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Abstract: Tensor rank decomposition is a useful tool for geometric interpretation of the tensors
in the canonical tensor model (CTM) of quantum gravity. In order to understand the stability of
this interpretation, it is important to be able to estimate how many tensor rank decompositions
can approximate a given tensor. More precisely, finding an approximate symmetric tensor rank
decomposition of a symmetric tensor Q with an error allowance ∆ is to find vectors φi satisfying
‖Q−∑R

i=1 φi ⊗ φi · · · ⊗ φi‖2 ≤ ∆. The volume of all such possible φi is an interesting quantity which
measures the amount of possible decompositions for a tensor Q within an allowance. While it would
be difficult to evaluate this quantity for each Q, we find an explicit formula for a similar quantity by
integrating over all Q of unit norm. The expression as a function of ∆ is given by the product of a
hypergeometric function and a power function. By combining new numerical analysis and previous
results, we conjecture a formula for the critical rank, yielding an estimate for the spacetime degrees
of freedom of the CTM. We also extend the formula to generic decompositions of non-symmetric
tensors in order to make our results more broadly applicable. Interestingly, the derivation depends
on the existence (convergence) of the partition function of a matrix model which previously appeared
in the context of the CTM.

Keywords: canonical tensor model; tensor rank decomposition; quantum gravity; numerical methods

1. Introduction

The canonical tensor model (CTM) is a tensor model for quantum gravity which is
constructed in the canonical formalism in order to introduce time into a tensor model [1]
with, as its fundamental variables, the canonically conjugate pair of real symmetric tensors
of degree three, Qabc and Pabc. Interestingly, under certain algebraic assumptions, this
model has been found to be unique [2]. Furthermore, several remarkable connections have
been found between the CTM and general relativity [3–5] which, combined with the fact
that defining the quantised model is mathematically very simple and straightforward [6],
makes this a very attractive model to study in the context of quantum gravity.

Recent developments in the study of the canonical tensor model sparked interest in
the tensor rank decomposition from the perspective of quantum gravity. The tensor rank
decomposition is a decomposition of tensors into a sum of rank-1 tensors [7], also called
simple tensors, and it might be seen as a generalisation of the singular value decomposition
of matrices to tensors. 1 This is a tool frequently used in a broad range of sciences as it is
often a very effective way to extract information from a tensor [8].

In Ref. [9], tensor rank decomposition was used to extract topological and geometric
information from tensors used in the CTM. Here, every term in the decomposition corre-
sponds to a (fuzzy) point, collectively forming a space that models a universe. However,
finding the exact tensor rank decomposition of a tensor is, in general, next to impossi-
ble [10]. This means that for a given tensor Qabc, which is in the CTM the fundamental
variable that is supposed to represent a spatial slice of spacetime, it may potentially be
approximated by several different decompositions, possibly corresponding to different
universes. This leads to two questions related to the stability of this approach:
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• How many tensor rank decompositions are close to a given tensor Qabc?
• Do different decompositions describe the same space (and if not, how much do

they differ)?

In this work, we focus on the former of these questions. To understand this question,
we introduce the configuration space of tensor rank decompositions for rank R, denoted
by FR, and introduce the quantity to describe the volume of the configuration space close
to a tensor Q:2

VR(Q, ∆) =
∫
FR

dΦ Θ(∆− ‖Q−Φ‖2), (1)

where Φ ∈ FR denotes a tensor rank decomposition in the space of tensor rank decom-
positions that is integrated over, Θ(x) (x ∈ R) is the Heaviside step function, and ∆ is a
parameter to define the maximum square distance between Q and Φ. Better understanding
this quantity will lead to a better understanding of the tensor rank decomposition configu-
ration space, and what to expect when aiming to approximate a tensor using tensor rank
decomposition. In this work, we study a related quantity ZR(∆), which we arrive at by
integrating (1) over normalised tensors Q̃. Analysing this quantity will give us information
about the average amount of different decompositions, potentially representing different
spaces, close to tensors, and analysing its divergent properties will lead to insights in the
expected size, in terms of the amount of fuzzy points, of spaces in the CTM.

Another motivation coming from the CTM to study the configuration space of tensor
rank decompositions comes from the quantum CTM. A noteworthy fact about the CTM is
that it has several known exact solutions for the quantum constraint equations [11]. One of
these has recently been extensively analysed due to the emergence of Lie group symmetries
in this wave function, which potentially hints towards the emergence of macroscopic
spacetimes [12–17]. This wave function, in the Q-representation, is closely related to a
statistical model [17] that is mathematically equivalent to

Ψ(Q) =
∫
FR

dΦO(Φ) e−κ(Q−Φ)2
, (2)

where O(Φ) only depends on the weights of the components of the decomposition, which
will be more precisely defined below. This shows that for a full understanding of this
statistical model, understanding the underlying configuration space and the behaviour of
volumes therein is important.

Besides research in the CTM, this work might be more generally applicable. Similar
questions might arise in other areas of science and, mathematically, there are many open
questions about the nature of tensor rank decomposition. Understanding the configuration
space constructed here might lead to significant insights elsewhere. For these reasons,
the content of the paper is kept rather general. Our main research interests are real
symmetric tensors of degree three, but we will consider both symmetric and generic
(non-symmetric) tensors of general degree.

This work is structured as follows. We define the configuration space of tensor
rank decompositions in Section 2. Here, we also give a proper definition of VR(Q, ∆)
and introduce the main quantity we will analyse, ZR(∆), which is the average of VR(Q, ∆)
over normalised tensors. Section 3 contains the main result of our work. There, we
derive a closed formula for ZR(∆), which is guaranteed to exist under the condition that a
certain quantity GR, which is independent of ∆, exists and is finite. Another interesting
connection to the CTM is found at this point, since this quantity GR is a generalisation of
the partition function of the matrix model studied in [14–16]. In Section 4, the existence of
GR is proven for R = 1, and numerical analysis is conducted for R > 1 for a specific choice
of volume form dΦ to arrive at a conjecture for the maximal allowed value of R, called
Rc. In Section 5, we present direct numerical computations of ZR(∆) to further verify
the analytical derivation and conclude that the closed form indeed seems to be correct.
Surprisingly, up to a divergent factor, the ∆-behaviour still appears to hold for R > Rc. We
finalise this work with some conclusions and discussions in Section 6.
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2. Volume in the Space of Tensor Rank Decompositions

In this section, we introduce the configuration space of tensor rank decompositions
and define the volume quantities we will analyse. We consider two types of tensor spaces,
namely the real symmetric tensors of degree K, SymK(RN), and the space of generic (non-
symmetric) real tensors, RN⊗K. This could be generalised even further in a relatively
straightforward way, but for readability, only these two cases will be discussed. First, the
symmetric case will be discussed, and afterwards, the differences to the generic case will be
pointed out. For more information about the tensor rank decomposition, see Appendix A
and references therein.

Consider an arbitrary symmetric tensor of (symmetric) rank 3 R given by its tensor
rank decomposition:

Φa1 ...aK =
R

∑
i=1

λiφ
i
a1

. . . φi
aK

, (3)

where we choose φi
ak

to lie on the upper-hemisphere of the N − 1-dimensional sphere,
which we denote by SN−1

+ , and λi ∈ R. This is mainly to remove redundancies, for later
convenience and to make the generalisation easier.

The configuration space can now be defined as all of these possible configurations for
a given rank R:

FR := RR × SN−1
+ × . . .× SN−1

+︸ ︷︷ ︸
R times

= RR × SN−1
+

×R
. (4)

Note that while (3) links a given tensor rank decomposition in the space FR to a tensor in the
tensor space SymK(RN), our objects of interest are the tensor rank decompositions themselves.

We define an inner product on the tensor space by, for Q, P ∈ SymK(RN),

Q · P =
N

∑
a1 ...aK=1

Qa1 ...aK Pa1 ...aK , (5)

which induces a norm ‖Q‖2 := Q · Q = ∑N
a1 ...aK=1|Qa1 ...aK |

2. We also use Q2 ≡ ‖Q‖2

for brevity. On the configuration space FR, we introduce a measure by the infinitesimal
volume element

dΦw =
R

∏
i=1
|λi|w−1dλi dφi, (6)

where dλi is the usual line element of the real numbers, and dφi is the usual volume
element on the N − 1-dimensional unit sphere. w (with w ≥ 1) is introduced for generality.
w = 1 will turn out to be less singular, while w = N corresponds to treating (λi, φi) as
hyperspherical coordinates of RN .

