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Abstract: The idea of quantum mechanical vacuum energy contributing to the cosmological vacuum
energy density is not new. However, despite the persisting cosmological constant problem, few inves-
tigations have focused on this subject. We explore the possibility that the quantum vacuum energy
density contributes to the (local) gravitational energy density in the framework of a scale-dependent
cosmological constant Λ and Newton’s constant G. This hypothesis has several important conse-
quences, ranging from quantum scale-dependence to the hypothetical prospect of novel experimental
insight concerning the quantum origin of cosmological energy density.

Keywords: quantum vacuum; scale dependence

1. Introduction
1.1. Vacuum Energy and the Cosmological Constant (Problem)

Our modern understanding of physics is based on general relativity (GR) and quantum
mechanics, which have evolved into the Standard Model of particle physics (SM) and the
cosmological standard model Λ-CDM. GR is exquisitely tested on various length scales and
considered to be the standard theory describing gravity as well as the dynamical evolution
of our Universe as a whole.

Einstein amended the theory of GR using a so-called cosmological constant Λ to
counter the inverse pressure generated by gravity leading to a deflating universe. His
aim was to achieve a static universe as a solution of GR, in accordance with common
experimental evidence at the time [1]. In 1929, Hubble discovered that the Universe
expands [2]—in contrast to the original prediction of GR. Due to this prediction, and
lacking further evidence, it was therefore assumed that the Universe was in a decelerating
expansion. Einstein rejected Λ again, as it was not needed anymore, and also did not yield
further insight. Much later, the study of type Ia supernovae led to the surprising discovery
that the expansion was actually accelerating [3–5], thereby reviving the need for a positive
pressure—and the cosmological constant. Since these first observations, the accelerated
expansion has been confirmed with increasing confidence [6–8], which demands for a
precisely tuned Λ0 = 1.1× 10−52 m−2 to be included in the field equations of GR. We may
interpret Λ0 as an energy density contributing via Newton coupling G0 and the speed of
light c to the matter part of Einstein’s field equations, leading to

ρΛ0 =
Λ0c4

8πG0
= 5.35× 10−10 J/m3. (1)

While GR amended by a cosmological constant allows one to describe the accelerated
cosmic expansion, the interpretation of this constant in terms of vacuum energy [9] leads to
a severe fine-tuning problem [10,11]. This is based on the fact that zero-point energies of all
quantum fields, i.e., those of the SM as well as possibly other yet unknown ones, provide
additional contributions to Einstein’s original (bare) cosmological constant. Furthermore,
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the Higgs potential leads to an effective contribution during its phase transition related
to electroweak symmetry breaking [12]. While the measured value of Λ0, given above,
necessarily contains all of these contributions, the zero-point energies of each particle’s
quantum field provide infinite contributions to Λ0, which are ordinarily subtracted via
operator normal ordering. However, this subtraction would render Λ0 = 0. If, instead,
these contributions are kept and rendered finite by introducing a momentum cutoff κ0 at
the electroweak scale mZ, one obtains values that are some 55 orders of magnitude above
Λ0 [11]. For a cutoff chosen at the Planck scale, the mismatch would even be 120 orders of
magnitude [10]. This problem can be expressed as a dimensionless ratio of energy densities.
The energy density corresponding to a momentum cutoff would be ρQ ∼ cκ4

0/h̄3, which
can be set in relation to the observed energy density (1)

Υ0 ≡
ρΛ0

ρQ,0(κ)
=

Λ0c3h̄3

8πG0κ4
0
=

{
10−121 for κ0 = c

√
ch̄
G0

10−55 for κ0 = cmZ.
(2)

Thus, according to our current understanding, the value of Υ0 should be of order one
(or exactly zero). Instead, the values in Equation (2) are far too small. Such ‘miraculous’
reductions by many orders of magnitude leading to a small but non-zero value of Λ0 after
the summation of all individual contributions constitute the cosmological constant problem
(CCP) [10,11]. Similar as for the strong CP problem of quantum chromodynamics, the
CCP is a severe fine-tuning problem, demanding explanation. While some argue using
the anthropic principle that Λ0 could be a constant of nature determined coincidentally
by the fact that we exist to ask for its origin [13,14], this point of view may appear rather
metaphysical and unsatisfactory. A physical explanation, however, seems to be beyond the
present SM and GR framework, which creates a strong case for our current understanding
of the cosmic evolution and the quantum vacuum being incomplete.

Consequently, this problem gave motivation for research on possible alternative de-
scriptions of quantum gravity (QG). The list of approaches and techniques is long, ranging
from standard quantum field theory formulations, such as the functional renormaliza-
tion group approach [15–18], to Planck scale fluctuations [19,20], holographic interpreta-
tions [21,22], and many more.

In any case, new insight (particularly from experiments) concerning the quantum
origin of Λ0, Equation (1), is urgently needed. Such insight, however, is not limited
to arise from astronomical measurements but can also be gained in the laboratory with
carefully chosen observables. This paper establishes such a possible link between laboratory
experiments and quantum effects of gravity.

