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Abstract: We obtain exact solutions to the field equations for five-dimensional locally rotationally
symmetric (LRS) Bianchi type-I spacetime in the f (R, T) theory of gravity, where specifically, the
following three cases are considered: (i) f (R, T) = µ(R + T), (ii) f (R, T) = Rµ + RTµ2, and (iii)
f (R, T) = R + µR2 + µT, where R and T, respectively, are the Ricci scalar and trace of the energy–
momentum tensor. It is found that the equation of state (EOS) parameter w is governed by the
parameter µ involved in the f (R, T) expressions. We fine-tune the parameter µ to obtain the effect of
phantom energy in the model. However, we also restrict this parameter to obtain a stable model of
the universe.

Keywords: phantom energy; LRS Bianchi type-I; f (R, T) theory; 5d spacetimes

1. Introduction

Researchers have found it impossible to prevent the addition of dimensions and the
unification of forces in nature. It is notable that space and time can be seen as a combined
fourth component of special relativity, according to Minkowski [1,2]. In a similar way,
Maxwell combined the theories of electricity and magnetism. The next step in this regard
was to combine electromagnetism with general relativity (GR) [3]. Over the years, many
researchers have been trying to construct unified field theories that geometrize all the
fundamental forces of nature. The geometrization of gravity by the general theory of
relativity (GR) motivated scientists to propose a higher-dimensional theory that can unify
gravitation and electromagnetism [4,5]. Essentially, it has been considered that gravity
and electromagnetism are coupled via an additional dimension in the higher-dimensional
models in general relativity.

In their interesting work, Chodos and Detweiler [6] showed the evolution of a 5d
vacuum universe into a cogent four-dimensional one. Alvarez and Gavela [7] discussed the
cosmological scenario in which the dynamical compactification of the higher dimensions
produces an abundance of entropy in the universe. Further, they pointed out the possibility
of solving the flatness and horizon problems in this scenario.

Using the Kaluza–Klein (KK) theory [4,5], later on, Marciano [8] investigated the
mechanism of the evolution of the fundamental constants throughout cosmic time. For this
purpose, he derived unique relationships between the low-energy couplings, as well as
the masses and propounded that a time variation in any of these parameters can render
the proof of higher dimensions. He also reviewed available experimental bounds and,
therefore, urged the requirement of new measurements. On the other hand, Gegenberg
and Das [9] constructed 5d cosmological models with a real massless non-self interacting
scalar field source and pointed out that non-trivial solutions to the field equations occur
only when the homogeneous and isotropic three-space has non-positive constant curvature.
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It is also interesting to note that Lorenz-Petzold [10] obtained exact solutions to the higher-
dimensional field equations in a vacuum, as well as the perfect fluid case along with a
non-vanishing cosmological constant.

Wesson [11] considered the higher-dimensional spacetimes with a new challenge by
pointing out that “the space part of its metric varies with time in the same way as the de
Sitter solution of the conventional four-dimensional theory” and formulated his so-called
five-dimensional gravitational theory. Under this theory, Grøn [12] successfully obtained
vacuum, radiation, and matter-dominated cosmological models. These models describe an
inflationary universe in the variable rest-mass theory as was proposed by Wesson (vide the
proposition and application of five-dimensional cosmological principle by Wesson in the
Book [13]).

Several authors [14–16] have discussed the KK extension of the FRW cosmological
models. In higher dimensions, anisotropic generalizations of these models are available
in the literature [17–19], whereas inhomogeneous cosmologies in 5d have been studied
by other authors [20–22]. A few exact solutions to the Einstein field equations in KK
spacetime were obtained by various authors and showed that those reproduce, as well
as extend the known solutions of the four dimensions [23–25]. The exact solution to the
Einstein field equations, which is Ricci and Riemannian flat in 5d, was obtained by Liko and
Wesson [26]. Interestingly, this solution in 4d represents a cosmological model for the early
vacuum-dominated universe. Some noteworthy works where variable G and Λ have been
studied [27,28] have immense consequences in KK cosmology and higher-dimensional
geometry, e.g., Pahwa [29] constructed a homogeneous, anisotropic 4 + d cosmological
model and, hence, studied the late-time acceleration of the universe.

