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Abstract: With the advent of gravitational wave astronomy and first pictures of the “shadow” of
the central black hole of our milky way, theoretical analyses of black holes (and compact objects
mimicking them sufficiently closely) have become more important than ever. The near future
promises more and more detailed information about the observable black holes and black hole
candidates. This information could lead to important advances on constraints on or evidence for
modifications of general relativity. More precisely, we are studying the influence of weak teleparallel
perturbations on general relativistic vacuum spacetime geometries in spherical symmetry. We find
the most general family of spherically symmetric, static vacuum solutions of the theory, which are
candidates for describing teleparallel black holes which emerge as perturbations to the Schwarzschild
black hole. We compare our findings to results on black hole or static, spherically symmetric
solutions in teleparallel gravity discussed in the literature, by comparing the predictions for classical
observables such as the photon sphere, the perihelion shift, the light deflection, and the Shapiro
delay. On the basis of these observables, we demonstrate that among the solutions we found, there
exist spacetime geometries that lead to much weaker bounds on teleparallel gravity than those
found earlier. Finally, we move on to a discussion of how the teleparallel perturbations influence the
Hawking evaporation in these spacetimes.

Keywords: teleparallel gravity; black holes; horizon; Birkhoff theorem; photon sphere; Shapiro delay;
perihelion shift; light deflection; black hole sparsity

1. Introduction

When studying isolated, astrophysical objects like stars, neutron stars, or black holes,
the real physical system requires a high degree of sophistication and model building that
can usually only be dealt with numerically. Nevertheless, simpler models (numerical or
analytic) often provide the necessary stepping stones. Spherically symmetric solutions in
particular are one of the simplest building blocks in this endeavour. From these solutions
one obtains a first approximation of the motion of test particle around these objects, which
lead to observables like the perihelion shift, light deflection or the Shapiro delay. A more
realistic description of these objects usually requires axially symmetric solutions, to take
their rotation into account.

In general relativity (GR) the Birkhoff theorem states that the unique spherically
symmetric vacuum solution of the theory is the famous Schwarzschild solution. It is static,
asymptotically flat and contains a black hole with an event horizon at the Schwarzschild
radius [1]. In modified theories of gravity, in general, the Birkhoff theorem in this strong
form does not hold and the spherically symmetric vacuum solutions have to be analyzed
in great detail: they are usually neither the Schwarzschild spacetime, nor static, nor
unique. Weaker version of the Birkhoff theorem have been discussed in the context of f (R)-
theory [2,3], scalar tensor theory [4] and f (T)-gravity [5], and further modified theories of
gravity [6].
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Among the many modifications and extensions of general relativity [7], one famous
and extensively studied one is Teleparallel gravity [8–10]. It uses a tetrad and a flat, met-
ric compatible spin connection with torsion, the so called Weitzenböck (or teleparallel)
geometry [11]—instead of pseudo-Riemannian geometry as defined by a metric and its
metric-compatible, torsion-free Levi–Civita connection—to describe the dynamics of gravity.
In this work we will construct a new family of static, asymptotically flat (which in the context
of teleparallel gravity means that the metric obtained from the tetrad defines an asymptoti-
cally flat pseudo-Riemannian geometry) spherically symmetric vacuum solutions to weak
f (T)-gravity, which can be interpreted as teleparallel perturbations of the Schwarzschild
black hole of general relativity. This family of solutions is not the unique family of asymp-
totically flat, spherically symmetric vacuum solutions of the theory, as different families of
solutions with this property have been derived earlier. This finding explicitly demonstrates
the failure of the Birkhoff theorem in f (T)-gravity. Having found weak f (T)-gravity black
hole solutions we analyze their classical and semi-classical properties.

A starting point for the study of teleparallel theories of gravity is the reformulation
of GR in the framework of teleparallel geometry called the “teleparallel equivalent of
general relativity” (TEGR) [8,12–14]. TEGR is a theory that is dynamically fully equiva-
lent to GR, but derived from an action involving the so called torsion scalar T. It differs
from the Einstein–Hilbert action by a boundary term B. Starting from this reformulation
many teleparallel modifications of GR have been constructed [15], such as new general
relativity [16], Born–Infeld gravity [17], teleparallel Horndeski gravity [18], scalar torsion
gravity [19–21], and, in analogy to f (R)-theories, f (T)-theories of gravity [22,23]. The
latter theories have been studied in particular detail in regard on their consequences in
cosmology [22,24–27] and astrophysics [28–30], as well as their degrees of freedom [31,32].
Further generalizations have also been considered in the literature, including ones ex-
plicitly involving the boundary term in f (T, B)-gravity [33], or, involving three terms,
Tax,Tvec,Tten; these are a specific decomposition of the torsion scalar T, which feature in
so-called f (Tax,Tvec,Tten)-gravity [34].

The study of static spherically symmetric solutions in f (T)-gravity, and its f (T, B)
and f (Tax,Tvec,Tten) generalizations [35,36], is an ongoing field of research [37,38].

In f (T)-gravity, only few non-vacuum solutions are known. These usually are encoun-
tered in the context of anisotropic matter and Boson stars [39–41]. Furthermore, studies of
solutions sourced by a non-linear electromagnetic field exist [42]. Among the vacuum solu-
tions are regular BTZ black hole solutions in Born–Infeld gravity [43,44], and teleparallel
perturbations of Schwarzschild geometry in weak f (T) = T+ α

2T
2 gravity [45,46].

We revisit here these weak teleparallel perturbations of Schwarzschild geometry.
They turn out to be parametrized by two constants of integration, whose value influences
physically important properties of spacetime. In the previous studies the two constants of
integration have been chosen such that the weakly teleparallel solution is asymptotically
flat and—at large distance away from the central mass—is close to Schwarzschild geometry.
As we will show, it turns out that these solutions are not the most general black hole
solutions. More importantly, they are not the ones closest to Schwarzschild geometry.
Instead of determining the constants of integration far away from the central mass, we
fix one of the constants of integration by the value of the determinant of the metric at the
horizon. Moreover, we demonstrate that the second integration constant can be chosen
in such a way that the rr-component of the metric has the same fall-off property at large
distance away from the central mass as in Schwarzschild geometry. This implies a similar
behaviour for the tt-component and turns out to be sufficient for the spacetime to be
asymptotically flat.

