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Abstract: In Schwarzschild acoustic black hole (SABH) spacetime, we investigate the wave dynamics
for the fermions. To this end, we first take into account the Dirac equation in the SABH by em-
ploying a null tetrad in the Newman–Penrose (NP) formalism. Then, we consider the Dirac and
Rarita–Schwinger equations, respectively. The field equations are reduced to sets of radial and
angular equations. By using the analytical solution of the angular equation set, we decouple the
radial wave equations and obtain the one-dimensional Schrödinger-like wave equations with their
effective potentials. The obtained effective potentials are graphically depicted and analyzed. Finally,
we investigate the fermionic greybody factors (GFs) radiated by the SABH spacetime. A thorough
investigation is conducted into how the acoustic tuning parameter affects the GFs of the SABH
spacetime. Both the semi-analytic WKB method and bounds for the GFs are used to produce the
results, which are shown graphically and discussed.

Keywords: acoustic black holes; greybody factors; fermions; Dirac equation; Rarita-schwinger
equation; Hawking radiation

1. Introduction

SABHs, also known as phonon black holes (BHs) or sonic BHs, are objects that are
formed in certain types of fluids and exhibit some of the same characteristics as true BHs.
These objects were first proposed by Unruh in 1981 [1,2], who demonstrated that the
flow of a fluid through a converging nozzle could create an analogue of a BH horizon.
Since then, there has been a great deal of research on SABHs, with a focus on understanding
their properties and behavior. Today, we know that the theory obtained from the SABH
metric has potential applications in various areas including: (i) the metric can be used to
simulate acoustic BHs and study the behavior of sound waves in fluid systems, (ii) the
concept of acoustic BHs can be used to understand the flow of fluids in pipes and other
channels, (iii) the theory can be used to model BHs in space and study their properties and
effects on surrounding objects, (iv) the study of acoustic BHs can help in understanding
the principles of quantum mechanics in a classical context, and (v) the theory can provide
insights into the thermal properties of BHs and the behavior of gases in confined spaces.
Overall, the theory from the SABH metric has the potential to provide a deeper understand-
ing of various physical systems and help in the development of new technologies in fields
such as engineering and physics.

One of the areas of interest in the literature has been the investigation of the thermody-
namic properties of SABHs [3]. It has been shown that these objects exhibit a Hawking-like
temperature and entropy, suggesting that they may be subject to similar thermodynamic
laws as ordinary BHs. Other researchers have focused on understanding the behavior
of waves in the vicinity of SABHs [4,5], including the scattering and absorption of both
phonons and photons, and gravitational lensing phenomena. There have also been a
number of studies on the formation and stability of acoustic BHs [6,7], including the
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role of dissipation and the influence of external perturbations. In addition, there has
been a significant amount of work on the applications of acoustic BHs, including the
simulation [8,9] of BH physics in the laboratory and the study of condensed matter
systems [10,11]. Overall, the research on acoustic BHs will continue to contribute to
our understanding of the behavior of matter and energy in the presence of BH-like objects
and has potential applications in a range of fields [12].

The particle emission by BHs was studied in several articles (see Ref. [13] and refer-
ences therein). Among them, there exist interesting ones such as Ref. [14], which shows
that potential barriers can block the Hawking radiation (HR) [15] to some extent and even
stop the radiation. In contrast, Koga and Maeda [16] showed by numerical computation
that HR of the dilaton BH, for example, wins over the barrier and does not stop radiating,
despite the fact that the potential barrier becomes infinitely high. In general, the thermal
radiations of BHs have been conducted for the emission of bosons and in the semi-classical
approach. As expected, fermionic (both spin- 1

