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Abstract: Elastic media with defects are considered manifold with nontrivial Riemann–Cartan
geometry in the geometric theory of defects. We obtain the solution of three-dimensional Euclidean
general relativity equations with an arbitrary number of linear parallel sources. It describes elastic
media with parallel combined wedge and screw dislocations.
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1. Introduction

The majority of the physical properties of real solid bodies depend on defects dis-
tributed inside media. Therefore, the description of elastic media with dislocations, which
are the most common defects, is of great importance for applications.

One of the most promising approach to this problem is based on Riemann–Cartan
geometry. The idea to relate linear dislocations to torsion tensor goes back to the fifties of
the last century [1–5]. This approach has been successfully developed (see [6–16]), and is
often called gauge theory of dislocations.

There are other types of defects in media with spin structure, for example, in ferro-
magnets and liquid crystals, called disclinations [17]. The presence of disclinations may
be also interpreted as the appearance of nontrivial geometry on a manifold. The gauge
approach based on rotation groups for description of disclinations is also used, for example,
in [18–20].

A geometric approach for the description of both types of defects from a unique point
of view was proposed in [21]. In this approach, contrary to others, the only independent
variables are the vielbein and SO(3) connection describing static distribution of dislocations
and disclinations. The curvature and torsion tensors have physical meaning as surface
densities of Frank and Burgers vectors, respectively. Equilibrium equations for defects
are assumed to be invariant under general coordinate transformations and local SO(3)
rotations. Since any solution to field equations is defined up to local transformations, we
have to impose gauge conditions. The elastic gauge for the vielbein [22] and Lorentz gauge
for the SO(3) connection [23] connect the geometric theory of defects with ordinary linear
elasticity theory and the principal chiral SO(3) field. The possible relation of geometric
theory of defects and nonlinear elasticity is discussed in [24].

The geometric theory of defects has a great advantage compared to many other
approaches. It is well suited for the description of single defects as well as their continuous
distribution.

The presence of defects results in nontrivial Riemann–Cartan geometry. Therefore, we
have to replace the Euclidean metric by the Riemannian metric to describe the physical
properties of media with defects. For example, the scattering of phonons on wedge dis-
locations was analyzed in [25,26]. It is also shown that the presence of defects essentially
changes many properties of real solids (see, for example, [27–34]).
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The traditional theory of single defects within the elasticity theory [4] uses the displace-
ment vector field as the main independent variable with appropriate boundary conditions.
In the geometric theory of single dislocations, the only independent variable is the viel-
bein field satisfying second-order equilibrium equations. The displacement vector field
is reconstructed afterwards from the vielbein field in those domains where the geometry
is Euclidean (curvature and torsion vanish). In the present paper, we follow this way of
thought exactly. First, we solve three-dimensional Einstein equations and find the metric.
Then we find the transformation of coordinates, which brings the obtained solution to
the Euclidean metric outside the dislocation sources, the displacement vector field being
defined by the coordinate transformation.

It is understood that for the description of the continuous distribution of defects, one
has to introduce a new variable instead of the displacement vector field [1–5] which is, in
fact, the triad or metric field. The geometric theory of defects proposes equations for this
new variable based on Euclidean three-dimensional gravity models in Riemann–Cartan
spacetimes.

The geometric theory of defects is still under construction, and expression for the free
energy for real bodies is not fixed. Originally, the three-dimensional Euclidean version of
Riemann–Cartan quadratic gravity was proposed in [21]. If disclinations are absent, then
equations for vielbein are reduced to pure Euclidean general relativity. Another interesting
possibility is to use the Chern–Simons action for SO(3) connection [35,36]. Note that in
the absence of elastic stresses, the metric is Euclidean, and famous ’t Hooft–Polyakov
monopole solutions have a straightforward physical interpretation in the geometric theory
of defects [37] and may be observed, hopefully, in real solids [38].

Last year, great attention was paid to analogue gravity [39], which investigates ana-
logues of gravitational field phenomena in condensed matter physics. In particular, the
behavior of fields in curved spacetime can be studied in the laboratory (see [40,41] for
review). In analogue gravity, nontrivial metrics arise as the consequence of field equations
for condensed matter, which differ from gravity equations. On the contrary, in the geomet-
ric theory of defects, gravity equations themselves are used for the description of defects
distribution in matter.

We are not aware of experimental confirmation of the geometric theory of defects, but
there have been some attempts to use these ideas in explaining the known properties of
real solids (see, for example, [42–44]).