Thus, the solutions we present here, are the general static, asymptotically flat black
hole vacuum solutions of weak f (T)-gravity. They are parametrized by the value of the
product of the determinant of the metric at the horizon. They contain the solutions found
in [45,46] for a very specific value of the determinant of the metric at the horizon (unlike in
the GR case of the Schwarzschild geometry, this determinant at the horizon is not −r2 sin θ).
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These findings demonstrate that there is no unique spherically symmetric, asymptotically
flat, static vacuum solution in this theory: the Birkhoff theorem does not hold.

Most observations in relativistic astrophysics rely on the perspective of general rela-
tivity. Therefore, it is important to consider how a metric gained from a different theoretic
background appears through this lens. While our solution is a vacuum solution in weak
f (T) gravity, in light of Birkhoff’s theorem, this cannot be the case if interpreted in strictly
general relativistic terms. Rather, here it would appear to arise from an effective matter
distribution. The corresponding, effective energy-momentum tensor is then entirely pre-
scribed by the torsion tensor. It is important to point out that this is an analogy only—but
this analogy can guide our expectation about the theory whence the metric originated.

Having identified the most general black hole solutions of weak f (T)-gravity, we
analyze classical observables obtained from point particle motion: the photon sphere,
the perihelion shift, the Shapiro delay, and the light deflection each to lowest order in
the teleparallel perturbation. These observables can then be used to constrain the value
of the coupling to the teleparallel perturbation based on observations. Interestingly, for
the solutions we discuss here the constraints are weaker than the ones obtained for the
previosuly found solutions.

Since our solution family is still static, we can treat the putative horizon appearing as
a Killing horizon. This grants us access to the zeroth law of black hole thermodynamics
through its surface gravity [47]. For this we will further discuss the location of the horizon
and its surface gravity. The Hawking effect being a kinematic effect [48], this in turn gives
us a first look at the semi-classical phenomenology of this new family of black holes. We
will then use this window to study how this Hawking radiation would differ from that of a
Schwarzschild black hole—based on the heuristic measure of “sparsity η”. This quantity
provides a quick way to estimate the average density of state of the particles emitted
by comparing their localization timescale to their emission rate. In other words, it is an
estimator for how “classical” or “quantum” the produced radiation is.

The presentation of our results is structured as follows: Section 2 on black holes on
weak f (T)-gravity we begin by recalling the main mathematical notions of f (T)-gravity
in Section 2.1. Then we investigate the general static, spherically symmetric solutions
of weak f (T)-gravity and identify the most general black hole solutions among them in
Section 2.2. The short Section 2.3 will then explore what effective energy-momentum tensor
would yield this particular solution in general relativity to provide for an analogous view
on it. In Section 3, we study properties of the black hole solutions and how they differ from
Schwarzschild geometry. Classical observables derived from the motion of particles are
discussed in Section 3.1, the horizon of the black hole in Section 3.2, the surface gravity and
black hole temperature in Section 3.3, and, finally, sparsity in Section 3.4. We end the paper
with concluding remarks in Section 4.

The index conventions used in this article are that Greek indices label spacetime
coordinate indices and Latin indices label Lorentz frame components. The metric has
the signature (+,−,−,−). We use geometric units in which c = h̄ = kB = 1, Newton’s
constant G is retained.

2. Black Holes in Weak f (T) Gravity

After briefly recalling the notions of covariant f (T) gravity, we display again the
general static spherically symmetric vacuum solution of weak f (T) gravity, which has
been found in earlier studies. We discuss why these previously discussed solutions are not
the most general black hole solutions for this modified theory of gravity. Additionally, they
cannot necessarily be interpreted as perturbations of a Schwarzschild black hole.

We start the construction of such solutions from demanding a finite determinant of
the metric at the horizon, and find the general black hole solutions of weak f (T) gravity.
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2.1. Covariant f (T) Gravity

In covariant teleparallel gravity [8,23,49,50], the fundamental fields encoding the
gravitational dynamics are a tetrad θa, and a flat, metric compatible spin connection ωa

b
with torsion Ta. The tetrad fields satisfy

θa = ha
µ dxµ, ea = ha

µ∂µ, θa(eb) = δa
b ⇒ gµν = ηabha

µhb
ν , (1)

where ηab is the Minkowski metric. The spin connection is generated by local Lorentz
matrices Λa

b

ωa
bµ = Λa

c∂µ(Λ−1)c
b , (2)

and its torsion is given by

Ta
µν = 2

(
∂[µha

ν] + ωa
b[µhb

ν]

)
. (3)

To transform an index from a Latin Lorentz index to a Greek coordinate index, or vice
versa, contractions with the components of a tetrad ha

µ, respectively, inverse tetrad ha
µ

are applied.
The Lorentz matrices are pure gauge fields and, without loss of generality, it is possible

to work in the so called Weitzenböck gauge, in which one absorbs the Lorentz matrices
in the tetrad. As a consequence one can globally work with zero spin connection in this
gauge, see, for example, ([51] (Eq. (4))) for a detailed derivation. Throughout the rest of this
article we will work in Weitzenböck gauge in which the torsion becomes Ta

µν = 2∂[µha
ν].

Teleparallel theories of gravity are defined in terms of an action,

S[h] =
∫

d4x|h|LG + LM(h, Ψ) (4)

whose gravitational Lagrangian LG is constructed from scalars built in terms of the torsion
tensor. The matter Lagrangian LM(g, Ψ) is assumed to depend on the tetrad only through
the metric coupling the matter fields Ψ to gravity.

The most fundamental, parity even building blocks for the gravitational action are
the three quadratic scalars T1 = Tσ

µνTσ
µν, T2 = Tσ

µνTνµ
σ and T3 = Tσµ

σTρ
ρµ. From these

one can construct the torsion scalar

T = Ta
µνSa

µν =
1
4

T1 +
1
2

T2 + T3 , (5)

where Sa
µν = 1

2 (K
µν

a − ha
µTλ

λν + ha
νTλ

λµ) is the so-called superpotential, in turn given
in terms of the contortion tensor Kµν

a =
1
2 (T

νµ
a + Ta

µν − Tµν
a).