Higher-dimensional cosmology in various alternative theories of gravity can also be
found in the literature, which originated due to a few drawbacks of Einstein’s general
relativity (specifically, GR has failed to explain the late-time cosmic acceleration phenomena)
and, hence, to comply with the observational evidence. Therefore, one possible technique
to justify the observational data [30–37] is the modification of GR. Harko et al. [38] obtained
the gravitational field equations in the metric formalism and the equations of motion for
the test particles. This theory is called the f (R, T) theory of gravity, where the Lagrangian is
an arbitrary function of R and T being the Ricci scalar and trace of the energy–momentum,
respectively. Under f (R, T) gravity, various authors have studied different mathematical
aspects, as well as physical applications of the theory [39–63].

We design the present article as follows: We provide the basic equations, as well as
the Einstein field equations under the cosmological system in Section 2. In Section 3, we
have the exact solutions sets under three specific cases, whereas in Section 4, the behavior
of the models is presented and analyzed. The results and their discussion are presented in
Section 5 to provide some concluding remarks along with salient features. In the current
work, units are expressed using the natural system with G = c = h̄ = 1.

2. Modified Einstein Field Equations

In their theory, Harko et al. [38] considered three explicit functional forms of f (R, T),
which is an arbitrary function of the Ricci scalar R and of the trace of the stress–energy
tensor T, as follows:

f (R, T) =


R + 2 f (T),
f1(R) + f2(T),
f1(R) + f2(R) f3(T).

(1)

One can therefore obtain several theoretical models for each choice of f (R, T). How-
ever, in the present work, we consider the second and third case, i.e., f (R, T) = f1(R) +
f2(T) and f (R, T) = f1(R) + f2(R) f3(T), for constructing cosmological models through
the 5d locally rotationally symmetric (LRS) Bianchi type-I spacetime metric in the form

ds2 = dt2 − A(t)2dx2 − B(t)2(dy2 + dz2)− F(t)2dn2, (2)
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where A, B, and F are functions of the time coordinate only and the extra dimension n is
the space like coordinate.

Now, the gravitational field equations can be provided as [38]

fR(R, T)Rij −
1
2

gij f (R, T) + (gij�−∇i∇j) fR(R, T) =

8πTij − fT(R, T)Tij − fT(R, T)Θij, (3)

where fR(R, T) = ∂ f (R,T)
∂R and fT(R, T) = ∂ f (R,T)

∂T are the partial derivative with respect to
R and T, respectively, � = ∇i∇i,∇i denotes covariant derivatives, and Θij = −2Tij − gijP.

Various authors have studied the choice of Lagrangian density for matter, i.e., Lm = P
[64–66], and have addressed the problem of Lagrangian density for perfect fluids where P
is the pressure. In this case, we assume that the entire universe is filled with a perfect fluid.
The choice for the matter Lagrangian density is thus made to be Lm = −P [67].

Here, we consider the source of gravitation as the perfect fluid. Therefore, the energy–
momentum tensor is taken as

Tij = (P + ρ)uiuj − Pgij, (4)

together with the comoving coordinates

gijuiuj = 1. (5)

In the above equations, ρ and ui are the energy density and five-velocity vector of the
cosmic fluid distribution, respectively.

3. Solutions to the Field Equations
3.1. f (R, T) = µR + µT

Let us consider here the second case, i.e., f (R, T) = f1(R) + f2(T) with f1(R) = µR,
f2(T) = µT, where

R =
2Att

A
+

4AtBt

AB
+

2AtFt

AF
+

4Btt

B
+

4BtFt

BF
+

2B2
t

B2 +
2Ftt

F
,

T = ρ(t)− 4P(t), and µ is an arbitrary constant.
Now, Equation (3) becomes

Gij =

[
8π + µ

µ

]
Tij +

[
P +

T
2

]
gij. (6)

Here, Gij = Rij − 1
2 gijR is the Einstein tensor. For the line element (2), the explicit form

of the field Equation (6) using (4) and (5) can be obtained as

− 2µAtBt

AB
− µAtFt

AF
− 2µBtFt

BF
− µB2

t
B2 + µP− 3

2
µρ− 8πρ = 0, (7)

2µBtt

B
+

2µBtFt

BF
+

µB2
t

B2 +
µFtt

F
− 2µP− 8πP +

1
2

µρ = 0, (8)

µAtt

A
+

µAtBt

AB
+

µAtFt

AF
+

µBtt

B
+

µBtFt

BF
+

µFtt

F
− 2µP− 8πP +

1
2

µρ = 0, (9)

µAtt

A
+

2µAtBt

AB
+

2µBtt

B
+

µB2
t

B2 − 2µP− 8πP +
1
2

µρ = 0. (10)

Here and in what follows, the suffix “t” after a field variable represents an ordinary
differentiation with respect to the time “t”.



