
Citation: Giesel, K.; Liu, H.

Dynamically Implementing the

µ-Scheme in Cosmological and

Spherically Symmetric Models in an

Extended Phase Space Model.

Universe 2023, 9, 176. https://

doi.org/10.3390/universe9040176

Academic Editor: Guillermo A.

Mena Marugán

Received: 7 March 2023

Revised: 30 March 2023

Accepted: 31 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Dynamically Implementing the µ-Scheme in Cosmological and
Spherically Symmetric Models in an Extended Phase
Space Model
Kristina Giesel * and Hongguang Liu *

Department of Physics, Theoretical Physics III, Institute for Quantum Gravity, Friedrich-Alexander Universität
Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
* Correspondence: kristina.giesel@gravity.fau.de (K.G.); hongguang.liu@gravity.fau.de (H.L.)

Abstract: We consider an extended phase space formulation for cosmological and spherically sym-
metric models in which the choice of a given µ-scheme can be implemented dynamically. These
models are constructed in the context of the relational formalism by using a canonical transformation
on the extended phase space, which provides a Kuchař decomposition of the extended phase space.
The resulting model can be understood as a gauge-unfixed model of a given µ-scheme. We use this
formalism to investigate the restrictions to the allowed µ-scheme from this perspective and discuss
the differences in the cosmological and spherically symmetric case. This method can be useful, for
example, to obtain a µ-scheme in a top-down derivation from full LQG to symmetry-reduced effective
models, where, for some models, only the µ0-scheme has been obtained thus far.
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1. Introduction

The investigation of symmetry-reduced models for loop quantum gravity (LQG) in the
context of cosmological or spherically symmetric spacetimes is a topic of growing interest
in recent years; for spherically symmetric models, see, for instance, [1–32] or [33] for a
recent review and [34] for a review on loop quantum cosmology (LQC). In this context,
effective models for LQC or quantum black holes are a useful framework to obtain insights
on the underlying symmetry-reduced quantum model and its characteristic properties.

A common feature that such effective models share is that holonomy operators in-
volved in full LQG are replaced by so-called polymerization functions that mimic the
loop-inspired quantization of these symmetry-reduced models. Such a polymerization
function is always accompanied by a so-called polymerization parameter, usually denoted
by µ, which is the relevant scale for, e.g., holonomy corrections in these effective mod-
els. The first formulation of such models used a fixed polymerization parameter that is
independent of the phase space variables—the so-called µ0-scheme.

The usage of a fixed parameter is inspired by the regularization of holonomies of con-
nections used in full loop quantum gravity [35]. One problem of the µ0-scheme in effective
LQC dynamics is that the critical density at the bounce depends on the initial values and
is possibly non-Planckian. In the context of the so-called improved dynamics, a µ-scheme
for LQC was then proposed to overcome this problem [36], in which the polymerization
parameter is related to the minimal area gap and, thus, depends on the triad operators.

Going beyond cosmological models, improved dynamics were then proposed for
spherically symmetric models [4,9,10,14,28–31,37]. We note that there are different imple-
mentations of the improved dynamics in these models, unlike in LQC where the choice is
unique if we require scale invariance. To establish a link between full LQG and the LQC
effective dynamics, a model for a coherent state-path integral for LQG was introduced
in [38].
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However, obtaining the improved µ-scheme from such top-down derivations of full
LQG is still an open problem [38,39]. If one generalizes the models in [38,39] to the extended
phase space introduced here, we expect that these models will yield corresponding effective
models with a µ-scheme in cosmology or spherically symmetric models. Thus, in these
top-down derivations, the difference is whether one works with or without the extended
phase space to obtain a model in either a µ0- or µ-scheme.

There have been some attempts to generalize models in different directions [40–42] to
obtain effective models with an µ-scheme, which involves either a different regularization
of the dynamics or an ensemble of microstates labeled by different graphs. The approach to
the implementation of the µ-scheme in this work is more along the lines introduced in the
effective cosmological models—namely, as a canonical transformation on the phase space
of gravitational degrees of freedom.

In this paper, we aim at constructing a method based on an extended phase space
that allows the implementation of a general µ-scheme dynamically, and we investigate
the restrictions for the allowed µ-scheme. We discuss the model in the framework of the
relational formalism [43–47] where we can formulate the model in terms of Dirac observables
with respect to the constraints related to the choice of a given µ-scheme. The construction
of such Dirac observables allows us to define a canonical transformation on the extended
phase space, which maps the original kinematical variables into a new set of variables where
the constraints related to the µ-scheme become new elementary variables in phase space.

By this, we achieve a so-called Kuchař-decomposition [48,49] of the phase space in which
the constraints as well as the Dirac observables with respect to these constraints become the
new elementary-phase space variables. Working in extended phase space allows the choice
of a particular µ-scheme to be implemented as a canonical transformation. Although this
is also possible directly in the reduced phase space of cosmological models, it is no longer
possible in reduced phase space for general µ-schemes in spherically symmetric models.

