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Abstract: Within the bottom-up holographic approach to QCD, the highly excited hadrons are
identified with the bulk normal modes in the fifth “holographic” dimension. We show that additional
states in the same mass range can appear also from taking into consideration the 5D fields dual to
higher dimensional QCD operators. The possible effects of these operators have not been taken
into account in virtually any phenomenological applications. Using the scalar case as the simplest
example, we demonstrate that the additional higher dimensional operators lead to a large degeneracy
of highly excited states in the soft wall holographic model, and in the hard wall holographic model,
they result in a proliferation of excited states. The considered model can be viewed as the first
analytical toy model predicting a one-to-one mapping of the excited meson states to definite QCD
operators, to which they prefer to couple.

Keywords: holographic approach; AdS/QCD; hadron spectroscopy

The bottom-up holographic models for strong interactions enjoyed surprising phe-
nomenological success in the descriptions of various experimental data. The most known
models in this area are the hard wall (HW) [1,2] and soft wall (SW) [3] holographic models.
By construction, the HW model turned out to be convenient to describe the physics of chiral
symmetry breaking and pion formfactors [2] (see reference [4] for a review), and the SW
model is well accommodated for descriptions of linear Regge and radial trajectories, which
were observed in light mesons [5–8]. Since the publication of those first papers introducing
the bottom-up AdS/QCD approach, a dramatic development has happened in the field
that now includes several hundred papers. To mention a few, numerous extensions of
SW model were proposed aimed at improving various aspects in the phenomenological
descriptions of hadron spectroscopy and chiral symmetry breaking [9–33]. The area of
research included the studies of glueball sector [34–36], relations with light-front QCD
(reviewed in [4]) and with QCD sum rules [37–39], important subjects of hadron form-
factors (for a review, see references [4,40]) and gluon parton densities [41]. The bottom-up
holographic study of a QCD phase diagram was initiated in reference [42] and gave rise to
an interesting spin-off direction (for a review, see references [43,44]).

The observed hadrons are composite excited states in QCD; hence, as any composite
excitations in a field theory, theoretically they should be identified with the poles of some
correlation functions. The simplest and most important class of such functions is given
by the two-point correlators 〈J(x)J(y)〉, where J(x) represents a local QCD operator that
interpolates the hadron states under consideration. The mass spectrum of these states
appears from the poles of the corresponding two-point correlation function. It is generally
believed that the meson masses are only slightly (at the level of 10%) changed when
the large-Nc limit of QCD is taken [45,46] and the idea to calculate them at this limit
became extremely fruitful. The correlator 〈J(x)J(y)〉 in the large-Nc limit is a meromorphic
function and the higher n-point functions vanish [46]. This entails that in the limit Nc → ∞,
〈J(x)J(y)〉 has the structure of sum over infinite number of pole terms corresponding
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to contributions of infinitely narrow mesons with quantum numbers determined by the
operator J,

〈J(q)J(−q)〉 ∼
∞

∑
n=0

Zn

q2 −m2
n

, (1)

in the momentum space, where contact terms needed for regularization are omitted.
The limit Nc → ∞ is inherent in the very nature of holographic duality [47,48]. The

holographic method provides a definite prescription how the correlation functions can
be extracted from a dual theory [47,48]. This prescription implies (due to the strong–
weak duality) that the two-point correlation functions of 4D gauge theory follow from the
quadratic part of a dual theory in 5D Anti-de Sitter (AdS5) space or asymptotically AdS5
space, i.e., from the free part of 5D action. The given property is exploited in constructing
phenomenological bottom-up AdS/QCD models—in the first approximation, the meson
spectrum should be given by the formally free quadratic part of a putative 5D theory. The
absence of interaction parts agrees with the requirement that the higher n-point functions
vanish in the large-Nc limit [46].

On the other hand, if one studies only the mass spectrum, it is not necessary to
calculate the two-point correlators (1). Due to the known mathematical theorem on the
representation of the green function via an infinite set of eigenfunctions, the mass spectrum
(representing the spectrum of corresponding eigenvalues) can be found from normalizable
solutions of the equation of motion of the 5D holographic model [1,2]. We will follow this
method in our analysis.

The phenomenological holographic models typically contain a minimal set of fields.
This, via the holographic duality [47,48], corresponds to a restriction to QCD operators
of minimal dimensions at fixed spin and other quantum numbers [3]. If we consider
calculations of excited hadron spectrum from first principles in lattice QCD, the inclusion
of higher dimensional QCD operators turns out to be indispensable [49]. The question
appears on the effect of these additional operators on the spectroscopy of holographic
models. The purpose of the present Letter is to answer this question.

We are interested in what happens conceptually; the phenomenological fits are left
aside. A consideration of scalar case is enough for our purposes, as generalizations to
non-zero spins are straightforward and do not change our general results.