In summary, for a given rank R, we constructed a configuration space FR in (4) with
the infinitesimal volume element (6), taking inner product (5) on the tensor space. If R < R′,
then FR ⊂ FR′ , and thus we have an increasing sequence of spaces, which limits to the
whole symmetric tensor space of tensors of degree K:

FR ↑R→∞ SymK(RN) ∼= RNQ ,

where NQ :=
(

N + K− 1
K

)
counts the degrees of freedom of the tensor space.

A question one might ask is “Given a tensor Q, how many tensor rank decompositions
of rank R approximate that tensor?”. For this, we define the following quantity

V ε
R(Q, ∆) :=

∫
FR

dΦw Θ(∆− ‖Q−Φ‖2) e−ε ∑R
i=1 λ2

i , (7)
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where ∆ is the maximum square distance of a tensor rank decomposition Φa1 ...aK to tensor
Qa1 ...aK , and ε is a (small) positive parameter. The exponential function is needed to regu-
larise the integral, since even though Φa1 ...aK is bounded, the individual terms λiφ

i
a1

. . . φi
aK

might not be. This quantity gives an indication of how hard it will be to approximate
a tensor Q by a rank-R tensor rank decomposition; a large value means there are many
decompositions that approximate the tensor, while a small value might indicate that a
larger rank is necessary.

While (7) might contain all the information one would want, it is hard to compute.
Instead, we will introduce a quantity to make general statements about the configuration
space by averaging this quantity over all normalised tensors Q̃a1 ...aK (such that ‖Q̃‖2 = 1):

ZR(∆; ε) :=
1

V‖Q‖=1

∫
‖Q‖=1

dQ̃ V ε
R(Q̃, ∆). (8)

Since the configuration space of Q is isometric to RNQ , it is possible to move to hyperspher-
ical variables. Q̃ is then given by the angular part of Q. Furthermore, we have defined

V‖Q‖=1 :=
∫
‖Q‖=1 dQ̃ = 2π

NQ/2

Γ(NQ/2) . For now, we assume the existence of the ε→ 0+ limit of
this quantity such that

ZR(∆) := lim
ε→0+

ZR(∆; ε). (9)

This limit does not necessarily exist, and it diverges if R is taken too large, as we will show
in Section 4. In Proposition 2 in the next section, we will obtain an explicit formula for
ZR(∆) found in (22) under the condition that the following quantity exists:

GR := lim
ε→0+

GR(ε) := lim
ε→0+

∫
FR

dΦw e−Φ2−ε ∑R
i=1 λ2

i . (10)

Note that since GR(ε) is a monotonically decreasing positive function of ε, the ε→ 0+ limit
either diverges or is finite if it is bounded from above.

This condition presents a peculiar connection to the canonical tensor model. Let us
first rewrite

GR(ε) =
∫
FR

R

∏
i=1

dλi|λi|w−1dφie−∑R
i,j=1 λi(φ

i ·φj)Kλj−ε ∑R
i=1 λ2

i , (11)

where we introduced the usual inner product on SN−1
+ ⊂ RN

φi · φj =
N

∑
a=1

φi
aφ

j
a,

inherited from the tensor space inner product. In Refs. [14–16], a matrix model was
analysed that corresponds to a simplified wave function of the canonical tensor model.
The matrix model under consideration had a partition function given by

Z(k) =
∫
RNR

R

∏
i=1

N

∏
a=1

dρi
a e−∑R

i,j=1(ρ
i ·ρj)3−k ∑R

i=1(ρ
i ·ρi)3

,

where ρi ∈ RN with the usual Euclidean inner product on RN . Let us now go to hyper-
spherical coordinates (ri, φi) for every N-dimensional subspace for every i, but instead of
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taking the usual convention where ri ≥ 0 and φi ∈ SN−1, we let ri ∈ R and φi ∈ SN−1
+ .

Then

Z(k) =
∫ R

∏
i=1
|ri|N−1dridφi e−∑R

i,j=1(ri(φ
i ·φj)rj)

3−k ∑R
i=1 r6

i ,

= const.
∫
FR

R

∏
i=1
|λi|

N−3
3 dλidφie−∑R

i,j=1 λi(φ
i ·φj)3λj−k ∑R

i=1 λ2
i , (12)

where we have substituted λi = r3
i and const. is an irrelevant numerical factor. Compar-

ing (12) with (11), we see that the matrix model studied in the context of the canonical
tensor model is a special case of GR(ε), where ε = k, K = 3 and w = N

K .
Let us now turn to the case of generic (non-symmetric) tensors. We will point out

the differences in the treatment and the result, though the derivation in Section 3 will be
identical. We will still focus on tensors of degree K that act on a multiple of Euclidean
vector spaces V = RN , though generalisations of this could also be considered in a very
similar way. A generic rank R tensor is given by

Φ(G)
a1 ...aK =

R

∑
i=1

λiφ
(1)
a1

i
. . . φ

(K)
aK

i
,

where we again choose λi ∈ R and φ(k)i ∈ SN−1
+ . Note that the main difference here is that

the vectors φ(k)i
are independent and, thus, the generic configuration space will be bigger:

F (G)
R,K := RR × SN−1

+
×K × . . .× SN−1

+
×K︸ ︷︷ ︸

R times

= RR × SN−1
+

×KR
, (13)

where we now define the measure by the volume element

dΦ(G)
w =

R

∏
i=1
|λi|w−1dλi

K

∏
k=1

dφ(k)i
. (14)

Note that the degrees of freedom of the tensor space are now NQ = NK. Under these
changes, we can again define analogues of (7), (9), and (10). With these re-definitions,
the general result (22) will actually be the same but now for NQ = NK and R being the
generic tensor rank (instead of the symmetric rank).

3. Derivation of the Average Volume Formula

In this section, we will derive the result as presented in (22). The main steps of the
derivation are performed in this section, but for some mathematical subtleties, we will refer
to Appendix B, and for some general formulae to Appendix C. The general strategy for
arriving at (22) is to take the Laplace transform, extract the dependence on the variables,
and take the inverse Laplace transform.

Let us take the Laplace transform of (9) with (7) and (8) (see Appendix C.2):

Z̄R(γ) =
∫ ∞

0
d∆ZR(∆) e−γ∆,

=
1

V‖Q‖=1
lim

ε→0+

∫
‖Q‖=1

dQ̃
∫
FR

dΦw

∫ ∞

‖Q̃−Φ‖2
d∆ e−γ∆−ε ∑R

i=1 λ2
i ,

=
1

γV‖Q‖=1
lim

ε→0+

∫
‖Q‖=1

dQ̃
∫
FR

dΦw e−γ(Q̃−Φ)2−ε ∑R
i=1 λ2

i ,
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where we have taken the limit out of the ∆ integration. It will be shown below when this is
allowed. Let us multiply this quantity by γ

Z̄R(γ) := γZ̄R(γ) =
1

V‖Q‖=1
lim

ε→0+

∫
‖Q‖=1

dQ̃
∫
FR

dΦw e−γ(Q̃−Φ)2−ε ∑R
i=1 λ2

i . (15)

This will be undone again at a later stage. For later use, we will also define the quantity
depending on ε without taking the limit:

Z̄R(γ; ε) :=
1

V‖Q‖=1

∫
‖Q‖=1

dQ̃
∫
FR

dΦw e−γ(Q̃−Φ)2−ε ∑R
i=1 λ2

i . (16)

As an aside, recall that for the Laplace transform, multiplication by γ corresponds to
taking the derivative in ∆-space. This means that we now effectively have a definition of
the Laplace transform of the distributive quantity

ZR(∆; ε) :=
∫
‖Q‖=1

dQ̃ DVε
R(Q̃, ∆) :=

∫
‖Q‖=1

dQ̃
∫
FR

dΦw δ(∆− ‖Q̃−Φ‖2) e−ε ∑R
i=1 λ2

i ,

where δ(x) (x ∈ R) is the delta distribution, assuming that (15) is well defined (which will
be shown below for the aforementioned assumption).