1.2. Vacuum Energy in the Casimir Effect

Another physical context, where (quantum) fluctuations play a pivotal role, is the
Casimir effect. Derived in 1948 by Hendrik Casimir [23] and quantitatively confirmed1

nearly half a century later [27], this effect remains the only known experimental manifesta-
tion of the quantum vacuum causing a detectable interaction between macroscopic bodies.
The Casimir effect is caused by spatial boundary conditions that limit the spectrum of
quantum fluctuations. This effect can be calculated for all sorts of fields and interactions,
but we will focus on electromagnetic fluctuations, since these are most directly accessible
for experimental and phenomenological studies [28]. In fact, the electromagnetic interaction
is the only one for which Dirichlet-like boundary conditions can technically be realized. In
the volume enclosed between the boundaries, the mode density is changed2, resulting in a
force between the boundaries. The difference between the energy of a free vacuum and the
restricted case is called the Casimir energy EC. For the ideal case of two infinitely extended,
perfectly conducting parallel plates at distance a, one obtains for the energy per unit area
A [23]

EC,id(a)
A

= − h̄cπ2

720a3 , (3)
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where EC =
∫

dV ρC(r) =
∫

dV 〈0|T00|0〉ren is formally obtained from the renormalized
vacuum expectation value of the time–time component of (electromagnetic) energy momen-
tum tensor Tµν, integrated over the volume V between the boundaries. Again, renormaliza-
tion is performed via subtraction of the energy densities ρC for the boundaries in the actual
configuration, and at infinite separation [26]. EC can be computed straightforwardly for
plane and curved geometries, taking into account spectral dielectric properties, roughness,
temperature, and other experimental details using semi-classical Lifshitz theory [35] or a
range of more modern methods (review: [26,36,37]). Real materials show dispersion and
their response to electromagnetic fields typically falls off ∝ ωp/ω−2 for high frequencies ω
and the plasma frequency ωp, eventually leading to transparency in the far UV. Since the
Casimir interaction depends on a spectrum of modes, we can also associate an effective pen-
etration depth δp ∼ c/ωp with a material, which approximately quantifies the reach of the
Casimir energy into the material. For metals, λp is of the order of 100 nm. However, while
the computation of the Casimir energy is well understood, a local measure for this energy
in the form of energy density ρC poses a problem [38,39]. The idealistically assumed step
in the dielectric functions between the gap and the bounding surface leads to divergences
∝ z−4, depending on the distance z from the (Dirichlet) boundary [40,41]. One possible
solution is the introduction of a soft [40,42,43] or movable [44–47] wall that smooths out the
discontinuity in the dielectrc properties and thereby eliminates divergences [48]. However,
lacking a detailed first-principles approach for the material at frequencies > c/` with `
being the typical length scale of interatomic spacings, quantitative predictions will strongly
depend on the assumptions taken. The same is true for the region inside the walls, for
which no analytic form has been found and only numerical methods on the basis of ad hoc
assumptions for a smooth potential lead to finite values for ρC [49]. Independent of these
details, however, ρC can be expected to be large near the boundaries, for which it could
potentially contribute to gravitational interactions [50].

Up to now, experiments have only tested configurations in which the Casimir in-
teraction is several orders of magnitude stronger than the gravitational interaction. The
upcoming CANNEX setup [51], however, will for the first time demonstrate a regime in
which the Casimir and gravitational interactions are similar in strength. This opens up the
exciting possibility of testing gravity in physical conditions with modified vacuum energy
density.

1.3. Hypotheses

In the previous subsections, we discussed the cosmological vacuum energy density ρΛ0

in Equation (1) and the quantum-laboratory energy density ρC. Despite their suggestively
analogous names, it is not at all clear whether these two quantities are related at all (for a
review, see [12,52]). The seriousness of our lack of theoretical understanding of this relation
is exemplified by the CCP [c.f. Equation (2)].

In this paper, we show how one can experimentally test the hypothesis that both energy
densities are related. The resulting modified cosmological energy density ρΛ will then be
a function of the original cosmological energy density ρΛ0 and the quantum contribution
ρC. In general, we have no clear indication of what this function could look like. However,
given that measurable variations of the Hubble constant [53] that could be interpreted (in
many ways) as a variability of Λ are at the 10% level, it appears reasonable to assume a
small linear change in ρΛ by ρC,

ρΛ = ρΛ(ρ0, ρC)

≈ ρΛ0 − α ρC . (4)

Here, α is the free parameter of this hypothesis. The sign of this parameter is not determined,
and thus the sign in Equation (4) is pure convention. Since the Casimir energy density arises
from electromagnetic vacuum fluctuations, which in turn can be expected to contribute
fully to the total energy density, even extreme values, such |α| = 1, are possible. With
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this reasoning, a cosmological model [54–56] was built and measurable consequences of
a common cutoff have been discussed [57]. On the other hand, it has been shown that
ρC actually arises from loop diagrams with external legs as opposed to ‘true’ vacuum
bubbles without legs [58]. From this perspective, it can be conjectured that maybe ρΛ arises
exclusively from a topologically different type of diagram, which would imply α = 0. Thus,
a laboratory test of hypothesis (4) would give valuable information with this respect.