2 and - 3
2 ) emission might show more or

less similar properties qualitatively as scalars, but considering absorption or emission
coefficients of the thermal waves that depend on the frequency of the radiation, GFs can
change the scene and might become the key factor when characterizing and detecting
BHs. Meanwhile, in physics, a greybody is an object or system that emits or absorbs
electromagnetic radiation (EM (electromagnetic) radiation) in a manner that is dependent
on the frequency of the radiation but independent of the direction of the radiation. The
term “grey” comes from the fact that such an object or system is not a perfect absorber
or emitter of EM radiation. For example, a perfect absorber (a blackbody) would absorb
all of the incident EM radiation, regardless of its frequency. On the other hand, a perfect
emitter, the so-called white body, reflects all incident radiation, as opposed to the black
body that absorbs it all. A greybody, however, has an absorption or emission coefficient
that depends on the frequency of the radiation. In cosmology, GF is a correction factor that
appears in the calculation of the temperature and flux of radiation emitted or absorbed
by a body in outer space, such as a BH, a neutron star or a dark matter candidate. It can
be represented as the ratio of actual radiated power to the radiated power by a blackbody
of the same temperature, as a function of frequency. The GF is a complex number, with a
magnitude less than or equal to one and a phase that is dependent on the particular system
being considered.

It was quickly realized that following the discovery of HR [15], BHs that are large and
have a large ratio of electric charge to mass ( e

m ' 2× 1021) are unlikely to retain their charge
and will quickly lose it through radiation. As a result, neutral BHs are more likely to occur
in nature, rather than charged ones. This was pointed out in the work by Gibbons [17].
Both numerical and analytical methods have been used to calculate the rate of radiation
emitted by fermions by using the GFs in the semi-classical approximation for particle with
spin-1/2 [18–27] and particle with spin-3/2 [28,29]. Many studies have also discussed the
scattering parameters of the fermionic field, including quasinormal frequencies, in the
context of various BH spacetimes [30–48] and also for acoustic BH [49–51].

The goal of this study is to address the lack of fermionic GF solutions of Dirac and
Rarita–Schwinger fields in the spacetime of SABH for all possible modes. An effort will
be made to improve the accuracy of our analysis by employing semi-analytic bounds.
Appropriately chosen ansatzes for the wave functions will allow us to derive the radial
equations of the Dirac and Rarita–Schwinger fields in the background of SABH. Analytical
expressions for the effective potentials will be obtained and, in the sequel, the asymptotic
low-energy values of the GF will be found in each case. The role of the tuning (acoustic)
parameter on the GFs will also be examined. The outline of our paper is as follows: in
Section 2, we present the SABH under consideration and observe its some physical features.
In Section 3, we focus on the propagation of spin- 1

2 fields on the SABH: we derive the radial
equation of the massless Dirac equation for arbitrary modes and obtain the corresponding
effective potentials. In Section 4, the whole procedure is repeated for a Rarita–Schwinger
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field propagating in the SABH geometry. Section 5 is devoted to the GF analysis of the
fermions in the SABH geometry. We draw our conclusions in Section 6.

2. SABH Spacetime

As stated above, the concept of a SABH metric in fluid dynamics was first introduced
by Unruh in 1981 [1]. Unruh’s work was based on the observation that the equations of
fluid dynamics can be transformed into the form of the equations governing the behavior
of fields in a curved spacetime. He proposed that the analog of a BH in fluid mechanics can
be created by a flowing fluid with supersonic velocity. Namely, Unruh showed that under
certain conditions, sound waves in a fluid can be described by the same equations that
describe the behavior of fields in a curved spacetime near a BH. This led to the development
of the concept of an “acoustic BH”, where the fluid flow plays the role of the gravitational
field, and the speed of sound in the fluid plays the role of the speed of light. Since the
introduction of the acoustic BH metric, it has been the subject of extensive research and has
been applied in a variety of areas, including acoustics, fluid dynamics, astronomy, quantum
mechanics, and thermodynamics.

In this section, we shall introduce the acoustic BH in a four-dimensional Schwarzschild
framework, which can be considered as one of the simplest analogue BHs in curved
spacetime. The action for the SABH solution is given in the relativistic Gross–Pitaevskii
theory [52] as follows

S =
∫

d4x
√
−g(|∂µ ϕ|2 + m2|ϕ|2 − b

2
|ϕ|4), (1)

where b denotes a constant parameter, and m2 represents a temperature-dependent param-
eter as m2 ∼ (T − Tc). ϕ is a complex scalar field, which satisfies the following equation:

�ϕ + m2 ϕ− b|ϕ|2 ϕ = 0. (2)