Universe 2022, 8, 573 4 of 13

In order to derive the exact solution of the field Equations (7)–(10), we take the
following scale transformations [68]:

A(t) = eα(τ), (11)

B(t) = eγ(τ),

F(t) = eλ(τ)

dt = AB2Fdτ.

Now, the field Equations (7)–(10) using (11) reduce to

2µP− (3µ + 16π)ρ + e−2(α+2γ+λ)[−2µλ
′
(α
′
+ 2γ

′
)− 2µγ

′
(2α

′
+ γ

′
)] = 0 (12)

µ(ρ− 2e−2(α+2γ+λ)[λ
′
(α
′
+ 2γ

′
) + γ

′
(2α

′
+ γ

′
)− 2γ

′′ − λ
′′
)]− 4(µ + 4π)P = 0 (13)

e2(α+2γ+λ)[µρ− 4(µ + 4π)P] + 2µ[α
′′ − α

′
(2γ

′
+ λ

′
) + γ

′′ − γ
′
(γ
′
+ 2λ

′
) + λ

′′
] = 0, (14)

µ(ρ− 2e−2(α+2γ+λ)[−α
′′
+ λ

′
(α
′
+ 2γ

′
) + γ

′
(2α

′
+ γ

′
)− 2γ

′′
)]− 4(µ + 4π)P = 0, (15)

where the prime stands for d
dτ .

It is to be noted that there are five unknowns α, γ, λ, P, and ρ involved in the above
four equations. Therefore, for obtaining exact solutions of Equations (12)–(15), we need to
consider some interplaying relationships between any two parameters, such as [69–71]

λ = mγ, (16)

where m 6= 0 is a parameter, the value of which can be chosen suitably depending on the
physical situation.

Now, solving Equations (12)–(15), we obtain the solutions as

γ(τ) = k1τ + k2, (17)

λ(τ) = m(k1τ + k2), (18)

α(τ) = k3τ + k4, (19)

ρ = −2µ(3µ + 8π)(c1e−2τc2)

(µ + 8π)(5µ + 16π)
, (20)

P = −4µ(µ + 4π)(c1e−2τc2)

(µ + 8π)(5µ + 16π)
, (21)

where k1, k2, k3, and k4 are the integration constant and c1 = k1[2k1m + k1 + k3(m + 2)]
and c2 = k1(m + 2) + k3. Without loss of generality, we take k2 = k4 = 0.

3.2. f (R, T) = R + µR2 + µT

In this case, we consider f1(R) = R + µR2 and f2(T) = µT. Therefore, Equation (3)
becomes

Gij + 2µRRij −
1
2

µR2gij + 2µ(gij�−∇i∇j)R = (8π + µ)Tij +

(
P +

T
2

)
µgij. (22)
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For (2), the field equations in f (R, T) theory using (11) and (22) become

−2(γ
′
)2(8µ(7α

′′
+ 12γ

′′
+ 7λ

′′ − 12(λ
′
)2) + e2(α+2γ+λ)) +

16µ(α
′
)3(2γ

′
+ λ

′
) + 4µ(2λ

′
(α(3) + 2γ(3) + λ(3)) + (α

′′
+ 2γ

′′
+ λ

′′
)2 −

2(λ
′
)2(3α

′′
+ 6γ

′′
+ 2λ

′′
)) + 4γ

′
(4µ(α(3) + 2γ(3) + λ(3))−

λ
′
(4µ(8α

′′
+ 15γ

′′
+ 7λ

′′
) + e2(α+2γ+λ)) + 8µ(λ

′
)3) +

4µ(α
′
)2(−2(2α

′′
+ 6γ

′′
+ 3λ

′′
) + 52γ

′
λ
′
+ 48(γ

′
)2 + 11(λ

′
)2) +

2α
′
(4µ(α(3) − λ

′
(7α

′′
+ 16γ

′′
+ 7λ

′′
) +

2γ
′
(−7α

′′ − 15γ
′′ − 8λ

′′
+ 13(λ

′
)2) + 2γ(3) + 59(γ

′
)2λ

′
+

30(γ
′
)3 + λ(3) + 2(λ

′
)3)− e2(α+2γ+λ)(2γ

′
+ λ

′
)) + 240µ(γ

′
)3λ

′
+

76µ(γ
′
)4 + e4(α+2γ+λ)(−3µρ + 2µP− 16ρπ) = 0, (23)