In the present paper, we consider Euclidean three-dimensional general relativity with
linear sources as the equilibrium equations for the vielbein. The solution of the field
equations are obtained in close analogy with the Lorentzian version of point particles in
three-dimensional general relativity [45]. We show that this solution describes the arbitrary
distribution of parallel combined wedge and screw dislocations. It seems to be new in
solid-state physics.

2. Notation

In the geometric theory of defects, dislocations and disclinations correspond to non-
trivial torsion and curvature, respectively. If disclinations are absent, then the curvature
vanishes, and we are left with teleparallel space. It is well known that teleparallel gravity is
equivalent to general relativity (see, for example, [46]). So, we shall use general relativity
as a more familiar background. In this way, we obtain the metric as the solution of Eu-
clidean three-dimensional Einstein equations. Afterwards, the vielbein and torsion can be
reconstructed, but this is not needed in what follows.

We consider three-dimensional Euclidean space with Cartesian coordinates (xα) ∈ R3,
α = 1, 2, 3. Let there be a second positive definite metric gαβ describing the distribution
of linear dislocations in the geometric theory of defects. It defines Christoffel’s symbols
as usual:

Γαβγ :=
1
2
(∂αgβγ + ∂βgαγ − ∂γgαβ).
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The curvature and Ricci tensors and scalar curvature are defined as

Rαβγ
δ :=∂αΓβγ

δ − ∂βΓαγ
δ − Γαγ

εΓβε
δ + Γβγ

εΓαε
δ,

Rαγ :=Rαβγ
β, R := gαγRαγ,

where the indices are lowered and raised by the metric gαβ and its inverse gαβ.
Let there be N linear, possibly curved, dislocations with axes

(
qα

I (τ)
)
∈ R3, τ ∈ R,

where index I = 1, . . . , N enumerates the dislocations. The free energy expression for the
static distribution of N linear dislocations is chosen to be

S := −κ
∫

dx
√
|g|R +

N

∑
I=1

mI

∫
dτ

√
q̇α

I q̇β
I gαβ, (1)

where q̇I := ∂τqI; κ ∈ R is the coupling constant, and mI ∈ R is the “strength” of the
I-th dislocation. We assume that the dislocation axes do not intersect between themselves
and may be parameterized by points on the x3 axis, i.e., q̇3

I 6= 0. Then the equations of
equilibrium for the arbitrary distribution of linear dislocations are

Rαβ −
1
2

gαβR =− 1
2

Tαβ, (2)

q̈α
I + Γβγ

α q̇β
I q̇γ

I =0, (3)

where

Tαβ :=
1√
|g|∑I

mI q̇α
I q̇β

I

q̇3
I

δ(x− qI),

δ(x− qI) := δ(x1 − q1
I )δ(x2 − q2

I )

is the two-dimensional δ-function with support on points where the I-th dislocation axis
intersects the x1, x2 plane.

So the arbitrary static distribution of linear dislocations is described by the Euclidean
version of n point particles in three-dimensional general relativity. Outside the dislocation
axes, the space is flat because the total curvature tensor in three dimensions is defined
uniquely by its Ricci tensor which vanishes outside sources. The curvature is singular on the
dislocation lines. In this sense, the space with dislocations becomes curved. In equilibrium,
dislocations axes are located along geodesic lines in three-dimensional Riemannian space,
and they curve the initial Euclidean space, describing elastic media with dislocations. To
obtain a connection with the ordinary elasticity theory, we have to impose an elastic gauge
containing Lame coefficients [22]. Unfortunately, the solution of field Equation (2) in an
elastic gauge is not the easiest way. Therefore, we impose another gauge in the next section
to obtain the exact solution. The problem of rewriting this solution in an elastic gauge is
purely technical and left for future analysis.

3. Einstein Equations

We assume that all dislocations are straight and parallel to the x3 axis. Moreover,
dislocations are supposed to be homogeneous along the x3 axis, i.e., there is the translational
symmetry x3 7→ x3 + const. Then the metric can be parameterized as

gαβ =

(
h2 −h2ων

−h2ωµ ḡµν + h2ωµων

)
⇔ gαβ =

 1
h2 + ω2 ων

ωµ ḡµν

, (4)
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where h(x) > 0, ωµ(x), and ḡµν(x) are some unknown functions on two coordinates
x := (xµ) ∈ R2, µ := 1, 2 such that det ḡµν 6= 0. The corresponding interval is

ds2 = h2(dx3 −ωµdxµ
)2

+ ḡµνdxµdxν. (5)

There is the identity
det gαβ = h2 det ḡµν.

