ln

( r
2M − 1

)
.

If we make x′ = x + 1
iω ln A, then it is easy to see that ψ = eiωx′ = Aeiωx. Therefore,

there is an arbitrariness in the establishment of the amplitude A. Since the profiles of
the gravitational energy perturbations in Figures 1–4 are very similar, with a suitable
choice of amplitudes, we may locally enhance the similarity between the two perturbations,
as shown in Figure 5. Note that ψ is dimensionless in the axial perturbation but has
dimension (of distance) in the polar perturbation. However, the similarities between the
two perturbations are very clear.

10 20 30 40 50 60
r

-0.0010

-0.0005

0.0005

0.0010

0.0015

0.0020

0.0025

δP0

Figure 5. Comparison between the real parts of the gravitational energy of the perturbations. The dashed line represents
the numerical expression of the energy for the axial perturbations and the dotted line represents the numerical energy of the
polar perturbations. In natural units (whenever necessary), we have Aaxial = 10−6, Apolar = 5−1/210−6, m = 1, and the
frequency (fundamental, (n = 0, l = 2)) is ω = 0.373162− i0.089217, obtained by means of the third-order WKB method.
The data represent the initial instant of time of the perturbations, i.e., t = 0.

The procedure presented in this article may also be applied to extended formulations of
gravity, namely, the f(T) type theories. In some of these approaches, there are proposals for
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the gravitational energy (see, e.g., [25–29]). There are various motivations to address such
extended theories, for instance the analysis of the dark energy and dark matter problems,
the problem of singularities of black holes, and the investigation of the degrees of freedom
carried by gravitational waves. The analysis of the gravitational energy perturbations in
these extended frameworks is, of course, of relevant interest.
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