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Abstract: Analogue systems are used to test Hawking radiation, which is hard to observe in actual
black holes. One such system is the electrical transmission line, but it suffers the inevitable issue of
excess heat that collapses the successfully generated analogue black holes. Soliton provides a possible
solution to this problem due to its stable propagation without unnecessary energy dissipation in
nonlinear transmission lines. In this work, we propose analogue Hawking radiation in a nonlinear
LC transmission line including nonlinear capacitors with a third-order nonlinearity in voltage. We
show that this line supports voltage soliton that obeys the nonlinear Schrödinger equation by using
the discrete reductive perturbation method. The voltage soliton spatially modifies the velocity of the
electromagnetic wave through the Kerr effect, resulting in an event horizon where the velocity of
the electromagnetic wave is equal to the soliton velocity. Therefore, Hawking radiation bears soliton
characteristics, which significantly contribute to distinguishing it from other radiation.

Keywords: nonlinear transmission lines; analogue gravity; soliton

1. Introduction

Hawking radiation [1] is the flux of particles with a thermal spectrum radiated from a
black hole where even light cannot escape. Since it involves processes whereby the virtual
particles with a positive frequency, which are quantum-mechanically pair-generated from
the vacuum near the event horizon of curved spacetime, are embodied as real particles,
Hawking radiation is considered to be an extremely significant consequence of quantum
mechanics and general relativity. Therefore, the observation of Hawking radiation is a
touchstone for evaluating possible unified theories of quantum mechanics and general
relativity, i.e., quantum gravity. Unfortunately, it is unlikely to be measured from a real
black hole because it is much weaker than the background radiation.

In 1981, Unruh [2] opened the possibility of observing analogue Hawking radiation
in the laboratory by using a sonic horizon that separates a subsonic and a supersonic
current in a moving fluid. Inspired by his seminal work, there have been proposals to test
predictions of gravity and cosmology in various systems with analogies, such as liquid
helium [3], Bose–Einstein condensates [4], and optical fibers [5]. Among them, some
proposals have been made using electric circuits that promise the advantage of being much
easier to control, amplify, and detect electromagnetic waves with current technology [6–10].

In an electric circuit, an event horizon is introduced with the same idea as Unruh [2]
by spatially modifying the velocity of electromagnetic waves propagating in the circuit, al-
though the roles of moving fluid and (Hawking) phonons in sonic systems are reversed [10].
The velocity of electromagnetic waves per unit cell length a in the transmission line is
given by v = a/

√
LC with inductance L and capacitance C. Therefore, we need to in-

troduce spatial changes in the inductance or capacitance for generating analogue black
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holes. Schützhold and Unruh [6] proposed an analogue black hole in electric circuits for the
first time. In their method, the velocity of the electromagnetic waves in LC transmission
lines is modulated through the changes in capacitance by applying the laser light along
the waveguide at a fixed velocity. This proposal has not been implemented yet because a
lot of excess environmental photons are induced by laser-based illumination, leading to
heating problems that make the observation of Hawking radiation difficult [11]. One of
the solutions to this issue is to use superconducting devices. Nation et al. [7] proposed an
analogue black hole in an array of direct current superconducting interference devices (dc
SQUIDs) in which the external magnetic flux is applied to their superconducting system at
a fixed velocity, which changes the velocity of electromagnetic waves spatially through its
inductance. However, the pulse current for generating the external magnetic field generally
corrupts with time due to wavenumber dispersion. Therefore, stable analogue black holes
are unlikely to be formed in their system.

Another possible approach to overcome these problems is to generate an analogue
black hole using solitons. A soliton is a solitary wave created by balancing dispersion and
nonlinearity of the nonlinear dispersive media that propagates stably after the collisions
with other solitons [12–14]. This unique property has led to applications to information
communication, such as optical solitons [15], and has provided a fundamental concept
for understanding nonlinear physical phenomena in a variety of systems. In electrical
circuits, the existence of the Toda (voltage) solitons [16] obeying the Korteweg-de Vries
(KdV) equation is well known in the nonlinear LC circuit with nonlinear capacitors, which
gives the basic concept of soliton theory and its use for signal transmissions.

In this paper, we propose an analogue black hole in nonlinear LC transmission lines
with nonlinear capacitors. We can obtain a soliton obeying the nonlinear Schrödinger
equations, unlike the KdV equation, by focusing on the third order of the nonlinearity in
the discrete reductive perturbation method [17–22]. The obtained voltage soliton modulates
the velocity of the electromagnetic waves through nonlinear capacitance, resulting in the
generation of an analogue black hole. We also derive the Hawking temperature to evaluate
whether Hawking radiation is detectable in our system.