We will now present the first main result that will be necessary.

Proposition 1. Given that (10) is finite, (15) is finite and given by

Z̄R(γ) = GR γ−
w R

2 1F1

(
NQ − w R

2
,

NQ

2
,−γ

)
.

Proof. Let us prove this proposition in the following two steps.
Step one: Z̄R(γ) is finite if GR is finite.

First let us remark that the integrand in (16) is positive and, thus, for Z̄R(γ) to be finite, we
should show that Z̄R(γ) < ∞. Furthermore, because of the reverse triangle inequality, we
have the inequality

‖Q−Φ‖2 ≥ (‖Q‖ − ‖Φ‖)2,

and from (x− y)2 = Ay2 − A
1−A x2 + (1− A)

(
y− x

1−A
)2 for x, y ∈ R and 0 < A < 1, we

have the inequality

(‖Q‖ − ‖Φ‖)2 ≥ A‖Φ‖2 − A
1− A

‖Q‖2.

Putting this together, we find that

Z̄R(γ; ε) =
1

V‖Q‖=1

∫
‖Q‖=1

dQ̃
∫
FR

dΦw e−γ(Q̃−Φ)2−ε ∑R
i=1 λ2

i ,

≤ 1
V‖Q‖=1

∫
‖Q‖=1

dQ̃
∫
FR

dΦw e−γ(‖Q̃‖−‖Φ‖)2−ε ∑R
i=1 λ2

i ,

≤ 1
V‖Q‖=1

∫
‖Q‖=1

dQ̃ eγ A
1−A Q̃2

∫
FR

dΦw e−γAΦ2−ε ∑R
i=1 λ2

i ,

= (γA)−
w R

2 eγ A
1−A GR

(
ε

γA

)
. (17)

This means that as long as GR = limε→0+ GR(ε) is finite, Z̄R(γ) = limε→0+ Z̄R(γ; ε)
is finite, since we have a finite upper bound. Moreover, it converges since it monotonically
increases with ε→ 0+ and is bounded.
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Step two: Find the closed form.
Let us introduce the quantity

Y(α, γ) := lim
ε→0+

∫
RNQ

dQ
∫
FR

dΦw e−αQ2−γ(Q−Φ)2−ε ∑R
i=1 λ2

i . (18)

Note that in this quantity, Q is defined over the whole tensor space RNQ , so not only
the normalised tensors. In the appendix, Lemma A1 shows that this quantity is finite under
the same assumption that GR is finite.

We can rewrite (18) in terms of GR as follows

Y(α, γ) = lim
ε→0+

∫
RNQ

dQ
∫
FR

dΦw e−(α+γ)
(

Q− γ
α+γ Φ

)2
− αγ

α+γ Φ2−ε ∑R
i=1 λ2

i ,

=

(
π

α + γ

) NQ
2

lim
ε→0+

∫
FR

dΦw e−
αγ

α+γ Φ2−ε ∑R
i=1 λ2

i ,

=

(
π

α + γ

) NQ
2
(

α + γ

αγ

) w R
2

GR,

= πNQ/2γ−
NQ+w R

2 (1 + t)−
NQ−w R

2 t−
w R

2 GR, (19)

where t ≡ α
γ . We can also relate (18) to Z̄R(γ) by using polar coordinates for Q→ (|Q|, Q̃):

Y(α, γ) = lim
ε→0+

∫
RNQ

d|Q| |Q|NQ−1 dQ̃
∫
FR

dΦw e−α|Q|2−γ(|Q|Q̃−Φ)2−ε ∑R
i=1 λ2

i ,

= V‖Q‖=1 lim
ε→0+

∫ ∞

0
d|Q| |Q|NQ−1+w R e−α|Q|2 Z̄R(γ|Q|2; ε|Q|2),

=
1
2

V‖Q‖=1γ−
NQ+w R

2 lim
ε→0+

∫ ∞

0
dx x

NQ+w R
2 −1Z̄R(x; εx/γ) e−t x,

=
1
2

V‖Q‖=1γ−
NQ+w R

2

∫ ∞

0
dx x

NQ+w R
2 −1Z̄R(x) e−t x . (20)

Here, in the first step, we rescaled λi → |Q|λi, in the second step we introduced a new
integration variable x ≡ γ|Q|2, and in the final step we took the limit inside the integral as
is proven to be allowed in the appendix Lemma A2. Note the appearance of Z̄R(γ; ε) as
defined in (16).

By equating (19) and (20), we now arrive at the relation∫ ∞

0
dx x

NQ+w R
2 −1Z̄R(x) e−t x = Γ[NQ/2] GR (1 + t)−

NQ−w R
2 t−

w R
2 .

The crucial observation now is that the left-hand side is the Laplace transform of the

function x
NQ+w R

2 −1Z̄R(x). Hence, by taking the inverse Laplace transform of the right-hand
side and using (A19) in the appendix, we find

Z̄R(x) = GR x−
w R

2 1F1

(
NQ − w R

2
,

NQ

2
,−x

)
.

Having obtained the result above, we undo the operation performed in (15):

Z̄R(γ) = GRγ−
w R

2 −1
1F1

(
NQ − w R

2
,

NQ

2
,−γ

)
. (21)
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The main remaining task to find the central result of this paper, an expression for
ZR(∆), is to take the inverse Laplace transform of this function. This is performed in the
proposition below.

Proposition 2. Given that GR in (10) is finite, ZR(∆), as defined in (9), is given by

ZR(∆) =
2GR

Γ
[

w R
2

] ·
 1

NQ
∆

NQ
2 2F1

(
1− w R

2 , NQ−w R
2 , 1 + NQ

2 , ∆
)

, ∆ ≤ 1,
1

w R ∆
w R

2 2F1

(
−w R

2 , NQ−w R
2 , NQ

2 , 1/∆
)

, ∆ ≥ 1,
(22)

Proof. If (10) is finite and, thus, (21) exists and is finite, we need to perform the inverse
Laplace transform of (21) in order to prove (22). This may be achieved as follows. First, we
write (21) in terms of one of the Whittaker functions

Z̄R(γ) = GR γ−
w R

2 −
NQ

4 −1 e−
γ
2 M NQ

4 −
w R

2 ,
NQ

4 −
1
2
(γ),

where we used Kummer’s transformation (A13), and Mµ,ν(γ) is one of the Whittaker
functions which may be found in (A14) in the appendix. Let us rewrite

Z̄R(γ) = GR γ−
NQ

4 e−
γ
2 M NQ

4 −
w R

2 ,
NQ

4 −
1
2
(γ)︸ ︷︷ ︸

L[ f ]

γ−
w R

2 −1︸ ︷︷ ︸
L[g]

,

such that we can now use the formula from the convolution theorem which can be found
in (A17) in the appendix. Let us first find the inverse Laplace transform of L[g], which may
be found using Formula (A18) from the appendix

g(t) =
t

w R
2

Γ
[

w R
2 + 1

] .