Any value α 6= 0 in relation (4) has notable consequences. Since the Casimir energy
density is a function of external dimensionful quantities and local coordintes ~x, the same
must be true for the resulting ρΛ. Due to this dependence on local and global scales
k ≡ k(~x), we call it a scale-dependent (SD) quantity, ρΛ = ρΛ(k). Consequently, the
definition in terms of the gravitational couplings (1) has to be generalized to allow for
scale-dependence

ρΛ(k) :=
c4Λ(k)
8πG(k)

. (5)

Thus, the gravitational couplings are also generalized to SD quantities G = G(k) and
Λ = Λ(k) [59–62]. Such couplings have to be dealt with in a theoretical framework, known
as SD gravity. It will be introduced in the next subsection.

Note that in the recent literature there have been numerous discussions on the interplay
between the Casimir force and (quantum) effects of gravitational interactions [63–67]. These
are not related to the scale-dependent scenario discussed in our paper since they are either
limited to a particular proposal of enhanced interactions between quantum fluids and
gravity or are purely idealized formal discussion.

1.4. Scale Dependence, Quantum Fluctuations, and Scale Setting

The equations of motion in classical physics are only an approximation of the underly-
ing laws of quantum field theory. In quantum field theory, this is reflected by the fact that
all couplings α are, in fact, subject to a renormalization scale k: α→ α(k). The functional
form of these couplings α(k) is determined by the renormalization group equations [68,69].
The ‘classical’ value of these couplings α0 typically corresponds to some infrared limit of
these couplings, e.g., α0 = limk→0 α(k).

In the effective field theory approach to quantum gravity [15–18,70,71], one works
with the effective action of quantum gravity coupled to matter, which in the local low
curvature expansion can be written as

Γk =
∫

d4x
√

g
(

R− 2Λ(k)
G(k)

+ Lm(φ, k)
)

, (6)

where the scale-dependent effective Lagrangian of matter fields φ is denoted by Lm(φ, k).
Note again that in Equation (6), both gravitational couplings, the cosmological and the
Newtonian ones, are assumed to be scale-dependent.

Λ→ Λ(k) , and G → G(k). (7)

The commonly used measured values of these couplings are then associated with the
asymptotic (classical) values in the far infrared,

Λ0 = lim
k→0

Λ(k) , and G0 = lim
k→0

G(k). (8)

Even though a uniquely accepted running of gravitational couplings is not available,
we can extract useful information from the SD of gravitational couplings in the close
vicinity of a given IR scale k0 � MP. For this purpose, we can expand the SD gravitational
couplings around this scale [72,73]
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G(k) = G0(1 + g(k)) = G0

(
1 + C1G0k2 + C2G2

0k4
)
+O(k4), (9)

Λ(k) = Λ0(1 + λ(k)) = Λ0

(
1 + C3G0k2 + C4G2

0k4
)
+O(k4). (10)

Here, the Ci parametrizes the first effects of running couplings, when we depart from the
classical limit. Note that Equation (6) is valid only for a theoretical effective field description,
which is the result of a regularization and renormalization procedure. Therefore, all
appearing coupling parameters G0, Λ0, Ci, . . . are also effective parameters and not bare
ones, and all quantities appearing in Equations (4) and (5) are renormalized ones. In
this sense, the normalization condition in Equations (9) and (10) is such that G0 and Λ0
are the “classical” couplings which are typically measured in the absence of quantum
effects at astrophysical or cosmological scales. Even quite different approaches to quantum
gravity (e.g., [74]) can, in principle, be mapped to Equations (9) and (10), but they would
predict different values for the coupling parameters Ci. In the appendix, we derive values
for C1 and C3, as predicted by asymptotic safety coupled to matter. These benchmark
values, given in Table A1, are of order one. Subsequently, however, we will treat Ci as
free parameters and explore whether and how they could be tested experimentally. From
a pure power counting argument, we would expect these parameters to be too small to
be experimentally observable in the near future. Though, due to infrared instabilities in
the renormalization group flow, these parameters could become largely enhanced [75].
Anyway, to our knowledge there existed no experimental constraints on the Ci until now.

To extract quantitative predictions from SD couplings like Equations (9) and (10),
we need to set the RG scale k in terms of physical parameters ‘(t, x, a, . . . )’ of a given
observation (or experiment) that can be measured, i.e., k→ k(t, ~x, a, . . . ). This procedure
is known as scale-setting, and is crucial for obtaining measurable predictions. There exists
a large variety of scale-setting methods in conventional quantum field theory [76–79]
and in quantum gravity [80–89]. For applications concerning the scaling behaviour of
the cosmological constant, see Refs. [59–62]. The applicability of these methods strongly
depends on the physical and experimental setting. In the context of the aforementioned
fine-tuning problem, they play an important role in attempts to solve the cosmological
constant problem [57] (see also references [88,90–92]).

Regardless of which quantum gravity model Equations (9) and (10) are obtained from
or which scale setting method is used, after the scale setting, the SD couplings can be
written as local quantities. Thus, the Einstein field equations only remain consistent if they
are generalized for SD couplings [80]. Varying the action (6) with respect to the metric field,
the field equations read

Gµν = 8π
G(k)

c4 Tµν −Λ(k)gµν − ∆tµν(k) , (11)

where now
∆tµν(k) = G(k)

(
gµν∇2 −∇µ∇ν

) 1
G(k)

. (12)