By considering the background spacetime as the Schwarzschild BH metric:

ds2
bg = gttdt2 + grrdr2 + gϑϑdϑ2 + gφφdφ2

= − f (r)dt2 +
dr2

f (r)
+ r2(dϑ2 + sin2ϑdφ2), (3)

with the metric function f (r) = 1− 2M
r in which M is the mass of the BH and making some

straightforward computations, Guo et al [3] derived the SABH line-element as follows

ds2 =
√

3c2
s

[
− F(r)dt2 +

dr2

F(r)
+ r2(dϑ2 + sin2ϑdφ2))

]
, (4)

in which c2
s denotes the sound velocity, which can be set as c2

s = 1/
√

3 without loss of
generality [4]. The metric function F(r) of SABH is given by

F(r) =
(

1− 2M
r

)[
1− ξ

2M
r

(
1− 2M

r

)]
, (5)

where ξ is a positive tuning parameter. One can immediately observe that metric (4) reduces
to the Schwarzschild BH (3) as ξ → 0.

There are three different solutions for F(r) = 0: rbh = 2M and rac± = (ξ±
√

ξ2 − 4ξ)M,
in which rbh represents the optical and rac± represent the outer (+) and inner (−) acoustic
event horizons. To make the analysis in the existence of the acoustic event horizons region,
let us consider ξ ≥ 4. For ξ = 4, the acoustic BH becomes extremal with the clashed
horizons of rac− = rac+ = 4M. Moreover, if ξ → ∞, then rac+ → ∞, which means that there
is no way for the sound to leave the spacetime.

In the case of ξ ≥ 4, the spacetime has four regimes: (1) r < rbh represents the inside
of the BH; (2) rbh < r < rac− and (3) rac− < r < rac+ , which both (2) and (3) regimes mean
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that the sound cannot escape the BH but light can; and (4) in the regime of r > rac+ , both
light and sound could escape from the BH. On the other hand, we will consider the outer
horizon when obtaining the thermodynamic properties of SABH.

The Hawking temperature of an acoustic BH is a fundamental concept in the study of
fluid dynamics and acoustics. It refers to the thermal radiation that is emitted by an acoustic
BH, similar to the radiation emitted by a real BH. The concept of Hawking temperature was
first introduced by S. Hawking in 1974 [53], who showed that BHs emit thermal radiation
as a result of quantum mechanical effects near the event horizon. This radiation is known
as HR. In the case of acoustic BHs, the analog of the event horizon is a sonic horizon,
which separates the regions of subsonic and supersonic flow in a fluid. The temperature
of the emitted thermal radiation can be calculated by using the concept of the Hawking
temperature, which is proportional to the surface gravity at the sonic horizon. Recent
studies in the literature [7,54–56] have shown that the Hawking temperature of an acoustic
BH depends on the properties of the fluid, such as its density, pressure, and speed of sound.
The temperature also depends on the properties of the fluid flow, such as the velocity and
acceleration of the fluid. Moreover, the concept of Hawking temperature has been applied
in various areas, including the study of Bose–Einstein [54,55] condensates, the behavior
of waves in fluid systems, and the thermal properties of BHs in astrophysics. It is also
worth noting that a team of researchers led by J. Steinhauer reported observing quantum
HR for the first time [57]. The team used a Bose–Einstein condensate, a type of super-
fluid, to simulate a BH and observed the emission of sound waves that correspond to the
HR [58–60]. Those studies open up a new path for further studies of quantum HR and the
understanding of BHs in the quantum realm [61,62]. To sum up, the study of the Hawking
temperature of acoustic BHs has been a valuable tool in the understanding of the behavior
of fluids and waves in a curved spacetime and has led to advances in the fields of acoustics,
fluid dynamics, and physics.