The inverse Laplace transform of L[ f ] may be found using Formula (A20) from the
appendix

f (t) =

β
(

w R
2 , NQ−w R

2

)−1
t

NQ−w R
2 −1(1− t)

w R
2 −1, 0 < t < 1,

0, otherwise,

where β is the beta-function defined in (A9). Combining these results with the convolution
product Formula (A17) in the appendix yields

ZR(∆) =

cR
∫ ∆

0 q
NQ−w R

2 −1(1− q)
w R

2 −1(∆− q)
w R

2 dq, ∆ ≤ 1,

cR
∫ 1

0 q
NQ−w R

2 −1(1− q)
w R

2 −1(∆− q)
w R

2 dq, ∆ ≥ 1,

where cR ≡ GR

Γ[ w R
2 +1]β

(
w R

2 ,
NQ−w R

2

) . Let us focus on the ∆ ≥ 1 case first. Using (A8), we find

ZR(∆) = cR ∆
w R

2

∫ 1

0
q

NQ−w R
2 −1(1− q)

w R
2 −1(1− q/∆)

w R
2 dq,

=
GR

Γ
[

w R
2 + 1

]∆
w R

2 2F1

(
−w R

2
,

NQ − w R
2

,
NQ

2
,

1
∆

)
.
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For ∆ ≤ 1, we find

ZR(∆) = cR

∫ ∆

0
q

NQ−w R
2 −1(1− q)

w R
2 −1(∆− q)

w R
2 dq,

= cR ∆
NQ

2

∫ 1

0
q

NQ−w R
2 −1(1− ∆q)

w R
2 −1(1− q)

w R
2 dq,

=
GR

Γ
[

w R
2

]
NQ
2

∆
NQ

2 2F1

(
1− w R

2
,

NQ − w R
2

,
NQ

2
+ 1, ∆

)
.

where we changed integration variables in the first step to q′ = q/∆. This result is in accord
with (22).

This concludes the proof of (22). As mentioned before, the derivation is exactly
identical for generic tensors. The main difference now is that the number of degrees of
freedom NQ is different for this tensor space. What is left to determine are the range of R
for which GR is finite and the value of GR. This will be carried out in Section 4.

Before we finish this section, let us demonstrate some properties of this function. First,
let us note that the parameters R and w always come together, even though they seemingly
are unrelated when inspecting (7). This can be understood by the fact that every term in
the tensor rank decomposition comes with a weight given by λi. However, in the measure,
we count every unit of λ with a power of w, so we have R terms that each scale with a
factor of w, explaining why R and w always come together.

Now, we take a look at some special values of the function. Starting with the case
where w R/2 = 1, we have the situation that for ∆ ≤ 1, the hypergeometric part of the
function will be constant because the first argument is zero. For ∆ ≥ 1, we see that the
function will be of the form 1 + NQ

2 (∆− 1). Hence, the full function will simplify to

ZR(∆) ∝

{
∆NQ/2, ∆ ≤ 1,

1 + NQ
2 (∆− 1), ∆ ≥ 1,

making the function linear for larger ∆. Let us try another simple case, namely for
w R = NQ. In this case, the hypergeometric part becomes a constant everywhere, and we get

ZR(∆) ∝ ∆NQ/2.

Examples of the special values above, and others, are plotted in Figure 1.

Figure 1. On the left: ZR(∆) for symmetric tensors with ∆ running from ∆ = 0 to 2, where K = 3, N = 2, and w = 1. On
the right: The limiting behaviour of ZR(∆) for K = 3, N = 4, w = 2, R = 3, again for symmetric tensors. The blue curve

represents (22), the red line the small ∆ behaviour of (23), and the green line the large ∆ behaviour of (24). αR ≡
Γ[ w R

2 ]NQ

2GR
is

a normalisation factor.
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Furthermore, let us focus on some of the limiting behaviour of the function. For ∆→
0+, the hypergeometric part is approximately a constant, and we see

lim
∆→0+

ZR(∆) ∝ ∆
NQ

2 . (23)

Similarly, for ∆→ ∞, the hypergeometric part is constant and the function tends to

lim
∆→∞

ZR(∆) ∝ ∆
w R

2 . (24)

In some sense, the hypergeometric part of the function interpolates between these two
extremes. This is also shown in Figure 1.

It is instructive to compare ZR(∆) to another quantity,

CR(∆) :=
∫
FR

dΦw Θ
(

∆− ‖Φ‖2
)

,

=
GR

Γ
[

w R
2 + 1

]∆
w R

2 . (25)

For the derivation of this quantity, we would like to refer to Appendix D. This quantity
measures the amount of tensor rank decompositions of size smaller than ∆, giving us a
measure for the scaling of volume in the space of tensor rank decompositions. Figure 2
sketches the difference between ZR(∆) and CR(∆). It can be seen that in the ∆→ ∞ limit,
ZR(∆)→ CR(∆).

Figure 2. A sketch showing the difference in the quantities ZR(∆) and CR(∆). The red dotted line
represents the normalised tensors. The blue shaded area represents the area counted by ZR(∆),
and the red shaded area represents the area counted by CR(∆). On the left we take ∆� 1, and on
the right we take ∆� 1.

Dividing ZR(∆) by this quantity yields a quantity comparing the amount of tensor
rank decompositions with a distance less than

√
∆ from a tensor of size 1 to the amount of

decompositions of size less than
√

∆:

ZR(∆)/CR(∆) =

w R
NQ

∆
NQ−w R

2 2F1

(
1− w R

2 , NQ−w R
2 , NQ

2 + 1, ∆
)

, ∆ ≤ 1,

2F1

(
−w R

2 , NQ−w R
2 , NQ

2 , 1
∆

)
, ∆ ≥ 1.

(26)
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This quantity is useful to predict the difficulty of finding a tensor rank decomposition
close to a certain tensor in the tensor space. Notice here that the GR dependence drops out.
This implies that this quantity might be well defined, even in the case that GR itself is not.

Upon inspecting Figure 3, it can be seen that (26) has some interesting R-dependence.
Firstly, while the limiting behaviour for ∆ → ∞ to 1 is already clear from (24) and the
overlap in the regions as sketched in Figure 2, the quantity will limit to 1 from below for
w R < NQ, while for w R > NQ, it will limit towards 1 from above. The reason for this is
that for large R, even with small ∆, there will be many tensor rank decompositions that
approximate an arbitrary tensor with error allowance less than ∆, while for small ∆, the
volume counted by CR(∆) will be small. This shows that for small ∆, the regions in Figure 2
scale in different ways. Secondly, what is interesting is that the R = 1 curve overtakes
the R = 2 curve around ∆ = 1, and for larger R the behaviour for small ∆ changes from
accelerating to decelerating.

Figure 3. The quantity ZR(∆)/CR(∆) for K = 3, N = 2, w = 1, and R ranging from 1 to 5. We can
identify some of the behaviour expected from (26) and (24). For any value of R, the function nears 1
for ∆→ ∞. For w R = NQ, the function is just one everywhere.

This motivates us to look at a specific case of the quantity (26), namely for ∆ = 1. As is
clear from the structure of the function, ∆ = 1 appears to be a special value which we can
analyse further. Fixing ∆ = 1 gives us the opportunity to look at the R and w-dependence
a bit closer. Up until now, we have kept the value of w arbitrary; it is however interesting
to see what happens for specific values of w. It turns out that, peculiarly, when taking

w ≈ K
3

(
N − 11

12

)
, (27)

for generic tensors, the functionZR/CR(∆ = 1), as a function of R, appears to be minimised
at (or very close to) the expected generic rank of the tensor space. 4 Some examples of this
may be found in Figure 4 This means that until the expected rank, the relative amount of
decompositions that approximate tensors is decreasing, while from the expected rank, the
amount of decompositions that approximate a tensor of unit norm increase. The reason
for the form of (27) is currently unknown, and it would be interesting to find a theoretical
explanation for this.



Universe 2021, 7, 302 12 of 26

Figure 4. Examples of the minimums when choosing w to be (27). The horizontal axis labels R, while
the vertical axis labels ZR/CR(∆ = 1). The red line represents the expected rank, see (A2), of the
tensor space (which is taken to be generic).

4. Convergence and Existence of the Volume Formula

The derivation of the closed form of ZR(∆) depends on the existence of GR, defined
in (10). We will analyse the existence in the current section. Except for the case where
R = 1, which is shown below, we will focus on numerical results since a rigid analytic
understanding is not present at this point.

First, let us briefly focus on the case of general N, K and w, but specifically for R = 1.
This case is the only known case for general N, K and w that can be solved exactly. In this
case the quantity simplifies to

G1(ε) =
∫ ∞

−∞
|λ|w−1dλ

∫
SN−1
+

dφ e−(1+ε)λ2
=

Γ
[w

2
]

(1 + ε)w/2
π

N
2

Γ
[

N
2

] .

Clearly, in this case, the limε→0+ G1(ε) exists, so there exist at least one R for which the
quantity exists. The main question now is for up to what value of R, Rc, the quantity exists.