−2(γ
′
)2(4µ(34α

′′
+ 54γ

′′
+ 35λ

′′ − 38(λ
′
)2) + e2(α+2γ+λ)) +

48µ(α
′
)3(2γ

′
+ λ

′
) + 4γ

′
(4µ(5α(3) + 9γ(3) + 5λ(3))−

λ
′
(72µα

′′
+ e2(α+2γ+λ) + 136µγ

′′
+ 60µλ

′′
) + 16µ(λ

′
)3) +

4µ(α
′
)2(3(4γ

′
+ λ

′
)(8γ

′
+ 7λ

′
)− 2(6α

′′
+ 11(2γ

′′
+ λ

′′
))) +

4µ(−2(α(4) + 2γ(4) + λ(4)) + 2λ
′
(5α(3) + 10γ(3) + 4λ(3)) +

12α
′′
(2γ

′′
+ λ

′′
)− 8(λ

′
)2(2α

′′
+ 4γ

′′
+ λ

′′
) + 3(α

′′
)2 + 28γ

′′
λ
′′
+

24(γ
′′
)2 + 5(λ

′′
)2) + 2α

′
(4µ(5α(3) − λ

′
(17α

′′
+ 44γ

′′
+ 17λ

′′
) +

γ
′
(−34α

′′ − 78γ
′′ − 44λ

′′
+ 46(λ

′
)2) + 12γ(3) + 103(γ

′
)2λ

′
+

54(γ
′
)3 + 6λ(3) + 4(λ

′
)3)− e2(α+2γ+λ)(2γ

′
+ λ

′
))2e2(α+2γ+λ)(2γ

′′
+ λ

′′
) + +

400µ(γ
′
)3λ

′
+ 132µ(γ

′
)4 + e4(α+2γ+λ)(µρ− 4P(µ + 4π)) = 0, (24)

2e2(α+2γ+λ)(α
′′
+ γ

′′
+ λ

′′
)− 2(γ

′
)2(4µ(41α

′′
+ 63γ

′′
+ 41λ

′′ − 42(λ
′
)2) +

e2(α+2γ+λ)) + 32µ(α
′
)3(2γ

′
+ λ

′
) + 4γ

′
(2µ(11α(3) + 20γ(3) + 11λ(3))−

λ
′
(82µα

′′
+ e2(α+2γ+λ) + 144µγ

′′
+ 64µλ

′′
) + 16µ(λ

′
)3) +

4µ(α
′
)2(−8(α

′′
+ 4γ

′′
+ 2λ

′′
) + 88γ

′
λ
′
+ 84(γ

′
)2 + 17(λ

′
)2) +

4µ(−2(α(4) + 2γ(4) + λ(4)) + 2λ
′
(5α(3) + 10γ(3) + 4λ(3)) +

2α
′′
(13γ

′′
+ 7λ

′′
)− 8(λ

′
)2(2α

′′
+ 4γ

′′
+ λ

′′
) + 5(α

′′
)2 + 26γ

′′
λ
′′
+

20(γ
′′
)2 + 5(λ

′′
)2) + 2α

′
(4µ(4α(3) − λ

′
(15α

′′
+ 37γ

′′
+ 15λ

′′
) +

γ
′
(−32α

′′ − 72γ
′′ − 41λ

′′
+ 44(λ

′
)2) + 10γ(3) + 105(γ

′
)2λ

′
+

60(γ
′
)3 + 5λ(3) + 4(λ

′
)3)− e2(α+2γ+λ)(2γ

′
+ λ

′
)) +

480µ(γ
′
)3λ

′
+ 164µ(γ

′
)4 + e4(α+2γ+λ)(µρ− 4P(µ + 4π)) = 0, (25)
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2e2(α+2γ+λ)(α
′′
+ 2γ