Setting LG = 1
2KT defines the teleparallel equivalent of general relativity Setting

LG = 1
2KT, with K = 8πG, defines the teleparallel equivalent of general relativity dynami-

cally equivalent to general relativity. Setting instead LG = 1
2K f (T) defines f (T)-gravity.

Variation of the action with respect to the tetrad components yields the field equations

1
4

f (T)ha
µ + fT

(
Tb

νaSb
µν +

1
h

∂ν(hSa
µν)

)
+ fTT Sa

µν∂νT =
1
2
KΘa

µ . (6)

After contraction with tetrad components and lowering an index with the spacetime
metric this can be cast into the form Hσρ = 1

2KΘσρ, and can then be separated into
symmetric and anti symmetric parts

H(σρ) =
1
2
KΘ(σρ), H[σρ] = 0 . (7)
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In the following we consider the theory going by the name of “weak f (T)-gravity”. It
is defined by specifying the free function f to be

f (T) = T+
1
2

αεT2 , (8)

where α is a coupling parameter, and ε a perturbation parameter for bookkeeping pur-
poses. Later, a dimensionless parameter β also containing the original, general-relativistic
Schwarzschild radius rs will be used instead of α.

2.2. Static Spherically Symmetric Black Holes in Weak f(T) Gravity

In weak f (T)-gravity, a general, static, spherically symmetric vacuum solution family
to the field Equation (6) has been found in [45,46]. In these articles, special asymptotically
flat solutions have been further studied. We now recall the general, static, spherically
symmetric vacuum solution and argue that the boundary conditions chosen in the previous
studies do not necessarily lead to black hole solutions. Afterwards we identify all black
hole solutions of weak T-gravity.

2.2.1. The General Static Spherically Symmetric Solution

Employing the standard static spherically symmetric tetrad in spherical coordinates
(t, r, θ, φ) ∈ R× (0, ∞)× (0, π)× (0, 2π), which is compatible with vanishing spin connec-
tion, [52,53],

ha
ν =


√

A 0 0 0
0

√
B cos(φ) sin(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

0
√

B sin(φ) sin(θ) r sin(φ) cos(θ) r cos(φ) sin(θ)
0

√
B cos(θ) −r sin(θ) 0

 (9)

immediately solves the antisymmetric part of the field Equation (7). The metric induced by
this tetrad is the standard static and spherically symmetric one

g = A dt2 − B dr2 − r2(dθ2 + sin2 θ dφ2) . (10)

The symmetric vacuum field Equation (7) for weak f (T)-gravity are solved as a first
order perturbation around Schwarzschild geometry by

A(r) =µ2 + ε
(
−C1(1−µ2)

rs
+ C2 − β

(51−93µ2−128µ3+45µ4−3µ6−12(1−3µ2) ln(µ))
6

)
, (11)

B(r) = 1
µ2 + ε

(1−µ2)
µ4

([
C1
rs
− C2

]
+ β

(63−24µ+12µ2+64µ3−75µ4+24µ5−12 ln(µ))
6

)
. (12)

where µ = (1 − rs/r)1/2, rs is the Schwarzschild radius, β = α
r2

s
, and the integration

constants C1 and C2 need to be determined by suitable boundary conditions. The details
for the derivation of the solution can be found in [45,46].

Let us shortly summarize their results: In these latter articles, an expansion in 1
r was

used to determine the constants of integration to be C1 = −32rsβ and C2 = − 64
3 β such

that in the asymptotic region r → ∞ the first non-vanishing order of the metric coefficients
are of order 1

r2 . It is worth stressing that this fixing of the integration constants leaves no
freedom to ensure that important necessary conditions perturbative black hole solutions
have to satisfy are fulfilled near the central mass. The resulting metric coefficients are

A(r(µ)) = µ2 + β
6 (13− 99µ2 + 128µ3 − 45µ4 + 3µ6 + 12(1− 3µ2) ln(µ)) , (13)

B(r(µ)) = 1
µ2 − β(1− µ2) 1+24µ−12µ2−64µ3+75µ4−24µ5+12 ln(µ)

6µ4 . (14)
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In order to interpret a spherically symmetric metric as a black hole metric several
necessary conditions need to be satisfied. One important condition is that the determinant
of the metric (10)

det g = −ABr2 sin2 θ . (15)

must be non-degenerate at the black hole horizon at r = rh (as we work in spherical
coordinates, this determinant also mirrors the fact that one needs more than one coordinate
patch to cover the sphere, concretely, the singularities at the poles). This implies that
A(rh)B(rh) = ζ > 0, for some fixed constant ζ, must hold at the putative horizon where
A(rh) = 0. For our perturbative ansatz

A(r) = a0(r) + βa1(r), B(r) = b0(r) + βb1(r) , (16)

the vanishing of the tt component of the metric implies (to first order in β and β 6= 0)

A(rh) = 0⇒ a0(rh) = −βa1(rh) (17)

and, using also a first order expansion ζ = 1 + βζ1,

A(rh)B(rh) = a0(rh)b0(rh) + β(a0(rh)b1(rh) + b0(rh)a1(rh)) = 1 + βζ1 (18)

⇒ b0(rh) = a0(rh)
−1, b1(rh) =

ζ1

a0(rh)
− a1(rh)

a2
0(rh)

. (19)

This finally yields B(rh) =
2+βζ1
a0(rh)

+O
(

β2). This represents a necessary condition for a
well-defined, perturbative black hole solution in weak f (T)-gravity.

From this analysis we see that the metric coefficients (13) and (14) superficially seem to
satisfy this perturbative condition to be a black hole, for which the parameter ζ1 is non-zero
and given by

ζ1 = −µh − 1
3µ2

h
(6− 6µh − 49µ2

h + 59µ3
h − 7µ4

h − 27µ5
h + 12µ6

h)− 4 ln(µh) . (20)

It is positive for 0 < µh < 1. However, the product βζ1(µh) is not necessarily small
against 1 for µh(β), which can be determined numerically by solving (13), i.e., A(µh) = 0
for µh for fixed β 6= 0. This shows that choosing both integration constants C1 and C2 to
fix the fall-off properties of the metric coefficients at r → ∞ does not necessarily lead to
a perturbative treatment of the Schwarzschild black hole spacetime near the horizon. A
perturbative analysis has to leave open whether or not these particular choices represent
black hole solutions or not.