At this stage, it is worth noting that the Hawking temperature of SABH can be obtained
by using the statistical definition of the Hawking temperature [63], which is based on the
definition of surface gravity κ [15]:

TH =
κ

2π
=

1
4π

lim
r→r+

∂rgtt√
gttgrr

, (6)

so that we have

TH+ =
ξ
(

ξ3/2√ξ − 4 + ξ2 − 3
√

ξ
√

ξ − 4− 5ξ + 4
)

Mπ(ξ +
√

ξ
√

ξ − 4)4 . (7)

The entropy of the SABH can be computed by using the first law of thermodynamics:
dM = ±TH+dSBH , in which SBH denotes the Bekenstein–Hawking entropy [64]:

SBH =
A
4

, (8)

where A = 4πr2
h is nothing but the surface area of the SABH. Hence, the explicit form of

the entropy of the SABH reads

SBH = πM2(ξ +
√

ξ2 − 4ξ)2. (9)

At this point, we would like to point out once again that the case of ξ ≥ 4, which
we have considered in this article, guarantees that the entropy (9) remains real positive.
Figure 1 exhibits the behaviors of the Hawking temperature and Bekenstein–Hawking en-
tropy with respect to the ξ parameter. In particular, the temperature graph is in accordance
with the Maxwell–Boltzmann distribution [65].
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Figure 1. Graphs of Hawking temperature vs. ξ (left) and Bekenstein–Hawking entropy vs. ξ (right)
for the SABH spacetime.

3. Dirac Equation

The Dirac equation [66] is a fundamental equation in quantum mechanics that de-
scribes the behavior of spin- 1

2 particles, such as electrons. It is written as a first-order
partial differential equation that describes the relationship between the wave function
of a particle and its energy and momentum. In four-dimensional curved spacetime,
the Dirac equation takes into account the effects of gravity on the behavior of particles.
This is achieved by replacing the flat Minkowski spacetime metric used in the original
form of the equation with a curved spacetime metric that describes the geometry of the
spacetime in the presence of gravity. The Dirac equation in curved spacetime has been the
subject of extensive research and has been used to study various phenomena in physics
and astronomy, including the behavior of electrons in strong gravitational fields and the
generation of gravitational waves [67]. One of the key results of this research has been the
discovery that the Dirac equation in curved spacetime predicts the existence of fermions,
a type of particle that makes up matter, and their antiparticles, known as antifermions.
The equation also predicts the behavior of these particles in strong gravitational fields,
which is important for understanding the behavior of matter near BHs and other astronom-
ical objects. In addition to its applications in physics and astronomy, the Dirac equation
in curved spacetime has also been used in the development of theories of quantum field
theory and quantum gravity, where it is used to describe the behavior of particles and fields
in the presence of gravity [68].

Our concentration in this section is to derive the effective potential of fermions with
spin- 1

2 propagating in the SABH geometry. To this end, a one-dimensional Schrödinger-
type wave equation is aimed to be obtained by employing the massless Dirac equation
having the Dirac field Ψ [69].

γαeµ
α(∂µ + Γµ)Ψ = 0, (10)

where γα and Γµ = 1
8 [γ

α, γβ]eν
αebν;µ represent the Dirac matrix and spin connection, respec-

tively, and eµ
α indicates the inverse of the tetrad eα

µ which is defined as

eα
µ = diag(

√
F,

1√
F

, r, rsinθ). (11)

Therefore, Equation (10) can be rewritten as

− γ0√
F

∂Ψ
∂t

+
√

Fγ1

(
∂

∂r
+

1
r
+

1
4F

dF
dr

)
Ψ +

γ2

r

(
∂

∂θ
+

1
2

cotθ
)

Ψ +
γ3

rsinθ

∂Ψ
∂ϕ

= 0. (12)
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By considering the Dirac field as

Ψ = F−1/4Φ, (13)

Equation (12) can be simplified to

− γ0√
F

∂Φ
∂t

+
√

Fγ1

(
∂

∂r
+

1
r

)
Φ +

γ2

r

(
∂

∂θ
+

1
2

cotθ
)

Φ +
γ3

rsinθ

∂Φ
∂ϕ

= 0. (14)

Applying the tortoise coordinate dr∗ = dr
F transformation and the following ansatz to

Equation (14), one obtains

Φ =

 iG(±)(r)
r φ±jm(θ, ϕ)

H(±)(r)
r φ∓jm(θ, ϕ)

e−iωt, (15)

in which

Φ+
jm =

√ j+m
2j Ym−1/2

l√
j−m

2j Ym+1/2
l

, (j = l +
1
2
), (16)

and

Φ−jm =

 √
j+1−m

2j+2 Ym−1/2
l

−
√

j+1+m
2j+2 Ym+1/2

l

. (j = l − 1
2
) (17)