If we leave the quantum gravity motivation of the scale-dependent couplings aside,
Equation (11) with its covariant form can be interpreted as a particular (minimal) case
of the broader class of scalar–tensor theories of gravity [93,94]. Thus, even though the
details have to be checked case by case, our findings concerning the interplay between
Casimir energy and gravitational couplings may also result from scalar–tensor extensions
of general relativity. Another type of theory, in which the field equations take a form similar
to Equations (11) and (12), is f (R) gravity [95], where R is the Ricci scalar. However, such
a correspondence can only be established if the scale-setting imposes k2 ∼ R, which is a
common choice for problems concerned with the early Universe (see Section 2.2). We re-
cently used Equation (11) to study black holes, the early Universe, and the phenomenology
of the late Universe [73,96–101]. Note that in the literature there is an ongoing discussion
of whether gravitating quantum vacuum (Casimir) energy is compatible with energy mo-
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mentum conservation and shift symmetry [50,102–104]. For this reason, we comment here
shortly on how these two aspects are addressed in the approach of Equation (11):

• In this approach, the principle of equivalence as discussed in the literature is replaced
by general covariance of the Einstein tensor∇µGµν = 0. This implies that the covariant
derivative of the entire right-hand side of Equation (11) vanishes. Thus, a conservation
of each individual term, such as ∇µTµν = 0, is not strictly required anymore.

• If the Casimir energy density Tµν
C contributes to the matter energy density Tµν = Tµν

M +

Tµν
C , then the corresponding Lagrangian must have a shift symmetry L = LM + LC.

Interestingly, such a shift symmetry can be used as an additional condition, which
allows one to directly solve Equation (11). The condition arising from this symmetry
applied to Equation (12) is the so-called null energy condition. We introduced and
investigated this condition in [87,88,96,99].

In the present article, we neither use the shift symmetry nor the explicit covari-
ance of Tµν for which our findings stand independent of the discussion in the litera-
ture [50,102–104].

2. Results

We now present a discussion of the implications of Equation (11) and a scale-setting
for a Casimir experiment.

2.1. Gravitational Field Equations with Weak Curvature and Weak SD

In this subsection, we will derive and explore the Weak Gravitational curvature and
Weak SD (WG-WSD) limit of Equation (11). For this purpose, we take the trace of the
equations to isolate the Ricci curvature tensor on the left-hand side

Rµ
ν = 8π

G(k)
c4

(
Tµ

ν −
1
2

δ
µ
νT
)
+ Λ(k)gµ

ν + G(k)
(

1
2

δ
µ
ν∇2 +∇µ∇ν

)
1

G(k)
. (13)

The WG-WSD limit is then obtained via an expansion in formally small corrections to the
flat Minkowski solution. Having in mind Casimir experiments with largely non-relativistic
dynamics, the line element is assumed to be approximately static (t-independent). This line
element is expanded with the parameter εΦ and the SD gravitational coupling is expanded
with the parameter εG. For both bookkeeping parameters (εΦ, εG), we consider

ds2 = −(1 + 2εΦΦ(r, θ, φ))c2dt2 + (1− 2εΦΨ(r, θ, φ))dr2 (14)

+(1 + 2εΦΞ(r, θ, φ))r2dΩ2 +O(ε2
Φ),

G(k) = εΦ

(
G0 + εG∆G(k) +O(ε2

Φ)
)

,

Λ(k) = εΦ

(
Λ0 + εG∆Λ(k) +O(ε2

Φ)
)

,

where (Φ, Ψ, Ξ)� 1 are the gravitational potentials and ∆G � G0 is the SD correction to
the gravitational coupling G0. Further, for non-relativistic matter at rest with energy density
ρM = ρM(r, θ, φ), the stress energy tensor (e.g., in spherical coordinates) reads simply(

Tµ
ν −

1
2

δ
µ
νT
)
=

ρM
2

diag(−1, 1, 1, 1). (15)

With this matter contribution, and the expansion (14), the time–time component of Equa-
tion (13) reads

~∇2Φ(r, θ, φ) =
4π

c4 G0ρM(r, θ, φ) +
εG
εΦ

~∇2∆G(k)
2G0

−Λ(k) +O(εΦ, εG), (16)

where a global factor of −εΦ has been canceled out. This expansion is valid and phys-
ically reasonable only in a regime where εΦ > εG > ε2

Φ > 0. Note that we also expect
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contributions ∝ ∆G(k)ρM to Equation (16). Such contributions do exist, but they are much
smaller than the leading contributions shown in Equation (16). Now, we drop the formal
expansion parameters, keeping in mind the smallness of the ∆G contribution. For all
practical purposes in the context of Casimir experiments, the cosmological term can be
numerically neglected with respect to the other terms. Similarly, the energy density that
the Casimir effect contributes to ρM can be neglected for most experimental purposes.
However, there is a specially designed experiment [105–107] which will provide insight
on the question of whether “gravity ignores vacuum energy” [104]. For this particular
experiment ρM will include ρC as a small additive factor. Thus, the correction to the
gravitational coupling is known and given in terms of the local Casimir energy density
∆G(k) = ∆G(ρC(~x)) ≡ ∆G(~x) (as it will be shown in the next sections). Thus, the Poisson
equation for a general gravitational potential in the WG-WSD limit (16) can be solved with
the usual Green’s function method

Φ(~x) =
G0

c2

∫
V1

d3x′
ρM(~x′) + c2 ~∇2∆G(~x′)

8πG2
0

|~x−~x′| +O(ε) (17)