Thus, the whole problem is reduced to a two-dimensional one, and indices from the
middle of Greek alphabet will take only two values µ, ν, . . . = 1, 2.

Parameterization (4) is possible in any dimensions and coincides with the Arnowitt–
Deser–Misner parameterization for the inverse metric.

A general solution of field equations for ωµ ≡ 0 in the context of the geometric theory
of defects was found in [21]. It describes the arbitrary distribution of parallel wedge
dislocations. Therefore, we consider now the case ωµ 6= 0. In three-dimensional general
relativity, covector components ωµ are related to spins of point particles [47], whereas they
correspond to screw dislocations in the geometric theory of defects.

Christoffel’s symbols with lower indices for metric (4) are

Γ333 =0, Γ33µ = −h∂µh, Γ3µ3 = h∂µh,

Γ3µν =− h∂µhων + h∂νhωµ −
1
2

h2Fµν,

Γµν3 =− h∂µhων − h∂νhωµ −
1
2

h2(∂µων + ∂νωµ),

Γµνρ =Γ̄µνρ + h(∂µhων + ∂νhωµ)ωρ − h∂ρhωµων

+
1
2

h2(∂µωνωρ + ∂νωµωρ + ωµFνρ + ωνFµρ),

(6)

where overlined Christoffel’s symbols Γ̄µνρ are built for two-dimensional metric ḡµν, and

Fµν := ∂µων − ∂νωµ

is the “field strength” for covector field ωµ. Christoffel’s symbols with one upper index
have the form

Γ33
3 =− h∂µhωµ,

Γ33
µ =− h∂ν ḡνµ,

Γ3µ
3 =

∂µh
h

+ h∂νhωνωµ −
1
2

h2Fµνων,

Γ3µ
ν =h∂ρhḡρνωµ −

1
2

h2Fµ
ν,

Γµν
3 =− 1

h
(∂µhων + ∂νhωµ)−

1
2
(∇̄µων + ∇̄νωµ)− h∂ρhωρωµων

+
1
2

h2(ωµFνρ + ωνFµρ)ω
ρ,

Γµν
ρ =Γ̄µν

ρ − h∂σhḡσρωµων +
1
2

h2(ωµFν
ρ + ωνFµ

ρ),

(7)

where the raising of the indices is performed by using the inverse two-dimensional metric
ḡµν and ∇̄µ denotes the two-dimensional covariant derivative for metric ḡµν.

Straightforward calculations yield the curvature tensor. Its linear independent nonzero
components are:
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R3µ3ν =h∇̄µ∇̄νh− 1
4

h4Fµ
ρFνρ,

R3µνρ =h∇̄µ∇̄νhωρ − h∇̄µ∇̄ρhων +
h
2

∂νhFµρ −
h
2

∂ρhFµν + h∂µhFνρ

+
h2

2
∇̄µFνρ −

h4

4
Fµ

σFνσωρ +
h4

4
Fµ

σFρσων,

Rµνρσ =R̄µνρσ + h∂ρhωσFµν − h∂σhωρFµν + h∂µhωνFρσ − h∂νhωµFρσ

+ h∇̄µ∇̄ρhωνωσ − h∇̄µ∇̄σhωνωρ − h∇̄ν∇̄ρhωµωσ + h∇̄ν∇̄σhωµωρ

+
h
2

∂ρhωνFµσ −
h
2

∂σhωνFµρ −
h
2

∂ρhωµFνσ +
h
2

∂σhωµFνρ

+
h
2

∂νhωσFµρ −
h
2

∂νhωρFµσ −
h
2

∂µhωσFνρ +
h
2

∂µhωρFνσ

+
h2

2
ωσ∇̄ρFµν −

h2

2
ωρ∇̄σFµν +

h2

2
ων∇̄µFρσ −

h2

2
ωµ∇̄νFρσ

+
h2

2
FµνFρσ +

h2

4
FµρFνσ −

h2

4
FνρFµσ

+
h4

4
ωµωσFν

λFρλ −
h4

4
ωµωρFν

λFσλ −
h4

4
ωνωσFµ

λFρλ +
h4

4
ωνωρFµ

λFσλ.