Contrary to the R = 1 case above, one might expect (10) does not always converge.
The matrix model analysed in [14–16], corresponding to a choice of parameters of K = 3 and
w = N

K , did not converge in general. It had a critical value around Rc ∼ 1
2 (N + 1)(N + 2),

above which the ε→ 0+ limit did not appear to converge anymore. In the current section,
we will add numerical analysis for general K and w = 1 and discuss the apparent leading
order behaviour. The main result of this section is that for w = 1, the critical value seems to
be Rc = NQ. Hereafter, in this section, we will always assume w = 1.

The numerical analysis was conducted by first integrating out the λi variables and sub-
sequently using Monte Carlo sampling on the compact manifold that remains. The deriva-
tion below is for the symmetric case, but can be conducted for the generic case in a similar
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manner. The λi can be integrated out in a relatively straightforward way since the measure
in the w = 1 case is very simple. Let us rewrite (10) in a somewhat more suggestive form

GR(ε) :=
∫
FR

dΦw e−Φ2−ε ∑R
i=1 λ2

i ,

=
∫
FR

R

∏
i=1

dλi dφi e−∑R
i,j=1 λi

(
(φi ·φj)

K
+εδij

)
λj . (28)

It can now be seen that, for λi, this is a simple Gaussian matrix integral over the real
numbers λi, with the matrix Mij

ε :=
(
φi · φj)K

+ εδij. The result of this integral is

GR(ε) = (π)R/2
∫

SN−1
+

×R

R

∏
i=1

dφi 1√
det
[(

φi · φj
)K

+ εδij
] ,

which is a compact, finite (for ε > 0) integral. The corresponding expression for generic
tensors is

G′R(ε) = (π)R/2
∫

SN−1
+

×KR

R

∏
i=1

K

∏
k=1

dφ(k)i 1√
det
[
∏K

k=1 φ(k)i · φ(k) j
+ εδij

] .

We wrote a C++ program evaluating the integrals above using Monte Carlo sampling.
The general method applied is the following:

1. Construct R, N-dimensional random normalised vectors using Gaussian sampling.
2. Generate the matrix Mij by taking inner products (and adding ε to the diagonal

elements).
3. Calculate the determinant of Mij and evaluate the integrand.
4. Repeat this process M times.

The main difference between the above method, and the method for generic ten-
sors, is that we generate R · K random vectors, and the matrix is now given by Mij

ε :=

∏K
k=1 φ(k)i · φ(k) j

+ εδij. To generate random numbers, we used C++’s Mersenne Twister
implementation mt19937, and for the calculation of the determinant of Mij

ε we used the
C++ Eigen package [18].

We have conducted simulations using this method for both symmetric and generic
tensors. After the initial results, it became clear that the critical value for R seems to lie on
Rc = NQ, so to verify this, we calculated the integral for Rc− 1, Rc and Rc + 1, and checked
if GR indeed starts to diverge at Rc + 1.

What divergent behaviour to expect can be explained as follows. Let us take the
limit of limε→0+ Mij

ε =: Mij. It is clear that this integral diverges whenever the matrix is
degenerate. Assume now that Mij has rank r, meaning that the matrix Mij in diagonalised
form has R− r zero-entries. Thus, adding a small but positive ε to the diagonal entries
results in the following expansion

det Mε = A εR−r +O(εR−r−1),

leading to leading order for the integrand

1√
det Mε

∼ ε−
R−r

2 .
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Thus, if there is a set with measure nonzero in the integration region with r < R, the final
ε-dependence for small epsilon is expected to be

GR(ε) ≈ C ε−
R−Rc

2 +O(ε−
R−Rc−1

2 ) (29)

where the constant factor C is the measure of the divergent set, and the other factor is
due to non-leading order nonzero measure integration regions. Note that now we should
take r = Rc, as by definition of Rc, this will yield the leading order contribution for the
integral. An example of this approach for finding Rc for symmetric tensors with N = 3
and K = 3 is given in Figure 5. By the definition of Rc, for R ≤ Rc, GR(ε) should converge
to a constant value.

Figure 5. An example of the verification of Rc and the determination of the numerical value of GR.
This is the case for symmetric tensors, with K = 3 and N = 3. The dots (with error bars) represent the
measurements, and the fitted curves are C ∗ ε−

R−Rc
2 + const. for R > Rc as in (29), and the constant

value GR for R ≤ Rc as in (10). This clearly shows that, in this case, Rc = 10.

This procedure has been carried out for both symmetric and generic tensors and for
various choices of the parameters K and N. The results of this can be found in Table 1.
This procedure lets us also determine the value of GR numerically, as is also shown in the
examples of Figure 5.

Generally, the result was quite clear: There is a transition point at Rc = NQ. This is
true for all examples we tried, except for the N = 2 cases for symmetric tensors, for which
the critical value is Rc = 1.
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Table 1. The results of the verification of Rc for both symmetric tensors and generic tensors. It can be
seen that in most cases, except N = 2 for symmetric tensors, the hypothesis Rc = NQ holds.

Symmetric Tensors

K N Rc NQ

2

2 1 3
3 6 6
4 10 10
5 15 15

3

2 1 4
3 10 10
4 20 20
5 35 35

4
2 1 5
3 15 15
4 35 35

Generic Tensors

K N Rc NQ

2

2 4 4
3 9 9
4 16 16
5 25 25

3
2 8 8
3 27 27
4 64 64

4 2 16 16
3 81 81

Let us explain why an upper bound for the value of Rc is given by NQ. The matrix
may be written as

Mij =
N

∑
a1,...,aK=1

(φi
a1

. . . φi
aK
) · (φj

a1 . . . φ
j
aK ).

Thus, if we consider only the right part of the expression above (i.e., one of the rows of the
matrix), it can be seen as the linear map

Λ : RR → RNQ ,

λi →
R

∑
i=1

λiφ
i
a1

. . . φi
aK

.

A basic result from linear algebra is that a linear map from a vector space V to W,
with dim(V) ≥ dim(W), has a kernel of at least dimension

dim(ker Λ) ≥ dim(V)− dim(W).

Thus, for R > NQ, this kernel always has a finite dimension, and since Mij is simply
the square of this linear transformation, det M = 0. Thus, we may conclude

Rc ≤ NQ.

The reason why the critical rank actually attains this maximal value for all cases N > 2
is, at present, not clear. However, it is good to note that for random matrices, the set of
singular matrices has measure zero and, hence, for R ≤ Rc, the construction of the matrix
Mij appears to be random.
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The current result of Rc = NQ, together with the previous result for w = N
K and K = 3

of Rc ≈ 3
N NQ mentioned before, suggest a general formula that holds for most cases

Rc =
NQ

w
. (30)

This formula seems very simple, but there is no analytic understanding for this
formula yet. At present, it should be treated merely as a conjecture.

5. Numerical Evaluation and Comparison

The main goal of this section is to numerically confirm the derived formula for ZR(∆)
in (22). Therefore, we will mainly focus on values of R ≤ Rc found in Section 4 that allow
for the existence of GR defined in (10), since in those cases, the derivation is expected to
hold. We will briefly comment on cases where R > Rc at the end of the section. In short,
we will find that the relation found in (22) indeed holds for all cases that could be reliably
calculated. In this section, we will always take w = 1 such that the integration measure on
FR is given by

dΦ :=
R

∏
i=1

dλidφi.

Since the integration region has a rapidly increasing dimension, we used Monte Carlo
sampling to evaluate the integral. To do this, we alter the configuration space to a compact
manifold by introducing a cutoff Λ

RR × SN−1
+

×R → [−Λ, Λ]R × SN−1
+

×R
,

and similarly for the generic tensor case:

[−Λ, Λ]R × SN−1
+

×KR
.

With the integration region now being compact, there is no need for the extra regulari-
sation parameter ε anymore, and we can let Λ play that role instead.