After decoupling the equations, one can obtain

d2H
dr2∗

+ (ω2 −V1)H = 0, (18)

d2G
dr2∗

+ (ω2 −V2)G = 0, (19)

where

V1 =

√
F|k|
r2

(
|k|
√

F +
r
2

d f
dr
− f

)
, (k = j +

1
2

, j = l +
1
2
), (20)

V2 =

√
F|k|
r2

(
|k|
√

F− r
2

d f
dr

+ f
)

, (k = −(j +
1
2
), j = l − 1

2
). (21)

Thus, the effective potentials of the fermionic waves having spin- 1
2 and moving in the

SABH geometry are found as

Ve f f =
k2 A
r2

(
1± 1√

A

(
d f (r)

dr
(

r
2
− 2Mξ f (r)) + f (r)(

3Mξ

r
f (r)− 1)

))
, (22)

where A =
√

f (r)− 2Mξ
r f 2(r) and positive and negative signs are conjugated with spin

signs. The behaviors of the effective potentials are depicted in Figure 2 for various
ξ parameters.
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Figure 2. Plots of Ve f f versus r for the spin-1/2 particles. The physical parameters are chosen as
M = j = k = 1.

4. Rarita–Schwinger Equation

The Rarita–Schwinger equation was first derived by W. Rarita and J. Schwinger in
1941 [70], and it has since been an important tool for the study of high-spin particles and
their interactions with other fields. In particular, it is used in the study of supersymmetric
theories, where spin- 3

2 fields appear as superpartners of spin- 1
2 fields. The Rarita–Schwinger

equation is a partial differential equation that describes the behavior of spin- 3
2 fields in

a four-dimensional curved spacetime; spin- 3
2 fields, also known as Rarita–Schwinger

fields, are fields that are characterized by having spin- 3
2 [71,72]. Furthermore, in particle

physics [73], quarks are elementary particles that have spin- 1
2 . However, composite parti-

cles made up of quarks can have different spins, including spin- 3
2 . Moreover, it is worth

noting that mesons are formed by two quarks, a quark–antiquark pair. In the case of a
meson made up of a quark and an antiquark with spins of 1

2 and −1
2 , respectively, their

spins can combine in two possible ways: One possibility is that their spins cancel out,
resulting in a composite particle with spin-0. This is the case for the pion π+, which is made
up of an up quark and a down antiquark. Another possibility is that their spins add up to
create a composite particle with a higher spin value. In this case, the spins can combine
in two different ways to produce a composite particle with spin-1 (vector bosons, which
are governed by the Proca equation [74]). In a curved spacetime, the Rarita–Schwinger
equation is modified to take into account the effects of gravity on the spin- 3

2 fields.
The equation becomes a covariant equation, meaning that its form is unchanged un-
der general coordinate transformations. This is important for the consistency of physical
predictions, as it ensures that the equation describes the behavior of the fields in a way
that is independent of the choice of coordinates. The Rarita–Schwinger equation in a
four-dimensional curved spacetime has been the subject of much research and has been
applied in various areas, including particle physics, string theory, and cosmology. The equa-
tion is also related to other theories in physics, such as general relativity and Yang–Mills
theory [75].
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In this section, for the SABH spacetime, we shall consider the Rarita–Schwinger
equation [76]:

γµναD̃νψα = 0, (23)

where ψα indicates the spin-3/2 field, and γµνα mentions the antisymmetric of Dirac
matrices as

γµνα = γµγνγα − γµgνα + γνgµα − γαgµν. (24)

In Equation (23), D̃ is the super-covariant derivative, which is defined for four-
dimensional spacetime as

D̃µ = ∇µ +
1
4

γρFρ
µ +

i
8

γµρσFρσ. (25)

At this stage, our concentration will be on the non-TT eigenfunctions [29]; therefore,
the radial and temporal wave functions are given as

ψr = φr ⊗ ψ̄(λ), ψt = φt ⊗ ψ̄(λ), (26)

in which ψ̄(λ) represents an eigenspinor with an eigenvalue of iλ̄ where λ̄ = j + 1/2 and
j = 3/2, 5/2, 7/2, . . .. Moreover, the angular wave function is determined by