2.2.2. The Black Hole Solution

Let us therefore look for perturbative solutions that are more amenable to an inter-
pretation as a black hole. In order to do this for weak f (T)-gravity we determine the
integration constant C2 such that A(rh)B(rh) = 1 + βζ1 is satisfied. Note that unlike be-
fore this involves not only a condition at infinity (the requirement to be comparable to
Schwarzschild), but also one at the putative horizon. This condition yields

C2 = β
(−6+12µh−21µ2

h−108µ3
h+66µ4

h+20µ5
h−39µ6

h+12µ7
h+12µ2

h ln(µh)+3µ2
hζ1)

3µ2
h

, (21)

where µh = (1− rs/rh)
1/2 is µ evaluated at the horizon radius rh, and ζ1 is the above

defined, first-order in β contribution to the determinant of the metric at the horizon. The
remaining integration constant C1 in Equations (11) and (12) is determined by demanding
appropriate fall-off behaviour of the metric components for large r for regaining the
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Schwarzschild solution in the limit β→ 0. The resulting expansion of the metric coefficients
in 1

r yields

A(r) = 1− rs

r
+ ε

(
C2 +

64
3

β− (C1 + 32rsβ)

r

)
+O

(
1
r2

)
(22)

B(r) =
(

1− rs

r

)−1
+ ε

1
r

(
C1 − C2rs +

32rs

3

)
+O

(
1
r2

)
. (23)

Thus, since C2 is already determined from the finiteness of the determinant at the
horizon, the best choice to minimize the teleparallel influence in the asymptotic region is to
demand that B(r) = 1 + rs

r +O
(

1
r2

)
. This in turn implies

C1 = C2rs −
32
3

β . (24)

This concludes our search for appropriate integration constants. Our final choice then
yields a perturbative, weak f (T)-gravity, 2-parameter family of black holes defined by

A(r(µ)) = µ2 +
β

6
(13 + 29µ2 + 128µ3 − 45µ4 + 3µ6 + 12(1− 3µ2) ln(µ)) + C2µ2 , (25)

B(r(µ)) =
1

µ2 + β
µ2 − 1

6µ4

(
1 + 24µ + 12µ2 + 64µ3 − 75µ4 + 24µ5 − 12 ln(µ)

)
. (26)

In the M → 0 limit (which corresponds to rs → 0, and hence to µ → 1 and µh → 1),
we obtain B(r) = 1 and A(r) = 1 + ζ1, i.e., one obtains Minkowski spacetime by a simple
redefinition of time coordinate t→

√
1 + ζ1t. As a constant rescaling, this does not affect

the the spin connection, i.e., the rescaled tetrad is still in Weitzenböck gauge.
The asymptotic behaviour of this solution is as follows. For large r the dominating

terms are B(r) = 1− rs
r +O

(
1
r2

)
by construction, and

A(r) =
(

1− rs

r

)(
1 + C2 + β

64
3

)
+O

(
1
r2

)
. (27)

Hence the teleparallel corrections to general relativity for the weak teleparallel black
hole seem to become relevant in the r → ∞ region. However—and as mentioned above—a
simple constant rescaling (thus not affecting the spin connection) of the time coordinate

t→
√

1 + C2 + β 64
3 t makes the metric for large r identical to the Schwarzschild metric in

leading order.
Thus, we found the most general family of static asymptotically flat black hole solu-

tions of weak f (T)-gravity, which are parametrized by the zeroth order parameter rs, by
the perturbation parameter β and the horizon parameter ζ1. In case one determines the
constant of integration C2 by other means the value of ζ1 is fixed by Equation (21). Choos-
ing ζ1 = 0 ensures that the determinant of the metric at the horizon of the weak f (T)-black
hole will have the same value as the Schwarzschild black hole at the Schwarzschild horizon.
It is important to note that while our family of “black hole solutions” works well for r > rh
perturbatively, this perturbative solution has limitations at the horizon itself. This is still
a strong improvement over the earlier static and spherically symmetric solutions, where
the perturbative ansatz breaks down much earlier when looking at the determinant of
the metric.

2.3. The General Relativistic Perspective—Energy Conditions

Any modified theory of gravity can, as long as a metric is its outcome, be re-examined
from the viewpoint of general relativity. Obviously, what was a vacuum spacetime in the
modified theory is usually not a general relativistic vacuum spacetime. This will also be
true for our case of weak f (T)-gravity. Nonetheless, it can often help our intuition to look
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at a given metric through the lens of GR again. This study through analogy is well-known
in the field of modified theories of gravity (see [54,55] and references therein).

A key observation to do this is that one can use (6) to rewrite the symmetric field
Equation (7) with help of the Einstein tensor Gµν as

Gµν = Rµν −
1
2

gµνR,

= −βrs

(
1
4
T2gµν + 2

(
−Tbσ(µSbσ

ν) +
1
h

ha
(µgν)σ∂λ(hSa

σλ)

)
T+ 2S(µν)

σ∂σT
)

,

= Teff
µν (T

a
µν, Ta

µν,σ),

(28)

where we used Θµν = 0 and f (T) = T+ 1
2 βrsT2 as well as the fact that for f (T) = T, i.e.,

TEGR, the field equations are identical to the ones of general relativity [8].
Thus, a metric derived from the vacuum equations of a modified theory of gravity

can be interpreted in GR as a particular matter source in the form of an effective energy-
momentum tensor Teff

µν (whether or not this matter source would have a good physical
interpretation is outside of the scope of the current article). The energy conditions available
in GR provide a valuable toolbox for a first check if and how a given solution of a modified
theory of gravity could be plagued by pathologies.

In case the solution yields an effective energy momentum tensor which satisfies the
energy conditions, theorems in GR exclude many pathologies [56–59]. This will prove
particularly useful for solutions of modified gravity that are more involved than the one
presented here, nevertheless as pedagogic proof of principle, we now present this line of
reasoning.