In order to look at a more complicated example than matrices, but still keep the
discussion and calculations manageable, we will only consider tensors of degree 3 (i.e.,
K = 3). Since the difficulty of the direct evaluation of ZR(∆) rapidly increases due
to the high dimension of the integration region, we will only focus on low values of
N. To illustrate: noting that we also have to integrate over the normalised tensorspace,
the integration region for generic tensors with N = 3 for R = 2 is already 40-dimensional.
Considering the derivation in Section 3 and the evidence for the existence of GR presented
in Section 4, we will only show results for low values of N, as sufficient evidence for (22) is
already at hand.

In the symmetric case, the N = 2 case is only well defined for R = 1, since Rc = 1, as
can be found in Table 1. This means that only evaluating N = 2 would yield only limited
insight and, hence, we also evaluated cases for N = 3. We evaluated all cases up to Rc = 10
and found that results always agree with (22) up to numerical errors. Two examples may
be found in Figure 6. For the generic case, the situation is slightly different. For N = 2,
the critical value Rc = 8, so we can already actually expect interesting behaviour in this
case. Hence, we solely focus on the N = 2 case and evaluate the integral up to Rc = 8. Two
examples of this may be found in Figure 6.

We may conclude that for both the symmetric and generic cases, the numerical results
agree perfectly well with the derived Equation (22) and, moreover, match the values of GR
determined independently in the numerical manner explained in Section 4.



Universe 2021, 7, 302 17 of 26

(a) Symmetric tensors N = 3, R = 1 (b) Symmetric tensors N = 3, R = 2

(c) Generic tensors N = 2, R = 2 (d) Generic tensors N = 2, R = 5

Figure 6. Several examples of the direct numerical evaluation of ZR(∆) for K = 3 and w = 1 as a
function of ∆. The dots illustrate the numerically evaluated values, while the line is the curve in (22)
with the value of GR determined numerically as explained in Section 4.

We finalise this section with a remark on the case of R > Rc. In this case, GR diverges,
and the correctness of formula (22) is not guaranteed anymore. This leads to a question:
Does ZR(∆) also diverge for R > Rc, or is the divergence of GR only problematic for the
derivation of its closed form? We investigated the simplest case for this: symmetric tensors
with dimension N = 2 and rank R = 2. We found that ZR(∆) still diverges by setting
∆ = 1 and investigating the dependence on Λ, which can be seen in Figure 7. One peculiar
fact we discovered is that the functional form of ZΛ

R (∆) for fixed and finite Λ still follows
the functional dependence on ∆ of (22), also shown in Figure 7.

Figure 7. Numerical evaluation of ZR=2(∆) for N = 2. On the left, we set ∆ = 1 and vary Λ on
the horizontal axis. It can be seen that the value indeed diverges linearly, as is expected from the
discussion in Section 4, since this corresponds to a divergence of GR(ε) ∝ ε−1/2 because of ε ∼ Λ−2.
On the right, we set Λ = 10 and vary ∆ on the horizontal axis to show that the functional form
(except for the divergent part) is still given by the Formula (22).

This last fact suggests the possibility that the quantity defined in (26) might actually
be finite even for R > Rc, since the diverging parts will cancel out when taking the ε→ 0+

limit (or Λ → ∞ as in this section). To support this a bit further, let us consider the
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differential equation solved by the hypergeometric function (A7), which is a homogeneous
ordinary differential equation. If we rewrite our result from (22) 5

2F1(a, b, c; z) := u(z) ∝ z−AZR(z),

and plug this into the hypergeometric differential equation, we notice that the resulting
equation, which is the equation that ZR(z) solves and, necessarily, is still a homogeneous
ordinary differential equation. If we assume that the actual physically relevant properties
are described by this differential equation, an overall factor should not matter. Hence, if we
extract this overall factor (which might become infinite in the limit ε→ 0+), we should be
left with the physically relevant behaviour.

6. Conclusions and Discussions

Motivated by recent progress in the study of the canonical tensor model, in this work
we turned our attention to the space of tensor rank decompositions. Because of the analogy
between the terms of a tensor rank decomposition and points in a discrete space discussed
in [9], we call this the configuration space of tensor rank decompositions. This space has
the topology of a product of R times the real line and R times an N − 1-dimensional unit
hemisphere. We equip this space with a measure generated by an infinitesimal volume
element, depending on the parameter w. In the definition, we are rather general, taking
into account both symmetric and non-symmetric tensors.

The central result of this work is the derivation of a closed formula for the average
volume around a tensor of unit norm, ZR(∆), in terms of a hypergeometric function in (22).
This formula depends on the degrees of freedom of the tensor space, the parameter w of the
measure, and the rank of the tensor rank decompositions we are considering. The existence
of such a closed form formula is far from obvious, and the derivation crucially depends
on the existence of a quantity GR. We have investigated the existence of this quantity
numerically for the case where w = 1. In this case, the maximum value of R for the
existence appears to agree with the degrees of freedom of the tensor space Rc = NQ,
with the exception of the case for symmetric tensors where N = 2. Together with earlier
results in [14–16] we conjecture a more general Formula (30). Finally, we conducted some
direct numerical checks for ZR(∆) and found general agreement with the derived formula.

From a general point of view, we have several interesting future research directions.
For one, the conjectured Formula (30) for the maximum Rc is based on the analysis of two
values of w. It might be worth extending this analysis to more values, which might lead to
a more proper analytical explanation for this formula that is currently missing. Secondly,
we introduced a quantity CR(∆), describing the amount of decompositions of size less than
∆. Dividing ZR(∆) by CR(∆), we expect that this leads to a meaningful quantity that is
finite, even for R > Rc. Understanding this quantity and its convergence (or divergence)
better would be worth investigating. Finally, a peculiar connection between w and the
expected rank was found for some examples, where tuning w as in (27) lead to ZR(∆ = 1)
to be minimised for the expected rank of the tensor space. Whether this is just coincidence,
or has some deeper meaning, would be interesting to take a closer look at.

Let us discuss what the results mean for the canonical tensor model of quantum
gravity. The present work provides the first insight into the question how many tensor
rank decompositions are close to a given tensor Qabc. In the CTM, the rank R considered
corresponds to the amount of fuzzy points in a spatial slice of spacetime. The most natural
choice for parameter w is w = N/3 because this treats the points in the fuzzy space as
elements of RN [9]. The conjectured formula (30) then implies that the expected spacetime
degrees of freedom in the CTM are bounded by

Rgrav.
c =

1
2
(N + 1)(N + 2), (31)
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which is one of the reasons why the further study of the quantity GR and an analytic
understanding of the critical value Rc is highly interesting from the point of view of
the CTM.

Going back to the original question of how many discrete spaces of a given size (i.e.,
amount of points R) are close to a tensor, we note that, here, we are mainly interested in
the case for small ∆. As is shown in (23), the function ZR(∆) becomes a power function

proportional to ∆
NQ

2 in this limit. Therefore, the R-dependence in this regime is only present
in the constant pre-factor, particularly GR. This means that in future studies, to fully answer
this question, only the quantity GR has to be considered, dramatically simplifying our
problem. Another interesting future research area would be to find a way to practically
compute VR(Q, ∆) for a given tensor Q, as our main results here are estimates, since we
take the average of tensors of size one.

To conclude, we would like to point out that the formula (22) could prove to be
important in the understanding of the wave function of the canonical tensor model studied
in [12–17]. In [17], the phase of the wave function was analysed in the Q-representation; the
amplitude of the wave function is, however, not known. From [12,13], we expect that there
is a peak structure, where the peaks are located at Qabc that are symmetric under Lie group
symmetries. In the present paper, we have determined a formula for the mean amplitude 6,
which we can use to compare to the local wave function values in future works.
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Appendix A. Tensor Rank Decompositions

The tensor rank decomposition, also called the canonical polyadic decomposition, may
be thought of as a generalisation of the singular value decomposition (SVD) for matrices,
which are tensors of degree two, to tensors of general degree. For a more extensive
introduction to tensors and tensor rank decomposition, we would like to refer to [19,20].