(8)

The Ricci tensor components become:

R33 =h4̄h− h4

4
F2,

R3µ =−
(

h4̄h− h4

4
F2
)

ωµ +
1

2h
∇̄ν(h3Fµ

ν)

=− R33ωµ +
1

2h
∇̄ν(h3Fµ

ν),

Rµρ =R̄µρ +
1
h
∇̄µ∇̄ρh +

(
h4̄h− h4

4
F2
)

ωµωρ

− 1
2h

ωρ∇̄ν

(
h3Fµ

ν
)
− 1

2h
ωµ∇̄ν

(
h3Fρ

ν
)
+

h2

2
FµνFρ

ν

=R̄µρ +
1
h
∇̄µ∇̄ρh +

h2

2
FµνFρ

ν − R33ωµωρ − R3µωρ − R3ρωµ,

(9)

where 4̄ := ḡµν∇̄µ∇̄ν is the two-dimensional Laplace–Beltrami operator and F2 := FµνFµν.
The scalar curvature is

R = R̄ +
2
h
4̄h +

h2

4
F2. (10)

Now, we compute the Einstein tensor Gαβ := Rαβ − 1
2 gαβR:

G33 =− h2

2
R̄− 3

8
h4F2,

G3µ =
1

2h
∇̄ν(h3Fµ

ν)− G33ωµ, (11)

Gµρ =Ḡµρ +
1
h
∇̄µ∇̄ρh− 1

h
4̄hḡµρ +

h2

2
FµνFρ

ν − h2

8
F2 ḡµρ − G33ωµωρ − G3µωρ − G3ρωµ.
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The above formulae are valid in arbitrary dimensions. In three dimensions, there are
simplifications. It is well known that Einstein tensor Ḡµν for metric ḡµν vanishes in two
dimensions. Moreover,

Fµν = εµν(∗F) ⇔ ∗F :=
1
2

Fµνεµν,

where εµν is the totally antisymmetric second-rank tensor, ε12 = 1. Therefore,

FµνFρ
ν = ḡµρ(∗F)2, F2 = 2(∗F)2

and
FµνFρ

ν − 1
2

ḡµρF2 ≡ 0.

In what follows, we shall need the trace and traceless parts of the two-dimensional
Einstein tensor:

G := ḡµρGµρ =− 1
h
4̄h +

1
4

h2F2 − G33ω2 − 2G3µωµ, (12)

Gµρ −
1
2

ḡµρG =
1
h

(
∇̄µ∇̄νh− 1

2
ḡµρ4̄h

)
− G33

(
ωµωρ −

1
2

ḡµρω2
)

− G3µωρ − G0ρωµ + ḡµρG3νων. (13)

Now we are in a position to solve the Einstein equations.

4. Solution of Einstein Equations

We solve now Einstein equations Gαβ = 0 outside the dislocation axes for the metric
of the general form (4). Here, we follow closely the solution in three-dimensional general
relativity [45].

To solve the field equations, we fix the gauge as follows. The translational symmetry

x3 7→ x′3 := x3 − f (x), x 7→ x′ := x,

where f (x) is some function of the first two coordinates, does not change metric (4):

ds2 =h2(dx3 −ωµdxµ)2 + ḡµνdxµdxν

=h2(dx′3 −ω′µdxµ)2 + ḡµνdxµdxν,

if the covector field transforms as

ω′µ = ωµ − ∂µ f .

The covariant derivative of the last equation yields equality

∇̄µω′µ = ∇̄µωµ − 4̄ f .

The two-dimensional Laplace–Beltrami equation for f ,

4̄ f = ∇̄µωµ,

has a solution for a sufficiently large class of the right-hand sides. It means that the gauge

∇̄µωµ = 0, (14)

is admissible at least locally. It is called the Lorentz gauge by analogy with electrodynamics.
Now, we choose the conformal gauge on sections x3 = const:

ḡµν = e2φδµν, (15)
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where φ(x) is some function and δµν := diag (++) is the Euclidean metric.
So, we fix the gauge by Equations (14) and (15) and use the Euclidean two-dimensional

metric δµν to raise and lower the Greek indices.
Christoffel’s symbols in the conformal gauge are

Γ̄µν
ρ = ∂µφδ

ρ
ν + ∂νφδ

ρ
µ − ∂ρφδµν, ∂ρ := δρσ∂σ. (16)

Then, the gauge condition (14) takes the form

∂µωµ := δµν∂µων = 0, (17)

because δµνΓ̄µν
ρ = 0.