In our case, for the metric given by Equations (10), (25) and (26), the Einstein tensor in
the canonical diagonal tetrad basis of the the metric (10) becomes

Gt̂t̂ = β
(µ− 1)7(µ + 1)4(1 + 5µ + 10µ2)

r2
s µ2 ,

Gr̂r̂ = β
(µ− 1)8(µ + 1)4

r2
s µ2 ,

Gθ̂θ̂ = −β
(µ− 1)8(µ + 1)2(1 + 4µ + 5µ2)

2rsµ3 ,

Gφ̂φ̂ = Gθ̂θ̂ .

(29)

Obviously, this is diagonal—in other words, this is a type I energy-momentum tensor
according to the Hawking–Ellis (a.k.a. Segré–Plebański) classification [56]. Even without
explicitly calculating the Einstein tensor, a general result for static and spherically sym-
metric spacetimes [60] would tell us this in advance. With Equation (29) at hand, it is
straightforward to check the point-wise energy conditions [58,61]. From these one can
immediately read off the energy density and pressures entering the energy conditions, in
what calls Curiels their “effective form” (for the precise formulation, we refer the reader
to [58]. Note the different sign convention for the metric enters the direction of the inequal-
ities). It quickly follows that the null energy condition, weak energy condition, strong
energy condition, and dominant energy condition are all fulfilled. This is not too surprising
given how relatively benign our metric is.

3. Classical and Semi-Classical Properties

Having found static, spherically symmetric black hole solutions of weak f (T)-gravity,
we now analyse properties of these solutions for 1 � βζ1 to compare these to the ones
given in the literature. This will lead to a new point of view regarding the observational
constraints on teleparallel gravity. This is done best by looking at the behaviour of classical
point particle trajectories, such as the photon sphere around the black hole, the perihelion
shift, the Shapiro delay, and the scattering of light.
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Moreover we study properties of the black hole which are connected to its hori-
zon, such as the surface gravity, and—as a semi-classical extension—the sparsity, which
characterize aspects of Hawking radiation.

3.1. Particle Propagation Effects: Photon Sphere, Perihelion Shift, Shapiro Delay and
Light Deflection

The motion of point particles in spherical symmetric spacetimes—their geodesic
equation—is derived from the Lagrangian,

L =
1
2

gµν ẋµ ẋν = Aṫ2 − Bṙ2 − r2(θ̇2 + sin2 θφ̇2) . (30)

There exist two constants of motion, the energy E = ∂L
∂ṫ and the angular momentum

L = ∂L
∂φ̇

, and, thanks to spherical symmetry, without loss of generality we can restrict the
analysis to the equatorial plane θ = π

2 . This results in the fact that the sole remaining
equation of motion to solve is

1
2

ṙ2 + V(r) = 0 , (31)

where the effective potential for the perturbative metric coefficients A(r) = (1− rs
r ) + βa(r)

and B(r) = (1− rs
r )
−1 + βb(r) is, to first order in β, given by

V(r) = −1
2

E2 +
1
2

(
1− rs

r

)( L2

r2 + σ

)
+

β

2

[
E2
(

a(r)
1− rs

r
+ b(r)

(
1− rs

r

))
− b(r)

(
σ +

L2

r2

)(
1− rs

r

)2
]

. (32)

Here, σ = 0 for massless and σ = 1 massive particles. The functions a(r) and b(r) for
the weak f (T) black hole can be extracted from (25) and (26).

With this in place, it is possible to calculate various classical observables for our
black hole spacetime. Details on the derivation of these can for example be found in the
textbooks [62,63].

• Photon sphere: The photon sphere—a characterizing feature of black holes [64,65]—
is derived from the geodesic Equation (31) by searching for orbits with ṙ = 0 and
σ = 0. For this, we solve V(r) = 0 and V(r)′ = 0 to first order in β. In our case the
photon sphere then lies at

rph =

(
3
2
+ β

(27 ln(3) + 32
√

3− 80)
18

)
rs ≈ (1.5 + β0.282675)rs . (33)

This result is identical to the one found in [46].
• Perihelion shift: While an elliptic orbit in the Newtonian two-body problem would

experience the perihelion always at the same angle, deviations from the two-body
problem—either by adding more bodies or, as here, using different dynamics—forces
this perihelion to move from orbit to orbit. For sufficiently small eccentricity, this is
encoded in the quantity ∆φ of an orbit r(φ) = rc + rφ(φ) which is a perturbation of
an orbit with constant radius rc. It is derived from the effective potential as, see for
example [46] for a derivation,

∆φ = 2π

(
h

r2
c
√

V′′(rc)
− 1

)
. (34)
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To first order in β, we find

∆φ = 6πq + 27πq2 + 135πq3 +
2835π

4
q4 + β32πq4 +O(q5) , (35)

where q = rs
2rc

is an expansion parameter, assumed to be small, i.e., rc � rs. The
influence of the teleparallel perturbation of GR on the perihelion shift in the black hole
spacetimes constructed in this paper is much weaker than the result found in [45,46],
where a correction already appeared at order q2.
This finding thus leads us to weaker constraints on the teleparallel coupling α = βr2

s
from observations of the perihelion shift, for example, from the orbits of stars around
the black hole in the center of our galaxy.

• Shapiro time delay: The Shapiro time delay is the time delay experienced by a radar
signal between an emitter at re and a mirror at rm due to the presence of a gravitational
mass [66]. The time which passes until a light ray has travelled from an emitter r = re
to a point of closest encounter to the gravitational mass at r0, respectively, from r0 to a
mirror at rm, is given by

t(rX , r0) =
∫ rX

r0

E√
−2V(r)

dr, X = e,m (36)

= t(rX , r0)GR

(
1− ζ1

2
β

)
+O

((
rs

rX

)5
)

. (37)

The last equality holds when the integrand is expanded in powers of the small param-
eter rs

r , i.e., assuming r0 > rs. The lowest orders can be integrated explicitly, but the
higher orders do not allow for a (known) closed formula for the integral.
We further assume that changes in the relative distances between emitter, mirror and
mass can be neglected during this propagation. The total travel time for a return trip
of the light signal is then ∆t = 2(t(re, r0) + t(rm, r0)). The Shapiro delay is given by

∆tShapiro = ∆t− 2
(√

r2
e − r2

0 +
√

r2
m − r2

0

)
)

(
1− ζ1

2
β

)
(38)