The SVD decomposes a given real N × N matrix M into M = ATΛB, where A and
B are orthogonal matrices and Λ is a diagonal matrix, the diagonal components of which
are called the singular values. 7 The amount of nonzero singular values of a given matrix
is called the rank of the matrix, denoted by R. To extend the SVD to tensors of general
degree, let us rewrite this in a more suggestive form, which is called the dyadic notation of
the matrix

Mab =
R

∑
i=1

R

∑
j=1

(Ai)a Λiiδij (Bj)b :=
R

∑
i=1

λivi
awi

b,

where vi, wi ∈ RN and λi ≡ Λii ∈ R are the nonzero singular values. The generalisation to
general tensors of degree K is now straightforward:

Qa1 ...aK =
R

∑
i=1

λiv
(1)
a1

i
. . . v(K)aK

i
, (A1)

where the rank R is now defined as the lowest number for which such a decomposition

exists, and v(k)
i ∈ RN . For symmetric tensors (similar to symmetric matrices), we can find

a decomposition in terms of symmetric rank-1 tensors, meaning that every term in the
decomposition is generated by a single vector

Qa1 ...aK =
R

∑
i=1

λiva1
i . . . vaK

i.
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The minimum R for which this is possible is called the symmetric rank.
The space of tensor rank decompositions with R components, FR, is a subset of the

full tensor space
FR ⊂ T = V ⊗ . . .⊗V.

This space increases as R becomes bigger, and in its limit it spans the whole tensor
space. A typical rank Rt of the tensor space T is a rank for which FR has positive measure
in the full tensor space. This typical rank is not necessarily unique, but if this is the case, it
is called the generic rank.

The expected generic rank, RE, is a conjectured formula for the generic rank that a
tensor space is expected to have, which has been proven to provide a lower estimate of the
generic rank. The formula for the non-symmetric case is given by:

RE =

⌈
NK

N ∗ K− K + 1

⌉
. (A2)

Note that while the tensor rank decomposition generalises the singular value decom-
position, there are many differences between the two [21]. For example, often the tensor
rank decomposition is unique [8], but actually computing the tensor rank decomposition is
very hard [10].

Note that the vectors v(k)
i

may be re-scaled as

φ(k)i
:= ± v(k)

i∥∥∥v(k)i
∥∥∥ ,

λi → λi

K

∏
k=1

(
±
∥∥∥∥v(k)

i
∥∥∥∥),

where the sign is taken such that φ(k)i
lies on the upper hemisphere SN−1

+ ⊂ RN . This is
the form we will use in order to remove redundancies in the definition.

Appendix B. Lemmas

This appendix section contains two lemmas used in the propositions of Section 3.

Lemma A1. Given that GR in (10) is finite, for α, γ > 0 the following limit of the integral

Y(α, γ) := lim
ε→0+

∫
RNQ

dQ
∫
FR

dΦ e−αQ2−γ(Q−Φ)2−ε ∑R
i=1 λ2

i , (A3)

is finite.

Proof. Using the same inequality with 0 < A < 1,

‖Q−Φ‖2 ≥ (‖Q‖ − ‖Φ‖)2 ≥ A‖Φ‖2 − A
1− A

‖Q‖2,

as in step one of the proof of Proposition 1, we obtain

Y(α, γ) ≤ lim
ε→0+

∫
RNQ

dQ
∫
FR

dΦ e−αQ2+ γA
1−A Q2−γAΦ2−ε ∑R

i=1 λ2
i ,

=
∫
RNQ

dQ e−
(

α− γA
1−A

)
Q2

lim
ε→0+

∫
FR

dΦ e−γAΦ2−ε ∑R
i=1 λ2

i .

In the second line, it can be seen that the Q and Φ integration decouple, where the Q
integration is simply a finite Gaussian integral if one takes A such that α > γA

1−A . The Φ
integration is nothing more than a finite constant multiplied by GR.
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Hence, we conclude that this integration is finite if limε→0+ GR(ε) exists.

Lemma A2. The limits in Equation (20) may be safely interchanged, i.e.,

lim
ε→0+

∫ ∞

0
dx Z̄R(x; ε x) x

NQ+w R
2 −1 e−t x =

∫ ∞

0
dx lim

ε→0+
Z̄R(x; ε x) x

NQ+w R
2 −1 e−tx, (A4)

under the assumption that limε→0+ GR(ε) converges and is finite.

Proof. In order to prove (A4), let us take an X > 0 and split the integral into two parts

lim
ε→0+

∫ X

0
dx Z̄R(x; ε x) x

NQ+w R
2 −1 e−t x + lim

ε→0+

∫ ∞

X
dx Z̄R(x; ε x) x

NQ+w R
2 −1 e−t x,

and consider both parts separately.
For the first term, we know that the integral and limit can be interchanged if the

integrand is uniformly convergent, i.e.,

lim
ε→0+

sup
x∈[0,X)

∣∣∣∣x NQ+w R
2 −1 e−t x(Z̄R(x; ε x)− Z̄R(x))

∣∣∣∣ = 0.

Now, note that the function Z̄R(x; ε x) is bounded by a contribution proportional

to x−
w R

2 as shown in (17), but the expression above has a factor of x
NQ+w R

2 −1 and, thus,
the point x = 0 does not pose a problem and the value above is finite for all x ∈ [0, X).
However, since from the first step of Proposition 1, we know Z̄R(x; ε x)→ Z̄R(x),

∀x∈[0,X) |x
NQ+w R

2 −1 e−t x ||Z̄R(x; ε x)− Z̄R(x)| → 0,

and, hence, we have uniform convergence, meaning that the integral and limiting opera-
tions may be interchanged.

For the second term, since Z̄R(x; ε) is decreasing in x and ε, we obtain an upper bound
(and using the convergence of Z̄R(x; ε x) which has been proven already)∫ ∞

X
dx Z̄R(x; ε x) x

NQ+w R
2 −1 e−t x ≤

∫ ∞

X
dx Z̄R(X) x

NQ+w R
2 −1 e−t x,

= Z̄R(X)
∫ ∞

X
dx x

NQ+w R
2 −1 e−t x .

Now, Z̄R(X) does not increase for larger X, and the final integral converges to zero
for large X. This means that the left-hand side vanishes in the limit X → ∞.

Thus, we conclude that the integral and limiting operations may be interchanged.

Appendix C. Necessary Formulae

In this work, we use some nontrivial formulae that are listed in this subsection. Most
of them are used in Section 3 for the proof of Propositions 1 and 2. This section is divided
into formulae related to the hypergeometric functions, Appendix C.1, and formulae directly
related to the inverse Laplace transforms, Appendix C.2.

Appendix C.1. Properties of Hypergeometric Functions

The hypergeometric function and its generalisations play a central role in many fields
of mathematics, physics, and other sciences. The reason for this is that many of the special
functions used throughout these areas can be expressed in terms of the hypergeometric
function. An overview of the hypergeometric function and its application may be found
in [22], and a resource for the confluent hypergeometric function (including the Whittaker’s
function mentioned below) may be found in [23]. In this work, the final result is expressed
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in terms of the hypergeometric function, whereas in the derivation, we use the confluent
hypergeometric function. This appendix section summarises some important notions,
definitions, and formulae.

The generalised hypergeometric function, in some sense a generalisation of the geo-
metric series, is defined as the analytic continuation of the series

pFq(a1, . . . , ap, b1, . . . , bq; z) =
∞

∑
n=0

(a1)n . . . (ap)n

n!(b1)n . . . (bq)n
zn, (A5)

where we used the Pochhammer symbols

(a)n =
Γ[a + n]

Γ[a]
.