2. Model and Methods

Let us consider the propagation of electromagnetic waves in the nonlinear transmis-
sion lines shown in Figure 1. The fundamental elements of electric circuits are the LC
circuits consisting of inductors and capacitors. In the LC circuit, electromagnetic waves are
generated due to changes in the electric and magnetic fields. The LC transmission lines are
formed by connecting them. Assume that inductance L and capacitance C are constant, the
circuit equation is derived as follows. From Faraday’s law, the voltage applied to the nth
inductor with inductance L is derived by

Vn −Vn−1 = −L
dIn

dt
, (1)

where Vn is the voltage applied to the nth capacitor and In is the current flowing through
the nth inductor. We obtain

d
dt
(In+1 − In) = −

1
L
(Vn+1 − 2Vn + Vn−1) (2)

by taking the difference with the equation for the (n + 1)th inductor. From Kirchhoff’s law,
we obtain

In+1 − In = − d
dt

CVn. (3)
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The circuit equation is given by

d2

dt2 (LCVn)− (Vn+1 − 2Vn + Vn−1) = 0, (4)

by substituting Equation (3) for Equation (2). This equation is equivalent to the equation
for lattice vibration with a linear coupling constant. We can apply it to the continuum
approximation Vn ≡ V(x, t) under the condition of unit cell length a � 1 and perform
Taylor expansion as

Vn±1(t) = V(x± a, t)

= V ± a
∂V
∂x

+
a2

2!
∂2V
∂x2 ±

a3

3!
∂3V
∂x3 + O(a4) (5)

to obtain the wave equation. Equation (4) leads to

∂2V
∂t2 = v2

0
∂2V
∂x2 , (6)

where the velocity of the electromagnetic waves propagating in the transmission lines is
given by v0 = a/

√
LC. Substituting the plane wave solution V = exp{i(kx − ωt)}, the

dispersion relation in these transmission lines is derived as

ω(k) = v0k, (7)

where ω and k are the frequency and wavenumber, respectively. The phase velocity and
the group velocity are the same ω/k = dω/dk = v0, and then there is no dispersion in the
linear LC transmission lines.

・・・
L

In

C(Vn)

In+1In-1

Vn Vn+1Vn-1

・・・

a

Figure 1. Nonlinear LC transmission line consisting of constant inductance L and nonlinear capaci-
tance depending on voltage C(Vn). The unit cell length is denoted by a. The current and the voltage
on the nth unit cell are In and Vn, respectively.

In this paper, we consider the LC circuit with nonlinear capacitors depending on the
voltage Vn, as [23],

C(Vn) = C0
V0

V0 + Vn
, (8)

where C0 and V0 are the characteristic capacitance and voltage. The nonlinear capacitance
can also be expanded as

C(Vn) = C0

(
1− αVn + βV2

n − · · ·
)

(9)

where α = 1/V0 and β = 1/V2
0 are positive parameters.
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Now, let us derive the circuit equation as described above. This is done by replacing
the capacitance C with the nonlinear capacitance C(Vn) in Equation (4), and the circuit
equation reads

d2

dt2 {LC(Vn)Vn} − (Vn+1 − 2Vn + Vn−1) = 0. (10)

In continuum approximation, the circuit equation leads to(
∂

∂t
1

v2(x, t)
∂

∂t
− ∂2

∂x2

)
V = 0, (11)

where the velocity of the electromagnetic wave depends on the position expressed as
v(x, t) = a/

√
LC(V(x, t)).

3. Results
3.1. Nonlinear Schrödinger Soliton

Now, let us explore the waves hidden in our circuit using the discrete reductive pertur-
bation method [17–22], which allows us to extract the waves balancing the nonlinearity and
the dispersion from the circuit Equation (10). The discrete reductive perturbation method
is used to find nonlinear evolution equations by introducing the stretched variables, as{

ξ = ε
(
an− vgt

)
τ = ε2t,

(12)

where ε is a small dimensionless parameter (0 < ε � 1) and vg represents the group
velocity. These transformations extract slowly varying waves in co-moving frames with
group velocities vg from the circuit equations. We also expand the voltage, as [24],

Vn = V(0) +
+∞

∑
l=−∞

∑
α=1

εαV(α)
l (ξ, τ) exp[il(kan−ωt)], (13)

where the rapidly varying phase i(kan−ωt) preserves the discrete character of the system
even in slow varying frames. We restrict our analysis to the so-called rotating-wave
approximation that consists essentially of neglecting higher harmonics:

Vn(t) ' εV(1)
1 (ξ, τ) exp[i(kan−ωt)] + εV∗(1)1 (ξ, τ) exp[−i(kan−ωt)]. (14)

Substituting Equations (12) and (14) into Equation (10) (the circuit equation), we obtain
some important formulae for each ε order as described in Appendix A. For the εei(kan−ωt)

order, the dispersion relation in our system is obtained as

ω = ± 2√
LC0

sin
ka
2

, (15)

as shown in Figure 2. For the ε2ei(kan−ωt) order, the group velocity that matches the
expression from the definition vg = ∂ω/∂k is also derived as

vg =
1
ω

a
LC0

sin ka = ±v0 cos
ka
2

, (16)

with v0 = a/
√

LC0. As a result, our system has a normal dispersion, since the phase velocity

vp =
ω

k
= ±v0

2
ka

sin
ka
2

(17)
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is always larger than the group velocity vg in our system, as shown in Figure 3. Finally, we
also obtain the desired nonlinear evolution equation, the so-called nonlinear Schrödinger
equation, for the ε3ei(kan−ωt) order, as

i
∂V(1)

1
∂τ

+ P
∂2V(1)

1
∂ξ2 + QV(1)

1 |V
(1)
1 |

2 = 0, (18)

where

P =
1

2ω

(
a2

LC0
cos ka− v2

g

)
= ∓ a

4
v0 sin

ka
2

, (19)

Q =
3βω

2
= ± 3β√

LC0
sin

ka
2

. (20)

The coefficient P represents the group velocity dispersion and has the well-known relation
expressed as

P =
1
2

dvg

dk
. (21)

The nonlinear Schrödinger equation has the soliton solutions depending on the sign of the
product PQ. The bright soliton

V(1)
1 = VA sech

(
VA

√∣∣∣∣ Q
2P

∣∣∣∣(ξ − uτ)

)
ei(kξ−ωτ) (22)

is formed when PQ > 0 and the dark soliton

V(1)
1 = VA tanh

(
VA

√∣∣∣∣ Q
2P

∣∣∣∣(ξ − uτ)

)
ei(kξ−ωτ) (23)

is obtained when PQ < 0, where VA is the amplitude and u is the relative velocity of
the soliton in the ξ − τ coordinates, as shown in Figure 4. In our system, the product is
given by

PQ = −3β

4
v2

0 sin2 ka
2

, (24)

so the sign is always negative (PQ < 0), and then the dark solitons are admitted. The
soliton width is written by w = 2 arccosh(

√
2)
√
|2P/Q|/A, where

√
|2P/Q| = aV0/

√
6.

This will be used later to evaluate the validity of the continuum approximation.

ω
 [
×
1
0
1
1
H
z]

k [×103/m]

1.0 2.0 3.0

1.0

0.5

1.5

0

Figure 2. Diagram of dispersion relation in our system. We set the circuit parameters to a = 10−3 m,
L = 0.4× 10−9 H, and C0 = 0.4× 10−12 F.
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 [
×
1
0
7
m
/s
]

k [×103/m]

1.0 2.0 3.0

4.0

8.0

0

vg

vp

Figure 3. Phase velocity vp (solid line) and group velocity vg (dashed line) as a function of wavenum-
ber k. The circuit parameter values are the same as in Figure 2. The phase velocity is always larger
than the group velocity.

η 0

η  

(a)

(b)

0

V
1
(1
)  

 
V
1
(1
)  

 

VA  

-VA  

VA  

0

Figure 4. Schematic diagram of (a) a bright soliton and (b) a dark soliton in co-moving frame η

described by Equations (22) and (23), respectively. The amplitude is represented by VA.

3.2. Analogue Black Hole

Here, let us present the analogue black hole generated by the voltage soliton in our
system. We first explain the fundamental idea of the analogue black hole. Imagine carp
trying to swim up a waterfall. The flow of the waterfall is faster downstream than upstream,
i.e., the flow velocity changes in space, while the carp can swim at a constant velocity
against still water. The carp can swim freely upstream because the flow is slower than
the carp. However, the carp cannot climb when the speed of the flow is faster than the
carp. This region corresponds to the black hole from where light cannot escape. The event
horizon is formed where the speed of the flow and the carp are the same. In short, analogue
black holes can be generated in laboratories by spatially varying the velocity.