We decompose field ωµ into the transverse and longitudinal parts, ωµ = ωT
µ + ωL

µ.
For the zero boundary condition at infinity ωL

µ

∣∣
|x|=∞ = 0, gauge condition (17) means the

absence of the longitudinal part ωL
µ = 0. Therefore,

ωµ = ωT
µ = εµ

ν∂ν ϕ, εµ
ν := εµρδρν, (18)

where ϕ(x) is some function on two coordinates. It implies equality

Fµν = −εµν4̂ϕ, (19)

where 4̂ := δµν∂µ∂ν is the usual flat Laplacian. Relations

R̄ = −2 e−2φ4̂φ and F2 := ḡµν ḡρσFµρFνσ = 2 e−4φ(4̂ϕ)2 (20)

can be easily checked.
Equations G33 = 0 and (11) imply

∇̄ν(h3Fµ
ν) = 0 ⇒ ∂µ( e

−2φh34̂ϕ) = 0,

where Christoffel’s symbols (16) and Equation (19) were used. A general solution of this
equation has the form

4̂ϕ = λh−3 e2φ, (21)

where λ ∈ R is an arbitrary integration constant. Now Equation G33 = 0 is

4̂φ +
3
4

λ2h−4 e2φ = 0. (22)

The trace of Einstein Equation (12) and the traceless part (13) yield equations:

4̂h− 1
2

λ2h−3 e2φ = 0, (23)

∇̄µ∇̄ρh− 1
2

ḡµρ4̄h = 0. (24)

Thus, vacuum Einstein equations Gαβ = 0 in the fixed gauge are reduced to an
overdetermined system of the five Equations (21)–(24) on three unknown functions ϕ, φ,
and h.

For further analysis, we introduce complex coordinates z := x1 + ix2 on the plane
x := (x1, x2). Christoffel’s symbols for metric in the conformal gauge (15) have only two
nonzero components:

Γzz
z = 2∂zφ, Γz̄z̄

z̄ = 2∂z̄φ,
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where the line denotes complex conjugation. Therefore, the following relations hold:

∇̄z∇̄zh =∂2
zzh− 2∂zφ∂zh,

∇̄z̄∇̄zh =∂2
z̄zh,

4̄h =4 e−2φ∂2
z̄zh

and their complex conjugates. It can be easily checked that the z̄z component of Equa-
tion (24) is identically satisfied, and the zz component produces an equation on function
h(z, z̄):

∂2
zzh− 2∂zφ∂zh = 0. (25)

There are two cases: the first one is the most interesting from the physical point of
view.

Case I: ∂zh = 0. The function h = h(z̄) is antiholomorphic. If solutions take only
constant values at infinity, then h = const. Without loss of generality, this constant may be
set to unity h = 1 by stretching the x3 coordinate. Then, Equation (23) holds only for λ = 0.
Afterwards, Equations (21) and (22) are reduced to Laplace equations:

G33 = 0 : 4̂φ = 0,

G3µ = 0 : 4̂ϕ = 0.
(26)

The general solutions of these equations’ outside sources are

φ =
N

∑
I=1

θI ln|x− qI|+
1
2

C1, C1 = const,

ϕ =
N

∑
I=1

bI ln|x− qI|+
1
2

C2, C2 = const,

(27)

where θI and bI, I = 1, . . . , N are some constants (some of them may be zero). More precisely,
Equation (26) holds everywhere on the plane x ∈ R2 except fixed points qI, where functions
φ and ϕ have singularities for nonzero constants corresponding to dislocation lines. It
can be shown that constants θI are related to coupling constants in the initial action (1) as
θI = 4πmI/κ, and bI appear as constants of integration. Covector ωµ is

ωµ = εµ
ν∂ν ϕ = ∑

I

bI
εµνxν

|x− qI|2
.

Thus, we obtained a general solution of field equations in case I:

ds2 =

(
dx3 −∑

I

bI
εµνxµdxν

|x− qI|2

)2

+ ∏
I

|x− qI|
2θI δµνdxµdxν. (28)

Here, we put C1 = 1, which can be always achieved by stretching coordinates xµ, and
integration constant C2 does not affect the metric.