ψθi = φ
(1)
θ ⊗ ∇̄θi ψ̄(λ) + φ

(2)
θ ⊗ γ̄θi ψ̄(λ), (27)

where φ
(1)
θ and φ

(2)
θ depend on r and t. It is worth mentioning that the specific selection

of gamma tensors and spin connections used in this work can be found in Ref. [29].
By utilizing the Weyl gauge (φt = 0) and using the same arguments used in [29], one can
obtain the following gauge invariant variable

Φ = −
(√

F
2

iσ3

)
φ
(1)
θ + φ

(2)
θ , (28)

which can be rewritten as

Φ =

(
φ1e−iωt

φ2e−iωt

)
. (29)

In Equation (29), parameters φ1 and φ2 are radially dependent, which can be
defined as

φ1 =
F− λ̄2

B1F1/4 φ̃1, φ2 =
F− λ̄2

B2F1/4 φ̃2. (30)

where B1 =
√

F− λ̄ and B2 =
√

F + λ̄. Now, with aid of the tortoise coordinate, we obtain
a set of one-dimensional Schrödinger-like wave equations

− d2

dr2∗
φ̃1 + V1φ̃1 = ω2φ̃1, (31)

− d2

dr2∗
φ̃2 + V2φ̃2 = ω2φ̃2, (32)

whose potentials are given by

V1,2 = ±F(r)
dW
dr

+ W2, (33)

where

W =
λ̄
√

F
r

(
λ̄2 − 1
λ̄2 − F

)
. (34)
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Therefore, the explicit forms of the effective potentials belonging to the SABH space-
time for spin- 3

2 fermions are written as

V1,2 = F(r)
λ̄(1− λ̄2)

r2(F− λ̄2)2

[
±
(

rF′ − 2F
2
√

F

)
(F− λ̄2)∓ r

√
FF′ + λ̄(1− λ̄2)

]
. (35)

In Equation (35), a prime symbol indicates a derivative with respect to r. In Figure 3,
the behaviors of the effective potentials (35) of spin-3

2 fields propagating in the SABH geometry
are illustrated for various ξ parameters.

Figure 3. Ve f f versus r graph for the spin- 3
2 fermions. The plots are governed by Equation (35).

The physical parameters are chosen as M = j = 1.

5. GFs of SABH via Fermion Emission

GFs in four-dimensional curved spacetime describe the absorption and scattering of
fields by BHs. They play a crucial role in understanding the properties of BHs and their
interactions with the surrounding environment. The concept of GFs was first introduced in
the context of general relativity and quantum field theory, where they were used to study
the emission and absorption of particles by BHs. The GFs depend on the geometry of the
BH, the nature of the field, and the energy and angular momentum of the particles. In four-
dimensional curved spacetime, the GFs can be calculated using a combination of analytical
and numerical methods, including the WKB approximation, the partial wave analysis, and
the Monte Carlo simulations. The calculation of GFs requires a proper treatment of the
interaction between the field and the BH, taking into account the effects of the curvature of
the spacetime and the presence of the event horizon. Several studies [77–79] have shown
that the GFs can provide important information about the thermodynamics, stability, and
quantum properties of BHs. They can also be used to study the evolution and dynamics of
BHs, as well as their interactions with other objects in the universe. Overall, the literature
on GFs in four-dimensional curved spacetime provides a rich and diverse field of study,
with numerous insights and contributions to the understanding of BHs and their role in
the universe.
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In short, GFs for BHs are a measure of how much the spectrum of radiation emitted
by a BH deviates from that of a perfect black body. The general semi-analytic bounds
for the GFs are given by [13] (and see also Chandrasekhar’s famous monograph [66] for
the details).