′′
)− 2(γ

′
)2(4µ(35α

′′
+ 54γ

′′
+ 34λ

′′ − 48(λ
′
)2) + e2(α+2γ+λ)) +

32µ(α
′
)3(2γ

′
+ λ

′
) + 4γ

′
(4µ(5α(3) + 9γ(3) + 5λ(3))−

λ
′
(88µα

′′
+ e2(α+2γ+λ) + 156µγ

′′
+ 68µλ

′′
) + 24µ(λ

′
)3) +

4µ(α
′
)2(−8(α

′′
+ 4γ

′′
+ 2λ

′′
) + 92γ

′
λ
′
+ 76(γ

′
)2 + 21(λ

′
)2) +

4µ(−2(α(4) + 2γ(4) + λ(4)) + 2λ
′
(6α(3) + 12γ(3) + 5λ(3)) +

4α
′′
(7γ

′′
+ 3λ

′′
)− 2(λ

′
)2(11α

′′
+ 22γ

′′
+ 6λ

′′
) +

5(α
′′
)2 + 3(8γ

′′
λ
′′
+ 8(γ

′′
)2 + (λ

′′
)2)) + 2α

′
(4µ(4α(3) − λ

′
(17α

′′
+ 44γ

′′
+ 17λ

′′
) +

γ
′
(−30α

′′ − 68γ
′′ − 36λ

′′
+ 54(λ

′
)2) + 10γ(3) + 103(γ

′
)2λ

′
+

50(γ
′
)3 + 5λ(3) + 6(λ

′
)3)− e2(α+2γ+λ)(2γ

′
+ λ

′
)) +

432µ(γ
′
)3λ

′
+ 132µ(γ

′
)4 + e4(α+2γ+λ)(µρ− 4P(µ + 4π)) = 0 (26)

where the powers (3) and (4) denote the third- and fourth-order derivative w.r.t. τ.
We note that, in this case, the field Equations (23)–(26) yield the same solution (17)–

(19), where k1 = ±k3 and m = ±1. However, the other two physical parameters become
P = ρ = 0.

3.3. f (R, T) = Rµ + RTµ2

We consider here the third case, i.e., f (R, T) = f1(R) + f2(R) f3(T), where f1(R) =
f2(R) = µR and f3(T) = µT.

Now, Equation (3) becomes

Gij + µ2(gij�−∇i∇j)T =
µPRgij

µT + 1
+

Tij
(
µ2R + 8π

)
µ(µT + 1)

. (27)

Therefore, for Equation (2), the field equations in f (R, T) theory using Equations (11)
and (27) are

−e2(α+2γ+λ)(µ + 16ρπ)− 2(µ(2µ(P + ρ)− 1) + 1)(α
′′
+ 2γ

′′
+ λ

′′
) +

2α
′
(2γ

′
+ λ

′
)(µ(µρ + 6µP− 2) + 1) + 4γ

′
λ
′
(µ(µρ + 6µP− 2) + 1) +

2(γ
′
)2(µ(µρ + 6µP− 2) + 1) = 0, (28)

2(α
′′
+ 2γ

′′
+ λ

′′ − µ(α
′′
+ µ(4P− ρ)(2γ

′′
+ λ

′′
)) +

α
′
(2γ

′
+ λ

′
)(µ2(4P− ρ)− 1) + 2γ

′
λ
′
(µ2(4P− ρ)− 1) +

(γ
′
)2(µ2(4P− ρ)− 1)) + e2(α+2γ+λ)(µ− 16Pπ) = 0, (29)

2(α
′′
+ 2γ

′′
+ λ

′′
+ µ(−γ

′′ − µ(4P− ρ)(α
′′
+ γ

′′
+ λ

′′
)) +

α
′
(2γ

′
+ λ

′
)(µ2(4P− ρ)− 1) + 2γ

′
λ
′
(µ2(4P− ρ)− 1) +

(γ
′
)2(µ2(4P− ρ)− 1)) + e2(α+2γ+λ)(µ− 16Pπ) = 0, (30)

−2(µ− 1)λ
′′
+ 2(µ2(4P− ρ)− 1)(−α

′′
+ α

′
(2γ

′
+ λ

′
)− 2γ

′′
+ 2γ

′
λ
′
+ (γ

′
)2) +

e2(α+2γ+λ)(µ− 16Pπ) = 0. (31)

In this case also, the field Equations (28)–(31) admit the same solutions set (17)–(19) as
obtained in Section 3.1; however, the rest of the parameters are