Case II: ∂zh 6= 0. Now Equation (25) can be divided by ∂zh,

∂2
zzh

∂zh
= 2∂zφ, (29)

and integrated:
∂zh = µ(z̄) e2φ, (30)

where µ(z̄) is an arbitrary nonzero antiholomorphic function because case I arises for µ = 0.
Let us perform conformal transformation z 7→ Z(z) defined by the equation

dz := µ̄(z)dZ,
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where the line denotes a complex conjugate. Then, Equation (30) takes the form

∂h
∂Z

= µ(z̄)µ̄(z) e2φ =:
1
2
e2Φ, (31)

where Φ(z, z̄) is real.
Note that isotropic coordinates (15) are defined up to conformal transformations on

the complex plane. Therefore, function µ(z̄) describes this arbitrariness. In other words,
function µ(z̄), which arose during the integration of Equation (29), can be set to unity
without loss of generality.

The complex conjugate to Equation (31) together with the reality of functions h and Φ
implies that functions h = h(X) and Φ = Φ(X) depend only on one coordinate

X =
1
2
(Z + Z̄), Z := X + iY.

Then, Equation (31) takes the form

dh
dX

= e2Φ. (32)

Now, Equations (22) and (23) imply the system of ordinary differential equations for
functions h and Φ:

d2h
dX2 −

1
2

λ2h−3 e2Φ =0, (33)

d2Φ
dX2 +

3
4

λ2h−4 e2Φ =0. (34)

Using Equation (32), Equation (33) is easily integrated

dh
dX

= − λ2

4h2 + ν, (35)

where ν ∈ R is an integration constant. This equation can be also integrated, but we shall
not need it. We proceed with the investigation by writing the metric in coordinates x3, h, Y,
which does not require the explicit form of h = h(X).

Note that Equation (32) implies that the right-hand side of Equation (35) must be
positive. This restricts possible values of constant ν, which will be analyzed later.

The expression for Φ follows from Equations (32) and (35)

Φ =
1
2
ln

(
− λ2

4h2 + ν

)
⇔ e2Φ = − λ2

4h2 + ν. (36)

Differentiate it with respect to X:

2
dΦ
dX

=

(
− λ2

4h2 + ν

)−1
λ2

2h3
dh
dX

=
λ2

2h3 ,

where Equation (35) is used. Next the differentiation on X leads to Equation (34). Thus, the
first-order Equation (35) solves the system of Equations (33) and (34) under restriction (32).

Now, we have to find function ϕ. It satisfies only one Equation (21), which has the
form in new coordinates

4ϕ = λh−3 e2Φ, 4 :=
∂2

∂X2 +
∂2

∂Y2 . (37)
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A general solution of this equation is equal to the sum of the general solution of the ho-
mogeneous Laplace equation4ϕ = 0 and some particular solution of the inhomogeneous
equation, which is expressed through function h using Equation (33):

ϕ = f (X, Y) +
2
λ

h(X), (38)

where f is an arbitrary harmonic function4 f = 0.
Thus, the metric in case II in coordinates x3, X, Y has the general form

ds2 = h2(dx3 − εµ
ν∂ν ϕdXµ

)2
+

(
− λ2

4h2 + ν

)
(dX2 + dY2), (39)

where functions h(X) and ϕ(X, Y) are given by Equations (35) and (38), respectively.
Metric (39) can be written in a simpler form which does not require the solution of

differential Equation (35). Function h(X) depends only on one coordinate, and we go to a
new coordinate system x3, X, Y 7→ x3, h, Y. To simplify the resulting metric, we redefine
the harmonic function entering Equation (38):

ϕ 7→ ϕ = f (X, Y) +
2
λ

[
h(X)− νX

]
. (40)

Then
ωµdxµ =

∂ϕ

∂Y
dX− ∂ϕ

∂X
dY =

∂ f
∂Y

dX− ∂ f
∂X

dY− λ

2h2 dY.

Substitution of this equality in Equation (39) yields the simpler answer

ds2 = h2dT2 − λdTdY + νdY2 −
(

λ2

4h2 − ν

)−1

dh2, (41)

where we changed the third coordinate x3 7→ T, which is defined by the differential
equation

dT = dx3 − ∂ f
∂Y

dX +
∂ f
∂X

dY. (42)

Coordinate T exists at least locally because the second exterior derivative vanishes
d2T = 0 due to the harmonicity of function f .

During the solution of field equations, we restrict constant ν

− λ2

4h2 + ν ≥ 0. (43)

However, metric (41) is defined for all ν and consequently satisfies vacuum Einstein
equations. It is the analytic continuation of the solution for all ν ∈ R.