=
G0

c2

∫
V1

d3x′
ρ̃M(~x′)
|~x−~x′| +O(ε),

where V1 is the region of the gravitational source and we defined the apparent gravitational
energy density

ρ̃M = ρM + c4
~∇2∆G
8πG2

0
. (18)

Now, the result (17) can be inserted into the geodesic equation for a test particle with
position xµ

d2xµ

ds2 + Γµ
αβ

dxα

ds
dxβ

ds
= 0. (19)

We find, for the spatial components, in the non-relativistic limit

d2~x
dt2 = −c2~∇Φ +O(εΦ). (20)

To relate this acceleration to a force in Newton’s second law, we require a mass. This mass
should be given by a volume integral over a source mass density. For the latter, we have
two options at our disposal:

• The ‘original’ mass density ρM/c2, which is typically determined with electromagnetic
forces, gauged in the absence of the Casimir effect. The integral over this density is
the mass we find in the absence of ∆G: M2 =

∫
V2

d3x ρM(x)/c2. However, this is not
the density that allows one to define a force for the gravitational acceleration from
Equation (20) since it does not fulfil Newton’s third law.

• The apparent gravitational mass density (18), which appears in the gravitational
potential (17). The gravitational force caused by one object on another object ~F12 must
obey Newton’s third law ~F12 = −~F21. In the WG-WSD limit, this is only guaranteed for
the apparent gravitational mass density ρ̃M/c2, for which this quantity must appear
in the definition of gravitational force.

We thus find that the force sensed by an extended body with volume V2 is given to the
leading order in (εG, εΦ) by

~FG,12 = −~FG,21 = −
∫

V2

d3x2 ρ̃M(~x2)~∇Φ(~x2) +O(εΦ) (21)

=
G0

c4

∫
V2

d3x2

∫
V1

d3x1
ρ̃M(~x1)ρ̃M(~x2)(~x2 −~x1)

|~x2 −~x1|3
+O(εΦ).
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The crucial difference between Equation (21) and the usual expression for the gravitational
force between extended bodies is the distinction between ρ̃M and ρM, which only appears
for ~∇2∆G 6= 0. In the following section, we will derive the functional form of ∆G for
Casimir experiments.

2.2. Scale Setting

To relate an effective action to real observables, one has to choose the RG scale in terms
of variables that describe the system under consideration. Since these variables are in many
cases local, the scale-setting can imply the breaking of local symmetries, unless one takes
particular care to maintain symmetry throughout the scale-setting procedure.

This necessary procedure of scale-setting is an open problem in theories with quan-
tum effects and gravity. Naturally, it is also a source of large theoretical uncertainties
because there is a large number of possibilities of how it is to be implemented in prac-
tice [59–62,82,108–117]. In principle, different scale-settings give different predictions. Luck-
ily, the degree of uncertainty reduces drastically if one is only concerned with weak scale-
dependence, as in this study. In this case, different scale-settings lead to the same prediction.

Below, we show how a scale-setting based on the definition of density and a manifestly
covariant scale setting both lead to the same type of expression.

2.2.1. Density-Induced Scale-Setting

Since we are interested in the leading corrections to the asymptotic limit (8), we insert
Equations (9) and (10) into the definition (5) and expand to the first order in k2

ρΛ(k) = ρΛ0 − k2c4 (C1 − C3)

8π
Λ0 +O(k4). (22)

Here, the second term is the aforementioned correction to the asymptotic definition (1). By
construction, Equation (22) is equal to ρΛ, defined in Equation (4). Thus, by subtracting
Equations (4) and (22), we obtain the unique scale setting that is consistent with the working
hypothesis in Equation (4),

k2 = α
8πρC

c4(C1 − C3)Λ0
. (23)

Reinserting this into the IR expansion (9), we find that the gravitational coupling inherits a
weak dependence on the electromagnetic Casimir energy density

G(k) ≈ G0

(
1 + C1G0α

8πρC

c4(C1 − C3)Λ0

)
. (24)

Comparing Equation (24) with the weak SD expansion in Equation (14), we can identify

∆G ≈ αG2
0

8πC1ρC

c4(C1 − C3)Λ0
. (25)

This correction has to be inserted into Equation (17) when calculating the modified grav-
itational potential or the induced force between two objects according to Equation (21).
Consequently, the three phenomenological parameters in the following discussion will be
(α, C1, C3).

2.2.2. Explicitly Covariant Scale-Setting

In terms of the action (6), the cosmological constant problem becomes the question
“how and to which extend do quantum modes of Lm(φ, k) contribute to Λ(k)”. Varying
Equation (6) with respect to the metric field gµν gives rise to field Equation (11). The general
covariance of the system, even after the scale setting, can be assured by the variational
scale-setting prescription [83], which complements (11) with the condition
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∂

∂k2

(
R− 2Λ(k)

G(k)
+ Lm(φ, k)

)
= 0. (26)

This condition is typically hard to solve, but since we are interested in IR effects we can
expand the matter Lagrangian in analogy to Equations (9) and (10)

Lm(φ, k) = Lm,0(φ) + k2Lm,1(φ) + . . . (27)