= ∆tShapiro,GR

(
1− ζ1

2
β

)
+O

((
rs

rX

)5
)

, (39)

where
√

r2
X − r2

0

(
1− ζ1

2 β
)

is the travel time of the light ray in the absence of the
gravitating mass. Here, we see explicitly the influence of the horizon parameter. It
changes the units of time measurements, however this can easily be absorbed by a
coordinate rescaling of the time coordinate, as we discussed already below at the end
of Section 2.2.2. A non-trivial contribution to the Shapiro delay only emerges at fifth
order in the small parameter rx

rs
, for which it is, however, not possible to analytically

evaluate the above integral.
• Light deflection: Another central quantity to investigate in this context is the devi-

ation angle ∆φ between a null geodesic in the presence and the absence of a central
gravitating mass. The point of closest encounter to the central object is again called r0.
Then the deflection angle is given by

∆φ = 2
∫ ∞

r0

(
L

r2
√
−2V(r)

dr

)
− π = ∆φ,GR + β

4
15

r5
s

r5
0

. (40)

where in the last equality an expansion for r0 � rs is employed in order to evaluate
the integral. The first non-vanishing correction to general relativity appears again
only at fifth order in the small parameter rs

r0
.
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• Minimal photon impact parameter: The impact parameter b is another closely related
and only mildly different way to look at these matters of light deflection. It adds
however, a simple way to characterize the photon capture cross-section of the black
hole for an observer at infinity. Physically and more concretely, the minimal photon
impact parameter bmin characterizes the closest encounter with the central mass a
photon can have when it is scattered by this mass, and can still be received by a
distant observer. It is defined as follows. Define ` = L

Ers
and demand that the effective

potential V as a function V = V(r, E, L(E, `)) vanishes, which determines the ratio
between E and L as a function of r, i.e., ` = `(r). This quantity possesses a minimum
at r = rph which identifies the minimal possible impact parameter for scattering as

bmin =
√
`(rph) =

3
√

3
2
− 1

4
β

(
64 +

80√
3
+ 3
√

3
C2

β

)
. (41)

Every geodesic with smaller impact parameter b will be gravitationally captured. We
introduce bmin here, since it is needed for the discussion of the black hole sparsity
in Section 3.4. Unlike in the previous cases, no additional small parameter was
introduced.
The minimal photon impact parameter bmin is the crucial quantity to describe the
shadow of these black holes. The shadow corresponds exactly to the capture cross-
section. Stricly speaking, the phrase “silhouette” would be a more apt description of
this capture cross-section, but the phrase “shadow” is the established terminology,
and we will abide by it.

We see that the photon sphere is affected strongest by the teleparallel perturbation,
the effect on the perihelion shift appears at orders

( rs
r
)4 for large r while an effect on

the Shapiro delay and on the perihelion shift emerges at powers
( rs

r
)5 for large r. The

modification are significantly smaller than the corrections induced by the asymptotically
flat solutions reported in [45,46].

Our findings nicely quantify the statement “the outer region, in turn, is indistin-
guishable from the Schwarzschild spacetime provided the Schwarzschild mass satisfies
r2

s
4 �

1
|λ|”, made in the context of Black holes in Born–Infeld gravity [43], where their

parameter 1
λ is our parameter α as employed in (8).

3.2. The Event Horizon

The putative horizon of the weak f (T)-gravity black hole we are investigating is given
by the solution of the equation, see (25),

A(r(µh)) = µ2
h + β

(13−99µ2
h+128µ3

h−45µ4
h+3µ6

h+12(1−3µ2
h) ln(µh))

6 + C2µ2
h = 0 . (42)

Sadly it is neither possible to solve this equation analytically, nor in a simple linear
perturbative series. Due to the presence of the logarithmic terms, the Newton–Raphson
method cannot yield a good linear approximation for the position of the horizon in β. We
therefore decided to calculate rh numerically for fixed values of β and ζ1 at much higher
precision. In subsequent quantities depending on rh, we checked that the Schwarzschild
limit β → 0 comes out correctly, and first order terms in β have smaller absolute values
than the zeroth order, Schwarzschild contribution. Put differently, when an evaluation at
rh was required, as described above, we treated that term as a function of r, approximated
it, and then evaluated it at the putative horizon. For the rest of this article, we will choose
ζ1 = 0 in all numerical calculations.

We show the plot of the location of the horizon in Figure 1 both in terms of µ and the
more familiar r-coordinate, and display selected values of µh(β) and rh(β) in Table 1.
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Figure 1. The values of µh (solid, blue curve) and of rh/rs (dashed, orange curve) as functions of the
perturbation parameter β. The horizon parameter is chosen to be ζ1 = 0. Both describe the location
of the putative horizon of the teleparallel black hole, and are related to each other through rh = rs

1−µ2
h

.

µh has been determined numerically.

Table 1. Numerical values of the event horizon radius in units of the Schwarzschild radius for
selected values of β.

β 0.001 0.005 0.01 0.02 0.05 0.1 0.5 1

µh(β) 0.0698 0.1301 0.1664 0.2091 0.2744 0.3285 0.4591 0.5134

rh(β)
rs

1.0049 1.0172 1.0285 1.0457 1.0814 1.1210 1.2670 1.3580

It is clearly visible that the event horizon radius of a black hole increases for positive
β ≤ 1. Larger values of β would definitely break the assumptions in arriving at the
perturbative, dynamical equations of weak f (T)-gravity, and are therefore omitted at all
times. We will later see that problems are to be expected even before β = 1.

3.3. Surface Gravity and Black Hole Temperature

One essential quantity to analyze classical and semi-classical properties of black holes
is the surface gravity, especially for thermodynamic aspects. Intuitively, the surface gravity
κ is given by the force at spatial infinity which is necessary to pull a massive point particle
away from the black hole [67]. For a static, spherically symmetric metric, it is given by

κ =
1
2

lim
r→rh

A′(r)√
A(r)B(r)

, (43)

where ′ denotes a derivative w.r.t. r. To study the properties of the black hole related
to κ it is essential that the geometry of spacetime under investigation satisfies 0 <
limr→rh A(r)B(r) < ∞, which we guaranteed by construction a forteriori. We determined
the metric components (25) and (26) such that they satisfy limr→rh A(r)B(r) = 1 + βζ1
for small βζ1. As discussed at the end of Section 2.2.1, this property is not shared by the
solutions found earlier in [45,46], which is why it is not possible to study near horizon
properties of the black hole in these solutions on the level of perturbation theory.