Next, coordinate transformation Y := y + λ
2ν T transforms metric (41) to the diagonal

form

ds2 = (h2 −M)dT2 +
h2

ν(h2 −M)
dh2 + νdy2, M :=

λ2

2ν
.

Now, the two-dimensional part T, h of the metric can be easily transformed to a
conformally flat form by substitution of h 7→ u, where∣∣∣∣du

dh

∣∣∣∣ = h√
ν(h2 −M)

, ν > 0.

Similar transformations can be performed for ν < 0. Then, the metric becomes

ds2 = eu(dT2 + du2) + dy2 (44)
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up to the rescaling of coordinates and the total constant factor.
It is easily checked that the curvature tensor for this metric vanishes, as it should be.

Metric (44) does not depend on constants θI, and its physical interpretation within the
geometric theory of defects remains unclear.

Combined Wedge and Screw Dislocations

In case I, solution (28) of the Einstein equations depends on two sets of constants
θ1, . . . , θN and b1, . . . , bN. We now give them a physical interpretation in the geometric
theory of defects. Consider one straight dislocation located along the x3 axis. Then, metric
(28) takes the form

ds2 =

(
dx3 − b

εµνxµdxν

xρxρ

)2

+ (xνxν)
θdxµdxµ, θ, b = const. (45)

In polar coordinates
x1 := r cos ϕ, x2 := r sin ϕ,

the metric is
ds2 = (dx3 + bdϕ)2 + r2θ(dr2 + r2dϕ2), (46)

or
ds2 = (dx̃3)2 + r2θ(dr2 + r2dϕ2),

where x̃3 := x3 + bϕ. If b = 0, then the two-dimensional r, ϕ part of metric (46) describes
conical singularity on the plane with deficit angle θ.

The dislocation line coincides with the x3 axis. At this axis, h ≡ 1 and ωµ ≡ 0.
Therefore, Γ33

3
∣∣
xµ=0 ≡ 0, and geodesic Equation (3) are satisfied. So we have the consistent

solution of equilibrium equations.
If b = 0, then metric (46) describes wedge dislocation. For negative −1 < θ < 0, it is

produced by cutting out the wedge of media parallel to the x3 axis with angle −2πθ and
symmetrically gluing together both sides of the cut (see Figure 1). For positive θ, the wedge
is inserted inside the media.

1x

2x

2pq-

Figure 1. The slice x3 = const of the media with the wedge dislocation for −1 < θ < 0.

For θ = 0, metric (46) corresponds to screw dislocation with Burgers vector |b| = b
shown in Figure 2.
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2x

b

1x
3x

Figure 2. The screw dislocation with Burgers vector |b| = b.

It is produced as follows. We make the half plane cut in media in the x3, x1 plane, axis
x3 being the edge of the cut. Then, the lower part of the media is moved along the x3 axis,
and both sides of the cut are glued together. The magnitude of the displacement that is far
enough from the dislocation line x3 is assumed to be constant and called the Burgers vector.

The transformation of coordinates

x̃3 := x3 + bϕ, r̃ :=
1
γ

rγ, ϕ̃ := γϕ, γ := 1 + θ,

brings metric (46) to the Euclidean form

ds2 = (dx̃3)2 + dr̃2 + r̃2dϕ̃2.

Rewriting this coordinate transformation in Cartesian coordinates, one easily obtains
the displacement vector field uα(x) := xα − x̃α(x). This coordinate transformation is
degenerate along the x3 axis. Therefore, the space with dislocation is not Euclidean as
a whole.

Thus, metric (46) in case I describes combined wedge and screw dislocations.

5. Conclusions

We described an arbitrary distribution of n static straight parallel dislocations with
deficit angles θI, I = 1, . . . , N and Burgers vectors bI within the geometric theory of defects.
This problem is hardly to be solved in ordinary elasticity theory because of the very
complicated boundary conditions for the displacement vector field. The obtained metric
describes the distribution of elastic stresses inside media but does not depend on Lame
coefficients and therefore cannot be directly observed. To build the bridge to experiments,
the metric should be rewritten in an elastic gauge [22] which depends on Lame coefficients
and allows the metric to be attributed to particular elastic media. This problem is technical
and left for further study. Anyway, it is important to note that general relativity may help
to solve problems in elasticity theory, and sometimes the geometric approach seems to be
easier and more general.
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