Note that for a given quantum field theory the corrections Lm,1 to the classical Lagrangian
couplings Lm,0(φ) can be calculated explicitly. For our purposes, however, it is sufficient
to know that they exist. Inserting the IR expansions (9), (10), and (27) into the covariant
scale-setting condition (26), we can solve the resulting relation for k2 and call this solution
the “optimum” scale

k2
opt =

Lm,1(φ) + 2(C1 − C3)Λ0

4G0Λ0(C2
1 − C2 − C1C3 + C4)

≈ Lm,1(φ) + 2(C1 − C3)Λ0

4G0Λ0(C2
1 − C1C3)

, (28)

where we neglected contributions of order R and higher orders of (C2, C4). The leading
local contribution to this optimum scale comes from the matter and field Lagrangian. For
the case of the electromagnetic field, the leading Lorentz invariant terms of this effective
Lagrangian are [118]

Lm,0 =
1
2

(
~E2 + ~B2

)
+ a
(
~E2 + ~B2

)2
+ a∗(~E · ~B)2, (29)

Lm,1 = a1

(
~E2 + ~B2

)
+ a2

(
~E2 + ~B2

)2
+ a∗1(~E · ~B)2. (30)

The coupling coefficients (a, a∗, a1, a2, a∗1) are the calculable coefficients of the underlying
quantum field theory (dominated by quantum electrodynamics). All ai, ai∗ vanish in the
classical limit. The fields ~E and ~B are the local average of the quantum electric and magnetic
field. We could insert these expansions into the optimum scale (28) in this invariant form,
but the expression simplifies when we restrict the following discussion to the case of the
electromagnetic modes of the Casimir effect, where we have(

~E2 + ~B2
)
= 2ρC(x). (31)

Thus, for this experimental configuration, we can write

Lm,1(φ) = Lm,1|const. + α̃ · ρC(x) +O
(

ρ2
C

)
, (32)

where α̃ is the corresponding proportionality factor. Inserting this into Equation (28), we
find that the optimum scale is again a global constant (k̃2

0) plus a linear contribution from
the Casimir vacuum energy density

k2
opt = k̃2

0 + α̃
ρC

4C1(C1 − C3)G0Λ0
. (33)

If we now relabel the constant parameters of our hypothesis as

α̃ = 32
C1G0π

c4 α , (34)

the local part of the covariant scale-setting corresponds exactly to the previously implied
density scale-setting in Equation (23), and the local change in the gravitational coupling is
equal to (25).

Note that even though the final result (25) does not look explicitly covariant, there
is no reason to worry. We must remember that any local source breaks covariance in GR.
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For example, even though the metric solution of the interior of a star does not have all the
symmetries of GR in free space, it is still the result of covariant field equations. Analogously,
the result (25) is the product of a covariant scale-setting procedure (26) combined with
covariant field Equation (11).

2.3. Perspectives for Experimental Tests

We now attempt to find ways to experimentally test our hypothesis. From the results
in Equations (21) and (25), it is clear that any Casimir experiment which is sensitive enough
to also measure the gravitational attraction between two objects, such as [51], will be suited
to resolve, to some extent, the difference between ρM and ρ̃M. Respective results would
allow us to determine or constrain the parameters α, C1, C3 of our hypothesis. To obtain
a glimpse of the possible experimental importance of this effect, it is necessary to make
further assumptions about experimental details. For this purpose, we have to integrate
Equation (21) over the volume of the two interacting plates of the experiment. Let us
consider the situation depicted schematically in Figure 1.

Figure 1. Schematic sketch of an assumed exponential attenuation of ρC(z) over the skin depth inside
of a material, plotted from the middle between two plates at z = 0 towards the plate in the region
with z > 0; the region between the plates is labeled (i), the skin of the plate is labeled (ii), and the
region with effectively vanishing ρC inside the plate is labeled (iii). The configuration is symmetric
under z↔ −z.

In this configuration, the Casimir vacuum energy density is idealized and assumed to
be constant between the plates ρC = ρC|i) and which is defined by the Casimir free energy
FC obtained numerically from the Lifshitz (or a more modern) theory under consideration
of the experimental parameters [51,119]. Led by physical intuition, we further assume ρCii)
to drop exponentially to zero when entering the plates

ρC(z) = θ(a/2− |z|) · ρC|i) + θ(|z| − a/2)ρC|i) · exp
(
− (|z| − a/2)/δp

)
. (35)

The scale-setting condition (23) remains valid for this scenario, which implies that G(k) is
constant wherever ρC is constant. Thus, ∆tµν vanishes in regions (i) and (iii) in Figure 1.
Since, further, the numerical value of Λ(k) is negligibly small in all regions, this means
that in the regions outside the plate, the usual vacuum Einstein equations apply, and thus
Equation (21) can be used with ~∇2∆G = 0 there.