To evaluate the surface gravity, we consider the quantity κ(r) = A′(r)√
A(r)B(r)

. Its expan-

sion to first order in β can be obtained, using the ansatz (16) and the zeroth order terms
from (25) and (26), as

κ(r) = a′0(r)√
a0(r)b0(r)

+ β
(2a0(r)b0(r)a′1(r)− a′0(r)(a0(r)b1(r)− a1(r)b0(r)))√

a0(r)b0(r)
(44)

=
(1− µ(r)2)2

rs
+ β2

(
2a′1(r)−

(1− µ(r)2)2

rs

(
µ(r)2b1(r)− a1(r)µ(r)−2

))
. (45)
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To finally obtain the surface gravity, we evaluate κ(r) at r = rh. In terms of the variable

µ =
√

1− rs
r we find, also extracting the first order from (25) and (26),

κ =
(µ2

h − 1)2

2rs

(
1− β

6µ2
h

[
6− 24µh + 31µ2

h + 24µ3
h − 42µ4

h − 40µ5
h

+ 69µ6
h − 24µ7

h + 12µ2
h ln(µh)− 3µ2

hζ1

])
. (46)

For increasing β, the surface gravity continuously decreases, and a plot of this be-
haviour is shown in Figure 2. The second plot presented therein, Figure 2b, is meant as a
heuristic to investigate convergence issues. As we will see later in our discussion of sparsity,
this comparison can indicate when the numerically calculated, β-dependent horizon radius
rh can impact how far we can trust the β-dependence of these “not-quite first-order in β
quantities”.

As Figure 2a shows, the surface gravity drops at very small values of β very rapidly.
However, it is possible to show that the limit β→ 0 is, in fact, well-defined and approaches
the general relativistic value κGR = 1

2rs
. After this initial, sharp drop, the decline remains

monotonous with β, but does not approach 0 for values of β befitting a perturbative
interpretation.

0.2 0.4 0.6 0.8 1.0

0.34

0.36

0.38

0.40

0.42

0.44

0.46

(a)

0.0 0.2 0.4 0.6 0.8 1.0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 2. (a): Surface gravity in units of the inverse Schwarzschild radius for different values of the perturbation parameter
β and ζ1 = 0. The position needed for the evaluation of the surface gravity has been determined numerically. (b): the values
of the zeroth (κ(r)|β=0,r=rh

) and first (β(∂βκ(r)|β=0,r=rh
)) order of κ (46) plotted separately for a heuristic check of possible

numerical issues.

The surface gravity of a black hole is directly related to the black hole temperature
measured by an observer at infinity in the Hawking effect. This relation is simply

T =
κ

2π
, (47)

see for example [68], and has a corresponding thermal wave length:

λthermal =
2π

T
=

8π2rs

(µ2
h − 1)2

(
1 +

β

6µ2
h

[
6− 24µh + 31µ2

h + 24µ3
h − 42µ4

h − 40µ5
h

+ 69µ6
h − 24µ7

h + 12µ2
h ln(µh)− 3µ2

hζ1

])
. (48)

With these quantities in place, we can have a first phenomenological look at the
Hawking radiation in the next section using the concept of sparsity [69,70].
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3.4. Sparsity

The concept of sparsity was introduced in [69] to highlight and quantify an often
overlooked feature of the Hawking effect: between subsequent emission events of particles
from the black hole significantly more time elapses than the localization time scale (roughly
given by the frequency) of the emitted particles. Sparsity is the ratio between these two
timescales—high sparsity means that many localization time “units” elapse before the next
particle is emitted. Viewed in terms of length scales, this corresponds to the situation where
the wavelength of the emitted particle is larger than the radius of the black hole.

This breaks the usual analogy between the radiation of evaporating black holes with
that of black bodies—or, accounting for graybody factors in the Hawking effect, graybodies.
Usually, Hawking radiation is directly compared to the radiation of a blackbody. However,
unlike black bodies encountered in thermodynamics where the emitted radiation is on
average of a much shorter wavelength than the size of the blackbody itself, in black hole
physics the emitter is of a smaller size than the emitted wavelengths. This is one of the
different ways to recognize the relevance of sparsity. The lower the sparsity, the higher the
density of states, the more classical the radiation, the more comparable to the radiation of
a blackbody.

While this argument is best given using quantum theoretic arguments [71], heuristic
arguments comparing the wavelength of the emitted radiation with the length scale of
the emitter give a surprisingly accurate picture. While variations of this argument can
be traced back at least to the work of Page in the second half of the 1970s [72–75], the
reformulation in terms of sparsity has proved particularly fruitful for phenomenological
studies of black holes both in GR and its various modifications [70,76–82].

Concretely, “sparsity” η is defined as the ratio of above-mentioned time between
emissions τgap, and localization timescale τloc:

η =
τgap

τloc
. (49)

As is described in detail elsewhere[69,70], many different localization timescales
present themselves for a given spectrum. In the present context, however, the precise
choices are of less importance than the fact that for the Schwarzschild geometry, many
different choices allow exact results, ranging from 28.4 to 81.8; values significantly larger
than 1 (in quoting these results, the multiplicity of 2 for massless particles has been taken
into account). For the Schwarzschild black hole, the only physical parameter, the mass M,
conveniently cancels in these final results. In contrast, for actual blackbody radiation one
has that η � 1.