Here, we show that the velocity of the electromagnetic waves changes in space due
to the voltage solitons in our system. The non-dispersive part of the velocity of the
electromagnetic waves propagating in the LC transmission lines is given by v = a/

√
LC,

which depends on the inductance and the capacitance. Therefore, the non-dispersive part
of the velocity is modulated if either the inductance or capacitance is not constant. In our
system with a nonlinear capacitance depending on voltage, the non-dispersive part of the
velocity depends on the voltage soliton V(1)

1 and varies spatially, as

v(η) =
a√

LC
(

V(1)
1 (η)

) = v0

√
1 +

V(1)
1 (η)

V0
, (25)

where η = ξ − uτ is the comoving frame with the soliton.
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The propagation of electromagnetic waves within the proposed transmission line is
similar to that in the Painlevé -Gullstrand coordinates as described by the following metric.
In the comoving frame with the velocity vs, the wave Equation (11) leads to[(

∂

∂t
− vs

∂

∂η

)
1

v2(η)

(
∂

∂t
− vs

∂

∂η

)
− ∂2

∂η2

]
V = 0. (26)

Therefore, the metric is given as

ds2 = gµνdxµdxν, (27)

with the metric tensor

gµν = −
(

v2
s − v2(η) vs

vs 1

)
. (28)

Note that the spatial dependence of the velocities of the background flow and the elec-
tromagnetic waves is exchanged for that of a sound black hole [2]. As is well known, the
event horizon occurs where g00 = v2

s − v2(η) = 0.
In dispersive media, the phase velocity depends on the frequency or the wavenumber,

and the wave packet composed of waves with various frequencies moves with the group
velocity. The phase velocity Equation (17) becomes

vp = ±v(η)
2
ka

sin
ka
2

, (29)

by incorporating the dispersion and nonlinear effects. Note that we need to consider the
group velocity in the dispersive system instead of the phase velocity for the generation
of the analogue black hole. The group velocity for the linear waves in Equation (16) is
modified by the nonlinearity of capacitance as follows:

vg(η) = ±v(η) cos
ka
2

. (30)

The group velocity also changes spatially. Substituting Equations (23) and (25), Equation (30)
leads to

vg(η) = ±v0 cos
ka
2

√√√√1 +
VA
V0

tanh

(√
6VA

aV0
η

)
. (31)

Figure 5 shows the correlation diagram of the voltage soliton (b) and the group
velocity of the electromagnetic waves (c) in the nonlinear LC transmission lines (a). The
ratio w/a of the width of the voltage soliton to the unit cell length is determined by
V0/VA, as discussed above. The ratio is about 7, which is enough to apply the continuum
approximation to the voltage soliton V(1)

1 when V0/VA = 10 in Figure 5. The horizon
occurs where the velocity of the electromagnetic waves is equal to that of the soliton, i.e.,
v2

g = v2
s . Therefore, the soliton velocity is restricted in the range between the minimum and

maximum of vg(η) for the generation of the event horizon, i.e., v0 cos (ka/2)
√

1−VA/V0 ≤
vs ≤ v0 cos (ka/2)

√
1 + VA/V0. The position of the event horizon is derived as

ηh =
a√
6

V0

VA
arctanh

{
V0

VA

(
v2

s

v2
0 cos2 ka

2

− 1

)}
. (32)
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η [m] 0.01-0.01 0

v g
 [

×
1

0
7
m

/s
] 

7.5

8.2

η [m] 
0.01-0.01 0

V
1
(1
)  

[V
] 

-1.0

1.0

(a)

(b)

(c)

0

ηh 

vs 

Figure 5. (a) Schematic diagram of nonlinear transmission lines. (b) A voltage soliton V(1)
1 in the

co-moving frame η. We set VA = 0.1 V and V0 = 1 V, with the other circuit parameters the same
as those in Figure 2. The soliton width is about w ∼ 7a. (c) The spatially varying group velocity of
the electromagnetic waves in the co-moving frame η for the wavenumber k = 100/m with the same
circuit parameters. The horizontal dashed line represents the soliton velocity vs. The event horizon is
formed at ηh, where v2

g = v2
s .