σ(ω) ≥ sec h2
[∫ +∞

−∞
℘dr∗

]
, (36)

where

℘ =

√
(h′2) + (ω2 −Ve f f − h2)2

2h
, (37)

in which h(x) > 0 seen in the integrand of Equation (36) is some positive but otherwise
arbitrary once-differentiable function [80]. We have two conditions for the certain positive
function h : (1) h(r∗) > 0 and (2) h(−∞) = h(+∞) = ω. After applying the conditions
to the effective potentials, one may observe a direct proportionality between the GFs and
the effective potential, where the metric function plays a significant action in this process.
After utilizing the aforementioned conditions and with the usage of the tortoise coordinate,
Equation (36) becomes

σ(ω) ≥ sec h2
[∫ +∞

rh

Ve f f

2ωF(r)
dr
]

. (38)

Since we have two types of fermions, we shall make the GFs computations in
two cases.

5.1. Spin- 1
2 Fermions

Spin- 1
2 fermions, also known as Dirac fermions, play a crucial role in the description

of quantum field theory and quantum mechanics. In quantum field theory, spin- 1
2 fermions

are used to describe the behavior of fundamental particles such as electrons, neutrinos, and
quarks. One important aspect of the behavior of these particles is the concept of GFs, which
describes the probability of the particles being scattered or absorbed by a gravitational or
electromagnetic field. The study of GFs for spin- 1

2 fermions is important because it provides
insight into the interaction between these particles and their environment. For example, the
GFs of electrons in a BH can be used to describe how the BH affects the electrons and their
energy states. This understanding can then be used to make predictions about the behavior
of these particles in different environments and help us better understand the behavior
of the universe as a whole. One of the references that supports the importance of spin- 1

2
fermion GFs is the paper “QNMs and GFs of the novel four-dimensional Gauss–Bonnet BHs
in asymptotically de Sitter spacetime: scalar, electromagnetic and Dirac perturbations” by
S. Devi et al (2020) [81]. This paper provides a comprehensive study of GFs for various
particle types and their interactions with BHs. It provides a detailed mathematical analysis
of the scattering and absorption of particles in a BH environment, including spin- 1

2 fermions.
Another reference that supports the importance of spin- 1

2 fermion GFs is the paper “BHs
in the quantum universe” by S. B. Giddings (2019) [82]. This paper provides an overview
of the quantum mechanical properties of BHs and the interactions between BHs and
particles. It discusses the importance of studying the GFs of spin- 1

2 fermions and how this
understanding can help us better understand the behavior of BHs and other astronomical
objects. In conclusion, spin- 1

2 fermion GFs play a critical role in the understanding of
particle behavior in gravitational and electromagnetic fields. The study of these factors
provides insight into the interaction between particles and their environment and can help
us make predictions about the behavior of the universe as a whole.
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Substituting the effective potential (22) derived from Dirac equations into Equation (38),
we obtain

σ(ω) ≥ sec h2
[

1
2ω

∫ +∞

rh

|k|
r2

(
|k| ±

(
r

2
√

F
dF(r)

dr
−
√

F(r)
))

dr
]

. (39)

After evaluating integral (39), the GFs of spin- 1
2 fermions are found out to be

σl(ω) ≥ sec h2

[
|k|
2ω

(
(k− 1)

rh
+

M(1 + ξ)

r2
h

+
2M2

3r3
h
(1 + ξ2 − 9

2
ξ) +

M3

2r4
h
(ξ3 − 5ξ2 + 3ξ + 1)

)]
. (40)

GFs with varying ξ parameters of perturbed SABH for the spin- 1
2 fermions are depicted

in Figure 4. The increase in ξ value also increases the GF value for both
spin-± 1

2 fermions.

Figure 4. σl(ω) versus ω graph for the spin- 1
2 fermions. While the solid lines stand for spin-+1

2
fermions, the dotted ones represent spin-−1

2 fermions. The physical parameters are chosen as M = 1
and k = 2.5.

5.2. Spin- 3
2 Fermions

Spin- 3
2 fermions, also known as Rarita–Schwinger particles, play a crucial role in

high-energy physics and theoretical physics. The importance of spin- 3
2 fermions GFs lies in

the fact that they can be used to study the properties of exotic and massive particles, such
as gravitons and gravitinos, in various physical situations. Another important application
of spin- 3

2 fermions GFs is in the study of the early universe. During the early universe,
the production of massive particles such as gravitons and gravitinos played a crucial role
in shaping the evolution of the universe. The GFs of spin- 3

2 fermions have been studied
in the context of the early universe and have been used to determine the impact of these
massive particles on the evolution of the universe. Another important application of spin- 3

2
fermions GFs is in the study of BH physics, as we do in this current study. In conclusion, the
study of spin- 3

2 fermions GFs is important for a better understanding of the properties of
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exotic and massive particles in various physical situations. An interested reader is referred
to some relevant references [76,83–85] in this area.