Comparing Weak f (T)-Black Holes and a Schwarzschild Black Hole

Rather than calculating the sparsity for the present, perturbative black hole spacetime
in weak f (T) gravity from scratch, the fact that we can regain the Schwarzschild spacetime
as a limit for β→ 0 suggests to just work with the ratio of these two sparsities. We therefore
assume that the Hawking spectrum still has the same blackbody nature (ignoring graybody
factors), and look at the ratio ηweak f (T)/ηGR. By construction, the mass parameter M
entering through the Schwarzschild radius rs will also cancel for the sparsities of static,
spherical symmetric black holes as they have been introduced above. As we work in the
same spacetime dimensions, physical constants will likewise cancel in this ratio. Even
more importantly, the cumbersome integrals needed for calculating sparsity will be the
same, as both metrics are diagonal, static, spherical symmetric. In this ratio they therefore
also drop out and we are left with an expression of the form

ηweak f (T)
ηGR

=

λthermal, f (T)
ceff, f (T) Ah, f (T)

λthermal, GR

ceff, GR Ah,GR

, (50)
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where λthermal is the thermal wavelength of the corresponding black hole solution in weak
f (T)-gravity and GR, respectively, and Ah = 4πr2

h is the horizon area of each solution.
The quantity ceff requires some more discussion, harking back to comments made in the
beginning of this section: A thermodynamic blackbody has a size that is large compared
to the wavelength of its radiation. To highlight the difference between a black hole and
a blackbody as strongly as possible, sparsity was constructed as conservative a measure
as possible: By potentially underestimating the sparsity, bringing it closer to the situation
encountered in a blackbody, any result for which η � 1 becomes stronger. Therefore,
the area from which the radiation is emitted was not chosen to be the horizon but a
larger surface.

While perhaps counter-intuitive for people who like to think of Hawking radiation as
a tunneling process, there are good reasons to do this: first of all, interpreting Hawking
radiation as a tunneling process just through the horizon is difficult to defend in light of
λthermal � rs. (An s-wave derivation of the Hawking effect as in [83] nevertheless has
its place and pedagogical value, and the tunneling interpretation many helpful insights.
One just needs to be extremely careful how far to trust its implications). Instead of Ah the
surface of the emitter was chosen in [69] to be the capture cross-section Acap = πb2

minrh.
This is (in part) motivated by results on renormalized stress-energy tensors in black hole
spacetimes [84]: there, it was found that energy density and fluxes peak much further out
than at the horizon. If we now take a sphere of a surface area Acap, this is much closer to
this, then the horizon area would be. As the capture cross-section also enters the calculation
of graybody factors, it also immediately allows easier comparison with the literature when
graybody factors are included [63,72–75,79]. We now define ceff as

ceff =
Acap

Ah
. (51)

For GR, we have that ceff, GR = 27/16 [63]. In our context of weak f (T)-gravity, the
result is a much more ivolved

ceff, f (T) =
27
16

+
2
√

3β

16

(
− 64− 80√

3
−
√

3
µ2

h

[
− 6 + 12µh − 21µ2

h − 108µ3
h + 66µ4

h (52)

+ 20µ5
h − 39µ6

h + 12µ2
h(log µh + µ5

h)

])
.

We followed the previous strategy in arriving at a “first order in β quantity”.
Putting everything together (in the by now standard way for handling the perturbative

parameter β), we finally arrive at

ηweak f (T)
ηGR

=
1

(µ2
h − 1)2

− 2β

9µh(µ
2
h − 1)2

(
18− [55 + 32

√
3 + 36 log µh]µh (53)

+ 126µ2
h − 36µ4

h + 30µ4
h − 45µ5

h + 18µ6
h

)
.

The results for sparsity as compared to the Schwarzschild case are shown in Figure 3.
Looking at the values of this ratio in Figure 3a, however, clearly shows that somewhere
before β ≈ 0.6 our attempt at a perturbative treatment breaks down. Since the tempera-
ture (through the surface gravity) is perfectly well-behaved, this is a new artefact of our
approach at this stage. A look at the plot in Figure 3b demonstrates that our heuristic of
comparing the term “linear in β” with the “zeroth order” indeed picks up this issue. Hence,
the sparsity results should only be trusted small values of β� 0.6.

While the sparsity is monotonically decreasing with β, this does not happen drastically
enough to turn the black hole radiation into classical blackbody radition. It will not be
reduced enough to cancel the large sparsity values found for a Schwarzschild black hole
(28.4 to 81.8) and the radiation stays sparse. Sparsity will remain, unless our calculated
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quantity can be trusted even close to the point where the first and second term in Figure 3b
cross. This seems unlikely, and a weak f (T)-gravity black hole would hence not change
the quantum nature of the Hawking radiation associated with it. The thermal wavelength
remains larger than the horizon radius, the density of states of the radiation remains low.
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Figure 3. (a) The sparsity of a weak f (T) black hole compared to the sparsity of a Schwarzschild black hole as a function of
β. (b): A look at the terms of our perturbative approach to this ratio reveals a breakdown of this approach for sufficiently
large β somewhere below β ≈ 0.6.

4. Conclusions

In this article we have identified the general black hole family of spherically symmetric,
static vacuum solutions of weak f (T)-gravity in Equations (25) and (26). The crucial
difference to the spherically symmetric, static vacuum solutions which have been found
earlier is that the choice of integration constants in these earlier results precludes an
interpretation as a black hole on perturbative grounds. Our choice of integration constants
ensures that this interpretation remains possible. Asymptotic flatness is not quite as
obvious as in the earlier approach (where it was a key ingredient in the choice of integration
constants), but after a simple redefinition of coordinate time easily regained.

The analysis of observable consequences of this teleparallel perturbation of the famous
Schwarzschild geometry revealed that the corrections manifest themselves strongest in a
larger photon sphere, a reduced black hole temperature and a slightly lower, though quali-
tatively similar sparsity. The classical observables of the perihelion shift, the Shapiro delay
and the deflection of light only acquire very small corrections in the weakly teleparallel
black holes spacetimes, a behaviour which is different to the solutions found earlier. Here,
the impact of the teleparallel perturbation on these observables is much higher [45,46]. In
particular, our results also quantify the behaviour of the exterior of the BTZ black holes as
found in Born–Infeld gravity [43,44] for small parameter 1

λ (which is α in our notation).
Hence, to constrain or discover teleparallel perturbations, our results indicate that the

best observable are lensing observables of light rays passing the region close the horizon.
The best observable of this kind is the shadow of black holes [85]. As a first step, the black
hole shadow of the spherical symmetric weak f (T) black hole can be derived. To obtain
the influence of the teleparallel perturbation on a realistic black hole shadow the whole
derivation has to be extended to rotating axially symmetric black holes. The derivation of
teleparallel perturbations of Kerr spacetime is currently work in progress, and first steps
towards this goal have been achieved [51].
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