Since the above Equation (35) is a bold simplification of a still unknown, but likely
more complicated, functional form of ρC(z) [41–43,48,49], we defer a detailed numerical
integration of Equation (21) and leave this topic for future work. Instead, we revisit the
WG-WSD assumption of Equation (14) to obtain a rough estimate of what we could expect
to find for the phenomenological parameters. By inspecting the result (21), it is reasonable
to assume that the integrated energy density of the matter material ρM is bigger than the
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correction due to the integral over SD of the gravitational coupling. Thus (to the leading
order in α),

1� (8πG2
0)

∫ D
a/2dz ρM(z)∫ D

a/2dz c2|~∇2∆G|
≈ αC1

C1 − C3

ρC,i

c2δcΛ0ρMD
. (36)

Using Equations (3) and (25) and realistic exemplary values of (z = a/2, a = 10−5 m,
ρM/c2 = ρgold/c2 = 19.3 g/cm3, δc = 10−7 m, D = 0.01 m) in the above expression, we
find that ∣∣∣∣ α

λ̃

C1

C1 − C3

∣∣∣∣� 10−30. (37)

Note that δc and the boundary value ρC,i refer to the assumed exponential attenuation model
in Equation (35), which is subject to significant theoretical and experimental uncertainty.
Nevertheless, as the skin depth was investigated quantitatively in experiments [120], we
think that the error in this approach with respect to reality will amount to a mere few orders
of magnitude, for which the bound (37) will remain approximately valid even in the worst
case. This clearly implies a very strong impact on the parameter space (α, C1, C3).

A more realistic modeling of the experimental situation in this and other configura-
tions, such as the measurement of the potential Φ(z) [c.f. Equation (17)] with test particles,
will be part of our future projects.

3. Discussion and Conclusions

In the foregoing sections we attempted to derive how novel experimental insight into
the possible connection between quantum vacuum energy and energy density correspond-
ing to the cosmological coupling Λ could be obtained. Now, we discuss the result of these
considerations, Equation (37).

3.1. Why So Strong?

The sensitivity in Equation (37) is, despite its large uncertainty due to the simple
assumed model for attenuation inside the material, overwhelmingly strong when we
compare it with the standard quantum gravity corrections to the Newtonian potential [121].
These leading corrections are typically suppressed as rS/a or λ2

p/a2, where rS and λp are
the Schwarzschild radius and the Planck length, respectively, and a is a typical length scale.
The Planck length scale is extremely small, such that one would have√

h̄G0/c2

a
≈ 10−30. (38)

Let us say an observable with such a correction is testable to order one, i.e.,

˜̃α

√
h̄G0/c2

a
/ 1. (39)

The phenomenological pre-factor ˜̃α of such a test could then only be very weakly con-
strained

˜̃α / 10+30. (40)

The reason for the discrepancy between the usual expectation, given by Equation (40), and
the strength of our result in Equation (37) is fourfold:

(i) Comparable order of ρΛ0 and ρC.
At experimental scales of a ≈ 5 · 10−5 m, the cosmological energy density given by
Equation (1) and the Casimir energy density are of the same order of magnitude. This
means that relative corrections in ρΛ are not necessarily small, unless |α| � 1. This is
usually not the case in estimates like Equation (40).

(ii) Link ρΛ ↔ Λ(k)↔ G(k).
In our discussion, Λ(k) and G(k) are linked through Equations (5) and (9). Therefore,
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sizable corrections to ρΛ can imply sizable corrections to G(k), and, thus, to the
Newton potential. This link is usually not considered when quantum corrections to
the Newton potential are discussed [121].

(iii) Dynamical ∆tµν.
The modifications in G(k) enter gravitational field Equation (13) twofold: first as a
“static” modification of the prefactor of the usual matter energy density ρM and second
as a “dynamical” contribution through ∆tµν. In the WG-WSD limit in Equation (17),
the latter contribution dominates over the former (more intuitive) contribution. To
check the validity of the corresponding expansion (14), we can ignore the leading
contribution to Equation (17) and recalculate the sensitivity (37) with the “static”
∆G/G0 term. This would result in a loss of sensitivity of 35 orders of magnitude.
The same is true for conventional estimates like the one of Ref. [121], where no such
‘dynamical’ effect is considered.

(iv) Small skin depth.
Since the ∆tµν contribution contains two spatial derivatives, the exponential form
of ρQ in Equation (35) leads to an additional enhancement near the boundary, and
generally for δc � 1 m. As mentioned, the experimental and theoretical uncertainty
for this model may result in errors of several orders of magnitude. The skin effect
is a particular feature of the experimental Casimir setup, for which it does not enter
conventional estimates [121].

Note that the above four points are not independent ad hoc assumptions. They are,
rather, natural consequences of the hypothesis (4).

3.2. Interpretation

An interpretation of the remarkable result (37) will be performed in inverted order of
the items (iv) . . . (i) of the previous subsection.

(iv) It is well possible that our simulations of the conditions in the real experiment, in
particular the skin depth relation (35), are an oversimplification. Independent of this
fact, the boundary (37) strongly confines the parameters αC1/(C1 − C3).

(iii) The result (37) would not hold if the ∆tµν term was absent from modified field
Equation (11). However, since this term is needed to restore diffeomorphism invari-
ance, it can not be ‘just absent’. It could, however, be replaced by a less minimal
extension of GR, in which case Equation (37) would have to be recalculated for the
particular non-minimal model.

(ii) It could happen that Λ(k) is only very weakly linked to G(k) in the infrared. In our
parametrization, this possibility is contemplated for parameter points with C1 �
C1 − C3. From the SD perspective, this is would be an unusual scenario since, in
typical benchmark scenarios, this is not the case (see Table A1).

(i) Finally, except for scenarios (iv)–(ii), there remains the possibility that Equation (37)
provides a window into the unknown relation between the quantum world and
cosmology/gravity. Due to the strength of the boundary (37), this will most likely, and
under the assumption that WG-WSD represents a valid approach, allow experiments
to gain insight on the CCP (2). This scenario will be discussed in the next subsection.