ρ =
c1k1

(
2c1k1(4µ− 5)µ2 + e2c2τ

(
5µ3 − 16µπ + 8π

))
− 4µπe4c2τ

10c1k1µ2(c1k1µ2 − 4πe2c2τ) + 64π2e4c2τ
, (32)

P =
c1k1

(
c1k1µ3 − 4πe2c2τ

)
+ 2µπe4c2τ

5c1k1µ2(c1k1µ2 − 4πe2c2τ) + 32π2e4c2τ
. (33)
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The expression for the ratio of the pressure and density (i.e., the EOS parameter w) is

w =
2
(
c1k1

(
c1k1µ3 − 4πe2c2τ

)
+ 2µπe4c2τ

)
c1k1(2c1k1(4µ− 5)µ2 + e2c2τ(5µ3 − 16µπ + 8π))− 4µπe4c2τ

. (34)

In the above-mentioned three subsections we have shown variations of different model
parameters in Figures 1–4 which are satisfactory as far as physical features are concerned.
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Figure 1. Variation of the pressure and density w.r.t. time (Case 3.1). Here, we considered the
following parametric values: k1 = 0.13, k3 = 0.1, and m = 0.5, which will also be followed in all other
plots.
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Hence, the five-dimensional cosmological model in the f (R, T) theory of gravity
corresponding to the solutions of Sections 3.1–3.3 can be uniquely presented as

dS2 = dτ2 − e2k3τdX2 − e2k1τ(dY2 + dZ2)− e2mk1τdN2. (35)

4. Some Physical and Geometrical Properties

In this section, we study some physical and geometrical properties of the models
obtained in the preceding subsections under the five-dimensional cosmological model in
the f (R, T) theory of gravity.

4.1. Status of the Model

The spatial volume (V), scalar expansion (θ), Hubble parameter (H), shear scalar
(σ2), and redshift (z) for the model are given by

V =
√

g = AB2F = ec2τ , (36)

θ =
At

A
+

2Bt

B
+

Ft

F
= c2e−c2τ , (37)

H =
1
4

(
At

A
+

2Bt

B
+

Ft

F

)
=

1
4

c2e−c2τ , (38)

σ2 =
1
2

(
−1

4

(
At

A
+

2Bt

B
+

Ft

F

)2
+

(At)
2

A2 +
2(Bt)

2

B2 +
(Ft)

2

F2

)

=
1
8

e−2c2τ(k2
1(m(3m− 4) + 4)− 2k1k3(m + 2) + 3k2

3), (39)

z =
1

4√AB2F
− 1 =

1
4
√

ec2τ
− 1, (40)

σ2

θ2 =
k2

1(m(3m− 4) + 4)− 2k1k3(m + 2) + 3k2
3

8c2
. (41)

From the above solution set, we notice that at τ = 0, V = 1 and, as τ → ∞, V → ∞.
Therefore, it can be inferred that our model is free from the initial singularity. We also note
that the pressure and density are finite at τ = 0, which decrease as τ increases and tend to
zero when τ → ∞. This means at infinite time that our model leads to a vacuum model.
Further, as σ2

θ2 6= 0, so our model is anisotropic throughout the evolution. Equation (40)
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exhibits the expansion of the spacetime in the universe, when τ → ∞; however, in the
present model,

q = −
4
(

Att
A + 1

4

(
At
A + 2Bt

B + Ft
F

)2
− (At)

2

A2 + 2Btt
B −

2(Bt)
2

B2 + Ftt
F −

(Ft)
2

F2

)
(

At
A + 2Bt

B + Ft
F

)2 = 3,

which means that the universe is in a decelerating phase.
In Case 3.2, the model degenerates to a pure vacuum model in the f (R, T) theory of

gravity. We have shown different features of the model in Table 1.

Table 1. Features of the model.

For Case 3.2 k1 = k3, m = 1 k1 = k3, m = −1 k1 = −k3, m = 1 k1 = −k3, m = −1

V expanding expanding decreasing constant
θ decreasing decreasing negative 0
q 3 3 3 undefined
z decreasing decreasing increasing 0
σ2

θ2 0 3
8

3
8 undefined

4.2. Stability of the Model

The stability of the model is obtained by considering the ratio dp
dρ , which can be shown

as equivalent to C2
s . If C2

s is positive, then the model is stable, whereas if C2
s is negative,

the model is unstable. In our case, dp
dρ = 1− µ

3µ+8π . From this relation, we notice that C2
s is

positive for µ > −4π and, thus, provides a stable model under this restrictive condition
for Case 3.1. Under the same condition, the model for Case 3.3 (Figure 5) exhibits a stable
model throughout the evolution.