3.3. Hawking Temperature

Next, we evaluate the Hawking temperature in our system, which is described by [8]

TH =
h̄

2πkB

∣∣∣∣∂vg

∂η

∣∣∣∣
η=ηh

. (33)

The gradient of the electromagnetic-wave velocity is given as

∂vg

∂η
=

v0

a

√
6

2
V2

A
V2

0

{
1 +

VA
V0

tanh

(√
6

a
VA
V0

η

)}− 1
2

sech2

(√
6

a
VA
V0

η

)
cos

ka
2

. (34)

Together with Equations (32) and (34), the Hawking temperature is given as

TH =
h̄

2πkB

v0

a

√
6

2
V2

A
V2

0

v0

vs

1−
V2

0
V2

A

(
v2

s

v2
0 cos2 ka

2

− 1

)2
 cos2 ka

2
. (35)

The Hawking temperature depends on the soliton velocity, as shown in Figure 6, and
reaches the maximum T̃H where the gradient of the electromagnetic-wave velocity at the
horizon ηh is the largest. The soliton velocity ṽs, which gives the maximum Hawking
temperature, is derived by

dTH
dvs

= 0. (36)

Solving this equation, we obtain

ṽs = v0

√√√√1
3

(
1 +

√
4− 3

V2
A

V2
0

)
cos

ka
2

, (37)
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and

T̃H =
h̄

2πkB

v0

a

2
√

2
3

cos
ka
2

(
3

V2
A

V2
0
− 2 +

√
4− 3

V2
A

V2
0

)1 +

√
4− 3

V2
A

V2

−
1
2
, (38)

which means that the order of magnitude of the Hawking temperature is dominated by
v0/a = 1/

√
LC0. The Hawking temperature reaches the milli-Kelvin order with experi-

mentally feasible circuit parameters, as shown in Figure 6. This demonstrates that Hawking
radiation is observable in our system.

T
H
 [
×
1
0
-3
K
]

vs [×10
7m/s]

7.6 7.8 8.0

0.5

1.0

0.0
8.2vs 

~

~
TH 

Figure 6. Dependence of Hawking temperature on soliton velocity. The Hawking temperature
reaches the maximum T̃H at the soliton velocity ṽs. The circuit parameters are the same as in Figure 5.

4. Discussion

We have proposed the analogue black hole in LC transmission lines with nonlinear
capacitors and shown that the voltage dark soliton obeying a nonlinear Schrödinger
equation exists in the LC transmission lines by using discrete reductive perturbation
methods. The voltage soliton can propagate through the transmission line without causing
any unnecessary heat generation, and it spatially modifies the capacitance owing to the
nonlinearity of the capacitor, leading to the spatial change of the electromagnetic-wave
velocity in the transmission line. These spatial changes in the electromagnetic-wave velocity
lead to the generation of the analogue black holes. This analogue black hole is dual to the
one in Josephson transmission lines with nonlinear inductors [8], where the velocity of
electromagnetic waves is spatially modulated through the nonlinear Josephson inductance.

We also evaluated the Hawking temperature using the conventional formula based on
the gradient of surface gravity. Using the existing available circuit parameters, we found
the Hawking temperature to be on the order of milli-Kelvin, by which we can conclude
that Hawking radiation is observable in the transmission lines. We also identified the
observed radiation as Hawking radiation by evaluating the soliton-velocity dependence of
the Hawking temperature, as it depends on the soliton velocity.

We can extend our analogue black hole to the theory of black hole lasers in future
work. There have been proposals of black hole lasers composed of two horizons behaving
like a resonator for amplifying Hawking radiation [25–29]. However, as yet there has been
no proposal of the black hole lasers in electric circuits. Two horizons need to be combined
to produce the resonator. We believe that this can be achieved by pairing solitons and
anti-solitons that correspond to black holes and white holes, respectively [10]. This will be
discussed in our forthcoming paper.
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Appendix A. Discrete Reductive Perturbation Method

Here we derive the nonlinear Schrödinger equation from circuit Equation (10) by
using discrete reductive perturbation methods. We substitute Equations (12) and (14) into
circuit Equation (10) and obtain the fundamental relations in our system for each ε order.

For the εei(kan−ωt) order, we obtain

−ω2V(1)
1 − 1

LC0

(
−4V(1)

1 sin2 ka
2

)
= 0. (A1)

This leads to the dispersion relation, as expressed in Equation (15).
For the ε2ei(kan−ωt) order, the following relation holds:

2iωvg
∂V(1)

1
∂ξ
− 1

LC0

(
2ia sin ka

∂V(1)
1

∂ξ

)
= 0. (A2)

This yields the group velocity, as expressed in Equation (30).
For the ε3ei(kan−ωt) order, we satisfy

v2
g

∂2V(1)
1

∂ξ2 − 2iω
∂V(1)

1
∂τ
− 1

LC0

(
a2 ∂2V(1)

1
∂ξ2 cos ka

)
+ β

(
−3ω2|V(1)

1 |
2
)
= 0. (A3)

This results in our desired nonlinear evolution equation, the so-called nonlinear Schrödinger
equation, Equation (18).
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