We now consider the GFs of SABH via the spin- 3
2 fermions. To this end, we use the

effective potential (35) in Equation (38) and obtain

σ(ω) ≥ sec h2

[
1

2ω

∫ +∞

rh

λ̄(1− λ̄2)

(
± rF′ − 2F

2r2
√

F(F− λ̄2)
+
∓r
√

FF′ + λ̄(1− λ̄2)

r2(F− λ̄2)2

)
dr

]
. (41)

To overcome the difficulties while evaluating the above complicated integral (41),
the asymptotic series expansion method is applied. After performing straightforward
calculations, one can obtain the following GFs for the spin- 3

2 fermions emitted from the
SABH:

σ(ω) ≥ sec h2

[
λ̄(1− λ̄2)

2ω

(
λ̄(1− λ̄2)− 1

rh(1− λ̄2)2 +
(1 + ξ)

2r2
h(1− λ̄2)2

(1− 2λ̄2 +
4λ̄

1− λ̄2 ) +
1

3r3
h(1− λ2)

×(
3
2
(1 + ξ)2 − 12ξ − 4(1 + ξ)2 + 16ξ

λ̄2 − 1
− 2(1 + ξ)2(λ̄2 − 3)

(λ̄2 − 1)2 +
4λ̄

(1− λ̄2)2(4λ2ξ + 3ξ2 + 2ξ + 3)

))]
. (42)

As can be seen from Figure 5, GFs increase with the ξ parameter and vice versa.
Moreover, it was observed that GFs of spin-−3

2 fermions are higher than the spin-+3
2

fermions. Therefore, one can conclude that thermal emission of Rarita–Schwinger fermions
from the SABH separates the particles of different spin into separate beams. So, SABH
spacetime acts as a device similar to the famous experiment that is about how electrons
are measured in a Stern–Gerlach magnetic field device, which splits up and down spin-−3

2
beams [86].

Figure 5. σl(ω) versus ω graph for the spin- 3
2 fermions. While the solid lines stand for spin-+3

2
fermions, the dotted ones represent spin-−3

2 fermions; and also λ̄ = 2.

6. Conclusions

In this paper, we obtained analytical GFs for the covariant massless Dirac and Rarita-
Schwinger equations in the SABH spacetime. The angular part of the solutions is given
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in terms of the spherical harmonic functions, while the radial equations are reduced to
one-dimensional Schrödinger-like wave equations. The analysis of the radial wave equa-
tions led to some interesting physics. We studied the thermal radiation (HR) spectrum
for massless fermions in the vicinity to the exterior event horizon. Namely, we obtained
the quasi-spectrum of greybody spectrum for massless fermions having spin- 1

2 and spin- 3
2

propagating in the SABH spacetime. We showed how the GFs values of this spectrum are
found. This became possible by employing semi-analytic bounds for the GFs. We examined
the behaviors of the obtained effective potentials and showed that ξ parameter modifies
both the effective potentials and therefore the GFs. We showed that with the increased
value of the ξ parameter, the GFs increase as well. This means that higher acoustic values
of SABH will result in a higher probability of detecting HR. Moreover, it was shown that
the thermal emission of Rarita–Schwinger fermions from a SABH result in the separation
of fermions with different spin into distinct thermal radiations. Therefore, we presented
some analytical results

(
Equations (40) and (42)

)
that might be compared with data to be

detected in future. Finally, it is important to note that previous observations have confirmed
the existence of HR in an analog BH [87]. Additionally, the wave phenomena examined
in this research are caused by the interaction between quantum fields, specifically the
fermion field, and the effective geometry of acoustic BHs in the Schwarzschild spacetime.
Thus, they are intriguing semi-classical phenomena that can provide a deeper understand-
ing of BH physics and therefore should be further studied in the near future.
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