-11.2 =

-11.6

-12.

-12.5

0 2 4 6 8 10 12 14

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Time ( )

d
p
/d
ρ

Figure 5. dp
dρ of Case 3.3.

4.3. EOS Parameter (w)

In the present model, the EOS parameter is governed by the parameter µ. In Figure 6,
one can note that different values of the parameter lead to a different model in f (R, T)
gravity. Caldwell and coworkers [72,73] pointed out that w < −1 is a better fit for the
observed astrophysical data.
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Figure 6. w of (a) Case 3.1 and (b) Case 3.3.

5. Discussion and Conclusions

In the present work, our motivation was to obtain exact solutions to the Einstein
field equations for 5d locally rotationally symmetric (LRS) Bianchi type-I spacetime in
the f (R, T) theory of gravity. We presented cosmological models under the following
three specifications: (i) f (R, T) = µ(R + T), (ii) f (R, T) = Rµ + RTµ2, and (iii) f (R, T) =
R + µR2 + µT.

The solution set under these models, via the graphical plots (Figure 6), exhibits that
the EOS parameter w is completely governed by µ. Fine-tuning of the parameter µ provides
the effect of phantom cosmology. Moreover, we were able to obtain a stable model of the
universe by imposing restrictions upon this parameter.

In this connection, we also would like to mention here that Figures 1–5 are self-
explanatory, which in a similar way, depict various physical properties of the model, e.g.,
in Figure 1, we exhibit the variation of the pressure and density w.r.t. time for different
parametric values (say k1 = 0.13, k3 = 0.1, and m = 0.5).

We can explore various energy conditions, i.e., the null energy condition (NEC),
ρ + P ≥ 0, dominant energy condition (DEC), ρ− P ≥ 0, weak energy condition (WEC)
ρ ≥ 0, and strong energy condition (SEC) ρ + 3P ≥ 0 from Figures 1–4. Here, the NEC
represents the attractive nature of gravity, which is true in Case 3.1, whereas it is violated in
Case 3.3. According to the DEC, in Cases 3.1 and 3.3, the mass–energy parameter cannot be
seen moving faster than light. The WEC is true in Case 3.1 and Case 3.3, which show that
that the matter density observed by the respective observers is always positive. In Case 3.1,
the SEC is satisfied, while t is violated in Case 3.3.

Some other salient and characteristics features of the cosmological models are as
follows:

(1) We notice that the model is free from the initial singularity and, hence, physically
viable. This feature is obvious, as for τ = 0, we obtain V = 1, and for τ → ∞, one can
obtain V → ∞.

(2) The cosmic distribution has a finite fluid pressure and matter density at τ = 0. The
physical quantities decrease as τ increases and tend to zero when τ → ∞. Thus, our
presented model leads to a vacuum cosmological solution at infinite time.

(3) As σ2

θ2 6= 0, so the model is anisotropic throughout the evolution. Again, τ →
∞ exhibits the expanding universe. However, q = 3 dictates that the universe is
decelerating.

(4) The stability of the model is obtained by considering the ratio dp
dρ , which is positive

for µ > −4π, to yield a stable model.
(5) The EOS parameter is governed by the parameter µ, and its value can be found as

µ < −3.2π. This is related to w < −1, which behaves like a phantom-energy-inspired
cosmology. This type of phantom cosmology allows us to account for the dynamics
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and matter content of the universe, tracing back the evolution to the inflationary
epoch [74]. In this connection, we would also like to point out that while the depen-
dence of µ is explicit across all cases, this is not overall true, as this situation is solely
visible in the results from Case 3.1. One can note that Case 3.3 shows a clear time
dependence (and therefore, very dependent on the magnitude of c2).

(6) The anisotropic/isotropic behavior of the models for different choices of the parame-
ters are given in Table 1 in connection with Case 3.2.

Thus, an obvious issue is here: how to incorporate an accelerating phase of the
universe, which is the present cosmological scenario, along with the decelerating phase in
our phantom-type dark energy model. However, following Capozziello et al. [75], one can
make an endeavor to obtain a transition from the deceleration to the acceleration phase of
the universe. Therefore, this issue can be addressed in a future project.
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