We first recall briefly which gauge invariant scalar currents can be constructed in QCD.
The first set of operators is built from the quark fields and covariant derivatives:

S(k) = q̄D2kq, k = 0, 1, 2, . . . , (2)

where D2 = DµDµ. The isospin and γ5 matrices can be also inserted in (2), but this is not
essential for our further discussions. The canonical dimensions of currents (2) are

∆ = 3 + 2k. (3)

The next set is given by various mixed operators with dimensions (3), but in which some of
covariant derivatives in (2) are replaced by the gluon field strength Gµν. For instance, apart
from the operator q̄D2q with ∆ = 5, we can construct the operator q̄Gµνγµγνq of the same
dimension. Additionally, for ∆ = 7, along with q̄D4q, the operators q̄D2Gµνγµγνq and
q̄G2q are possible. Another example of mixed operators is given by the scalar operators
interpolating hybrid states of the kind

S(k)
h = q̄γµGµνDν . . . q, (4)

where dots denote insertions of D2k or G2+k. They will have an even canonical dimension

∆ = 6 + 2k. (5)

Finally, the pure gluon scalar operators of the kind
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S(k)
gl = G2+k, k = 0, 1, 2, . . . , (6)

can be built. Their canonical dimensions are

∆ = 4 + 2k. (7)

The currents (2), (4) and (6) transform differently under linear chiral transformations.
In the two-flavor case, the chiral group is SUL(2)× SUR(2). Since the Dirac spinor can be
decomposed as q = qL + qR, where qL,R = 1∓γ5

2 q, these currents transform as (1/2, 1/2),
(1, 0) + (0, 1) and (0, 0) representations of the chiral group correspondingly.

The relations (3), (5) and (7) can be written as one relation

∆ = r + 2(k + 1), k = 0, 1, 2, . . . , (8)

where r is equal to 1, 4 or 2 depending on aforementioned representations of the chiral
group to which the corresponding interpolating currents belong.

The mesonic currents including more than two quark fields are suppressed in the large-
Nc limit of QCD [45,46], for which the holographic description is hoped to be applicable.
The baryonic currents in this limit interpolate heavy solitonic objects [46] and will not be
considered.

The twist-3 scalar current S(0) in (2) has been traditionally used for interpolation of
scalar mesons in QCD sum rules, lattice QCD and low-energy effective field theories. It
is natural to expect that the radially excited mesons are stronger coupled to operators
of higher dimensions of the kind S(k) and their various variants corresponding to the
inclusion of Gµν. Loosely speaking, a physical motivation for this belief is that in highly
excited states, the quark fields should undergo a faster change in the coordinate space and
that these states should include more gluons.

Let us now consider the simplest version of the SW model for scalars which is defined
by the 5D action

S =
1
2

c2
∫

d4x dz
√

g e−az2
(

∂MΦ∂MΦ−m2
5Φ2

)
, (9)

where g = |detgMN |, M, N = 0, 1, 2, 3, 4, c is a normalization constant for the scalar field
Φ, and the parameter a (that can be both positive and negative) dictates the mass scale in
the model. The metric of background AdS5 space is usually parametrized by the Poincaré
patch with the line element

gMNdxMdxN =
R2

z2 (ηµνdxµdxν − dz2), z > 0. (10)

Here ηµν = diag(1,−1,−1,−1), R is the radius of AdS5 space and z represents the
holographic coordinate. At each fixed z one has the metric of flat 4D Minkowski space.
According to the standard prescriptions of AdS/CFT correspondence [47,48] the 5D mass
m5 is determined by the relation

m2
5R2 = ∆(∆− 4), (11)

where ∆ means the scaling dimension of 4D operator dual to the corresponding 5D field
on the UV boundary. The minimal value of dimensions for a scalar operator in QCD is
∆ = 3 (the current (2)). However, as discussed above, QCD interpolating operators can
have higher canonical dimensions, and we are interested in this general situation.

Generally speaking, we have of course many scalar fields with different 5D masses—
one for each value of ∆ in (11). We display in the action (9) just a common term for each
such field Φ∆. In addition, each Φ∆ should be split into several fields according to their
different r-values in (8) reflecting different flavors and gluon contents, ∆→ ∆r. All these
technical points are implied, and inasmuch as we wish to demonstrate the main idea in
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the most compact way, they will not be important in our further discussion of emergent
degeneracy which will occur for each r separately.