3.3. Back to the CCP

Could an experimental sensitivity of α ≈ 10−30 teach us anything about the CCP (2)?
The CCP arises from the ambition to predict ρΛ in terms of ρQ such that ρΛ = ρΛ(ρQ).
Without the loss of generality, we can write this ambition as

ρΛ = Υ(ρQ)ρQ , (41)

where we simply factored out a proportionality in ρQ. Phrased in this equation, the CCP is
the statement that Υ0 is an extremely small number [see Equation (2)]. The fact that Υ0 is a
small number, as measured in cosmology without additional Casimir energy contributions
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(i.e., ρQ = ρQ,0), does not imply that it is actually a constant. It could be a function
Υ = Υ(ρQ) such that Υ0 = Υ(ρQ → ρQ,0). The quantum vacuum energy density ρQ , in
turn, is for sure changing with additional small Casimir contributions

ρQ = ρQ,0 + β ρC. (42)

We have all reason to assume that the proportionality factor β = 1, but for the sake of
being as general as possible, we will keep it arbitrary but ≤1. A Casimir experiment gives
the unique opportunity to actually realize tiny (linear) changes in ρQ and, through the
hypothesis (4), also changes in ρΛ. We define the dependence of the CCP on changes in the
quantum energy density (through ρC) as

Υ′0 ≡
dΥ(ρQ)

dρC

∣∣∣∣
ρC=0

. (43)

Inserting Equations (2) and (4) into Equation (43) allows us to relate the observable α to Υ0
and Υ′0, namely

α = Υ′0 + β Υ0. (44)

We already know that Υ0 [see (2)], which relates the cosmological constant Λ0 to the vacuum
energy density ρQ,0 in the absence of boundaries, is much smaller than the projected
idealized sensitivity of α [see Equation (37)]. Thus, an upper bound on α would imply an
upper bound on Υ′0, while the detection of a finite α would imply a non-vanishing value of
Υ′0 = α, thereby directly yielding information about the dependence of Λ on ρC, which was
our working hypothesis for this study.

3.4. Conclusions

In this paper, we have explored the hypothesis (4) that cosmological energy density
ρΛ is subject to changes in quantum energy density in terms of the Casimir vacuum energy
density ρC. The local nature of ρC made it then inevitable to introduce scale dependence
(SD) to the gravitational couplings such that both Newton‘s constant G and the cosmological
constant Λ become dependent on the scale factor k and could thus vary locally. SD, when
minimally combined with diffeomorphism invariance, then led in the Weak Gravitational
curvature and Weak SD (WG-WSD) limit to a modification of the gravitational potential (17)
including non-trivial contributions from the vacuum (Casimir) energy.

This means that experiments, which are sensitive to both the gravitational force (21)
and the Casimir force, have the potential to actually test our hypothesis. We derived a
crude estimate Equation (37) for the achievable sensitivity in an upcoming experiment, and
analyzed that such a test could give new insight into the cosmological constant problem
and its possible origin in quantum fluctuations.
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Appendix A. Parameters in Asymptotic Safety

Within a given model approach to quantum gravity, the coefficients Ci cease to be
free parameters. For the case of asymptotic safety coupled to matter, the beta functions for
g(k) = G(k) · k2 and λ(k) = Λ(k)/k2 are calculable [72,122–126] and given by

βg = 2g +
g2

6π
· N1, (A1)

βλ = −2λ +
g

4π
N2 +

gλ

6π
N3. (A2)

Here, the coefficients Ni are natural numbers, which depend on the matter content (NS:
number of scalars, ND: number of Dirac particles, NV : number of vector bosons) included
in the asymptotic safety realization

N1 = NS + 2ND − 4NV − 46, (A3)

N2 = NS − 4ND + 2NV + 2,

N3 = NS + 2ND − 4NV − 16.

By solving the beta functions and expanding the solutions in k2, we find for the expansion
parameters in Equations (9) and (10) that

C1 =
N1

12π
, (A4)

C3 =
N3

12π
.

We will use these parameters for two benchmarks with matter. However, it is important to
note that in the absence of matter (gravity only), most beta functions of the functional RG
approach to gravity predict [127,128]

C1 = C3 ∼ −
15

16π
. (A5)

To put these parameters of the asymptotic safety approach in a phenomenological perspec-
tive, we discuss three benchmark scenarios in Table A1.

Table A1. Parameters of the three benchmark scenarios for renormalization group results; B1 corre-
sponds to pure gravity, B2 is for the particle content of QED, and B3 considers the particle content of
the Standard Model.

B1 B2 B3

NS 0 0 4
ND 0 1 12
NV 0 1 12
C1 −15/(16π) −4/π −11/(2π)
C3 −15/(16π) −3/(2π) −3/π

C1/(C1 − C3) ∞ 1.6 2.2

Notes
1 Earlier experiments on Casimir and van der Waals forces [24,25] (for a complete account see [26]) have suffered from severe

uncertainties, for which their results can be considered to be rather qualitative instead of quantitative according to modern
standards.

2 In most configurations, the mode density is reduced and the Casimir force is attractive but theoretical [29–31] as well as
experimentally tested counter examples exist [32–34] where the behavior is changed non-trivially either by material properties or
geometry.
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