The hypergeometric function is the case where p = 2 and q = 1, i.e., inside the range
of convergence

2F1(a, b, c; z) =
∞

∑
n=0

(a)n(b)n

n!(c)n
zn. (A6)

The hypergeometric function may also be defined as the solution to the hypergeometric
differential equation

z(1− z)
d2u(z)

dz2 + [c− (a + b + 1)z]
du(z)

dz
− ab u(z) = 0. (A7)

For Re(c) > Re(b) > 0 and z not being a real number on z ≥ 1, the hypergeometric
function has an integral representation, 8

2F1(a, b, c; z) =
1

β(b, c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a, (A8)

where β(a, b) is the beta-function defined by

β(a, b) :=
Γ[a]Γ[b]
Γ[a + b]

. (A9)

The confluent hypergeometric function is defined by the limit

M(a, c; z) := lim
b→∞

2F1(a, b, c; z/b) = 1F1(a, c; z), (A10)

which exactly corresponds to the series representation defined in (A5) for p = q = 1.
The differential equation associated to this function may be found in a similar way, and is
called the Kummer’s equation 9

z
d2w(z)

dz2 + [c− z]
dw(z)

dz
− a w(z) = 0. (A11)

The confluent hypergeometric function also has an integral representation given by

1F1(a, c; z) =
1

β(a, c− a)

∫ 1

0
dt et z ta−1(1− t)c−a−1, (A12)

for Re(c) > Re(a) > 0. One property of the confluent hypergeometric function we will
need is Kummer’s transformation:

e−z
1F1(a, c; z) = 1F1(c− a, c;−z). (A13)
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The Whittaker functions are a variant of both of the confluent hypergeometric func-
tions. The first Whittaker function is the only one we will use and it is defined by [23]

Mν,µ(z) := e−
z
2 zµ+ 1

2 1F1(µ− ν +
1
2

, 1 + 2µ; z). (A14)

Appendix C.2. The (Inverse) Laplace Transform

The Laplace transform and its inverse are heavily used tools in mathematics, physics,
engineering, and other sciences. A good introduction and overview of this area of mathe-
matics is [24]. In Ref. [25], many explicit Laplace transforms may be found. 10

The Laplace transform (or Laplace integral) of a function f (t) is given by

F(s) ≡ L( f )(s) :=
∫ ∞

0
e−s t f (t)dt. (A15)

The Laplace transform is a very useful tool in many aspects. For our purposes, on the
one hand, it is possible to convert a complicated integral to a closed formula in the Laplace
space and, secondly, we find a formula that exactly corresponds to a Laplace transform
which lets us extract a function by taking the inverse Laplace transform. Generally, it is
often used for solving differential equations. The main reason for this is that under the
Laplace transformation, taking a derivative corresponds to multiplication by the variable s
in the Laplace space.

Of course, neither taking the Laplace transform nor taking the inverse Laplace trans-
form is always an easy task. In our case, taking the Laplace transform is not that difficult,
but the inverse Laplace transform is more involved.

The Laplace transform of a function f (t) exists if the function satisfies two properties:
(1) it is of exponential order, (2) it is integrable over any finite domain in [0, ∞). Note that
from (A15), it can easily be seen that the inverse Laplace transform cannot be unique, since
every null function (a function of measure zero) may be added to a function and result
in the same Laplace transform. Hence, the inverse Laplace transformation can only be
expected to map towards an equivalence class generated by the null functions. In the
present work, however, this ambiguity does not affect our final result: the function (8) is
clearly a monotonically increasing function in ∆, and the end result (22) is continuous and,
hence, there is no possibility for a null function to be added.

For two functions f (t) and g(t), we can define the convolution as

( f ∗ g)(t) =
∫ t

0
f (τ)g(t− τ)dτ. (A16)

It can straightforwardly be verified that convolution is both commutative and asso-
ciative. If we assume the convergence of the Laplace integral of f (t) and g(t), then the
convolution theorem holds

L( f ∗ g) = L( f )L(g), (A17)

in other words, the convolution of two functions in the usual domain corresponds to a
product in the Laplace domain.

The Laplace transform used in Section 3 is just a straightforward computation of (A15),
but we also use two inverse Laplace transforms. Hence, below are three inverse Laplace
transformations we use. We will give short proofs for the formulae.

The first inverse Laplace transform we need is a relatively easy one, namely the inverse
Laplace transform of x−A−1:

L−1[x−A−1] =
tA

Γ[A + 1]
. (A18)

This can be found by using (A15) on the right-hand side. This formula is valid for
A > −1.
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In this work we need the inverse Laplace transform of (1 + x)−Ax−B. This is given by

L−1[(1 + x)−Ax−B] = t−1+A+B 1F1(A, A + B,−t)
Γ(A + B)

. (A19)

Showing this is a little less trivial. For this, let us take the Laplace transform of the
right hand side, using the integral representation of (A12),

L
[
t−1+A+B

1F1(A, A + B,−t)
]
=

1
β(A, B)

∫ ∞

0
dt e−t x t−1+A+B

∫ 1

0
dτ e−t τ τA−1(1− τ)B−1,

=
1

β(A, B)

∫ 1

0
dτ τA−1(1− τ)B−1

∫ ∞

0
dt e−t (x+τ) t−1+A+B,

=
Γ[A + B]
β(A, B)

∫ 1

0
dτ τA−1(1− τ)B−1(x + τ)−A−B,

= Γ[A + B](1 + x)−Ax−B,

where in the second step, we used (A18).
The last explicit equation we will need is related to the Whittaker function (A14),

L−1
[

β(µ−ν+ 1
2 ,µ+ν+ 1

2 ) x−
1
2−µ e−

x
2 Mν,µ(x)

]
=


0, t < 0,

tµ+ν− 1
2 (1− t)µ−ν− 1

2 , 0 ≤ t ≤ 1,
0, t > 1.

(20)

One can find this inverse Laplace transform by using the definition of the Laplace
transfrom (A15), the integral representation of the confluent hypergeometric function (A12),
the definition of the Whittaker function (A14), and Kummer’s transformation (A13):

L
[
tµ+ν− 1

2 (1− t)µ−ν− 1
2 Θ(t < 1)

]
=
∫ 1

0
dt e−x t tµ+ν− 1

2 (1− t)µ−ν− 1
2 ,

= β(µ−ν+ 1
2 ,µ+ν+ 1

2 ) 1F1(µ + ν +
1
2

, 2µ + 1;−x),

= β(µ−ν+ 1
2 ,µ+ν+ 1

2 ) e−x
1F1(µ− ν +

1
2

, 2µ + 1; x),

= β(µ−ν+ 1
2 ,µ+ν+ 1

2 ) x−
1
2−µ e−

x
2 Mν,µ(x).

Appendix D. The Expression of CR(∆)

In (25), we introduce the following quantity:

CR(∆) :=
∫
FR

dΦw Θ(∆− ‖Φ‖2).

A proper definition of this quantity would assume a regularisation function such
as in (8). In this appendix section, we keep the discussion short and heuristic. A proper
derivation including this regularisation function would go exactly along the lines of the
derivation of ZR(∆) in Section 3. In a similar way as the derivation of ZR(∆), assuming
the existence of GR, we can now take the Laplace transform

C̄R(γ) =
∫ ∞

0
d∆

∫
FR

dΦw e−γ∆ Θ(∆− ‖Φ‖2),

=
∫
FR

dΦw

∫ ∞

‖Φ‖2
d∆ e−γ∆,

= γ−1
∫
FR

dΦw e−γΦ2
,

= γ−
w R

2 −1 GR.
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Now that we related the Laplace transform to GR, we can take the inverse Laplace
transform using (A18):

CR(∆) =
GR

Γ
[

w R
2 + 1

]∆
w R

2 . (A21)

Notes
1 For more information we would like to refer to Appendix A.
2 This is a formal definition which will be properly regulated later on.
3 Note that the usual definition of the rank of a tensor is the minimal value R such that there is a solution to Equation (3).
4 The expected rank of a tensor space is the expected rank for which FR becomes dense in (an open subset of) the full tensor space.

See Appendix A.
5 Here, we took the case where z < 1, and the exact same argument holds for the z > 1 case.
6 In the actual wave function of CTM in (2), the O(Φ) part contains a product of Airy functions. Since the size of this part is

generally upper bounded for a reasonable choice of the wave function, the mean value is for the upper bound of the local
wave function.

7 To keep the discussion simple, only real N × N matrices are considered here, but this may be generalised in a straightfor-
ward manner.

8 This is actually the proper analytic continuation of the series above.
9 There is another function besides 1F1(a, c; z) that satisfies the differential equation in (A11). This is called the confluent hypergeo-

metric function of the second kind.
10 A note of caution here, since the formula for (A20) for instance is incorrect.
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