The mass spectrum of physical 4D normal modes can be found, as usual, from the
equation of motion accepting the 4D plane-wave ansatz

Φ(xµ, z) = eipxφ(z), (12)

with the on-shell condition p2 = m2. The equation of motion is

∂z

(
e−az2

z3 ∂zφn

)
=

(
m2

5R2

z5 − m2
n

z3

)
e−az2

φn, (13)

where φn corresponds to normalizable discrete modes we are looking for. After the substitu-
tion φn = z3/2eaz2/2ψn, the Equation (13) transforms into a one-dimensional Schrödinger equation

− ∂2
zψn + V(z)ψn = m2

nψn, (14)

with the potential

V(z) = a2z2 +
4 + m2

5R2 − 1/4
z2 + 2a. (15)

The Schrödinger equation of the kind

− ψ′′ +

[
x2 +

m2 − 1/4
x2

]
ψ = Eψ, (16)

has eigenvalues
En = 4n + 2m + 2, n = 0, 1, 2, . . . , (17)

and normalized eigenfunctions

ψn(x) =

√
2n!

(m + n)!
e−x2/2xm+1/2Lm

n

(
x2
)

, (18)

where Lm
n (x) are associated Laguerre polynomials. In quantum mechanics, this equation

is known as a radial equation for a two-dimensional harmonic oscillator with orbital
momentum m if m is an integer.

The eigenvalues (17) yield the mass spectrum in our case:

m2
n = 2|a|

(
2n + 1 +

a
|a| +

√
4 + m2

5R2
)

, n = 0, 1, 2, . . . . (19)

By making use of Equation (11) in (19), we obtain

m2
n = 2|a|

(
2n +

a
|a| + ∆− 1

)
. (20)

Now we substitute the relation (8) and get finally

m2
n = 4|a|

(
n + k +

r + 1
2

+
a

2|a|

)
, n, k = 0, 1, 2, . . . . (21)

The mass spectrum (21) reveals a surprising property: The numbers n and k can be
interchanged. Physically this means that the higher dimensional interpolating operators
bring no states with masses different from those predicted by the traditional SW model.

A difference appears, however, if we consider the normalized eigenfunctions corre-
sponding to the discrete spectrum (21),



Universe 2021, 7, 102 5 of 7

φn =

√
2n!

(r + 2k + n)!
e(a−|a|)z2/2

(
|a|z2

)1+k+r/2
Lr+2k

n

(
|a|z2

)
, (22)

It is seen that the numbers n and k are not completely interchangeable in the ra-
dial wave function: While the large z asymptotics depends on the sum n + k (because
Lα

n(x) ∼ xn at large x), the number of zeros is controlled by n only (as the polynomial Lα
n(x)

has n zeros).
We arrive thus at the conclusion that the inclusion of higher dimensional operators

into the SW model leads to a degeneracy of high radial excitations—each of them represents
a mixture of several states of equal energy for which the sum n + k is fixed. This should
have a dramatic effect on the holographic calculation of formfactors which are given by
overlapping integrals in z of eigenfunctions with electromagnetic external current [4]. The
degeneracy would make such a calculation less predictive because one needs to assume
a relative weight of each state at fixed energy. On the other hand, one may expect that
the contribution to the overlapping integral will be larger the less oscillating the wave
function is in the holographic coordinate. Since the number of zeros is controlled by n, the
dominance is expected for the state with n = 0, i.e., for the state corresponding to maximal
k in the sum n + k. It means that the state interpolated by QCD operator of maximal
allowed dimension is expected to dominate. The given observation could shed some light
on connection between higher dimensional QCD operators and high radial excitations of
hadrons—a vital problem for lattice calculations of an excited hadron spectrum [49].

The inclusion of higher dimensional operators into the HW holographic model [1,2]
is straightforward—we simply set a = 0 in the equation of motion (13) and impose the
infrared cutoff z0. The normalizable solution for discrete modes is then given by

φ ∼ z2 J∆−2(mz), (23)

where Jα(x) is a Bessel function of the first kind. In the original papers [1,2], the discrete
spectrum was dictated by the Dirichlet boundary condition:

∂zφ(mnz0) = 0. (24)

Using the known properties of Bessel functions, 2∂x Jα = Jα−1 − Jα+1 and 2αJα/x =
Jα−1 + Jα+1, the condition (24) leads to the equation

∆J∆−3(mnz0) = (∆− 4)J∆−1(mnz0). (25)

The relation (8) for ∆ can be further substituted.
It is seen that the spectra of radial modes and modes given by higher dimensional

operators do not coincide. For instance, the lowest dimension of quark-antiquark scalar
operator is ∆ = 3. Then the roots of Equation (25) are mnz0 ≈ {2.7, 5.7, . . . }. The next
scalar operator with identical chiral properties has dimensions ∆ = 5. The first root of
Equation (25) is then mnz0 ≈ 4.9, which is not equal to the second root above. The same
goes for other dimensions ∆ and radial modes. We obtain thus a proliferation of highly
excited states instead of degeneracy.

It is not difficult to generalize our discussion to the case of non-zero spin. One can
show that all general conclusions will remain the same. The corresponding details will be
presented elsewhere.
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