With the detailed construction of the cosmological model in Section 2 and spherically
symmetric model in Section 3, we show that the model in terms of these Dirac observables
can be understood as the gauge-unfixed version of a given µ model. The model includes
constraints that fix µ to some chosen phase space functions that is implementing a specific
µ-scheme, and we call such functions gauge-fixing functions in the following.

By requiring that the elementary canonical variables encoding the constraints vanish,
we obtain the Hamiltonian constraint in the µ-scheme characterized by the choice of
the gauge-fixing functions, which can be taken as the starting point to further study the
quantum theory and effective dynamics. In addition, we also investigate the corresponding
gauge-fixed model for both the cosmological and spherically symmetric case. The method
that we propose here can, for instance, be applied to the path integral formulation of full
LQG [38], thereby, allowing us to obtain µ-like effective dynamics from the top-down
derivations of full LQG.

As our analysis shows, in the cosmological model, the gauge-fixing function is encoded
in the model, and thus the choice for µ has no restrictions to the form of the µ function. Any
gauge-fixing function that one chooses, which depends on the scale factor and extrinsic
curvature, can lead to a well-defined Hamiltonian in the partially reduced phase space
equipped with the standard canonical commutation relations (CCR). The form of the
µ-scheme is fixed only when we further require scale invariance of the polymerization
function, which then reduces to the standard µ-scheme used in LQC.

In the spherically symmetric model, which is a 1 + 1-dimensional field theory, this is
no longer the case. Due to the requirement for a consistent density weight of the effective
constraints, the dynamical implementation of a chosen µ-scheme is only possible if the
polymerization depends on a combination of the extrinsic curvature and the triad such
that they have density weight zero. This gives a restriction to the possible gauge-fixing
functions for spherical symmetric models.

We note that, if one only works with the interior of a black hole, which can be described
as a homogeneous Kantowski–Sachs spacetime, the gauge-fixing functions are again free
from any restriction similar to the case of cosmological models.



Universe 2023, 9, 176 3 of 24

The paper is structured as follows: In Section 2, we present the dynamical implemen-
tation of the µ-scheme for cosmological models. In Section 2.1, we use the framework
of the relational formalism and discuss, in detail, how a canonical transformation can be
constructed. Using the transformed variables, we show on the one hand that we obtain a
gauge-unfixed model for each given choice of a µ-scheme, including also the special choice
of µ0 and, on the other hand, how the reduced phase space can be obtained.

In Section 2.2, we present the corresponding gauge-fixed model for the cosmological
case. In Section 3, we generalize our strategy to spherically symmetric models where in
general more than one polymerization parameter is present and we consider field theory
models. The sections on the cosmological and the spherically symmetric models should be
self-contained, so that the reader interested in only one of the two cases can go directly to
the appropriate section.

As shown in Section 3.1 a similar canonical transformation on the extended phase
space can be constructed using the relational formalism. To show that the transformation
is indeed canonical requires a slightly more effort compared to the cosmological case but
works analogously. Again, the resulting model can be understood as a gauge-unfixed
model of a given µ-scheme. In addition, we present, in Section 3.2, the corresponding
gauge-fixed model. We summarize and conclude in Section 3.2 and provide further details
for some calculations in the appendix.

2. Implementing the µ-Scheme in Cosmology

We aimed to construct a model on an extended phase space that allows us to implement
the µ-scheme in cosmology dynamically. Note that we will not consider a further gauge
fixing or the construction of Dirac observables with respect to the Hamiltonian constraint
but see the model presented here rather as a starting point for a cosmological model
with a given Hamiltonian constraints for which on the usual kinematical phase space a
µ-scheme needs to be chosen. Afterwards, one can still consider a further gauge fixing of
the Hamiltonian constraint or construct the fully reduced phase space that also involves
the Hamiltonian constraint because such a step is usually performed within an already
given µ-scheme.

2.1. Extended Phase Space for Cosmology: Canonical Transformation and Dirac Observables

We consider the usual kinematical phase space of cosmology with elementary-phase
space variables denoted by θ, p, N, pN , φA, πA, where N is the lapse function, θ, p the gravi-
tational variables and φA, πA some generic matter degrees of freedom where A ∈ 1, · · · , L#
is a generic label to allow more than one matter component in general. We extend this
phase space by two additional canonical pairs (λ, pλ) and (µ, pµ). The non-vanishing CCR
in the (8 + 2L#) dimensional phase space are given by

{θ, p} = γκ

6
{λ, pλ} =

{
µ, pµ

}
= 1, {φA, πB} = δA

B , {N, pN} = 1, (1)

where γ denotes the Barbero–Immirzi parameter and κ = 8πG with G being Newton’s
constant. The model that consider has a primary Hamiltonian of the form

HP = NH0(θ, p, µ, ϕA, πA) + λ(µ− f (p, θ)) + Λλ pλ + Λµ pµ + ΛN pN , (2)

where Λλ, Λµ, ΛN are Lagrange multipliers, and H0(θ, p, µ, ϕA, πA) takes the following form

H0(θ, p, µ, ϕA, πA) = −
6
√

ph(µθ)

γ2κµ2 + Hmatter
0 (φA, πA, p). (3)

We consider a polymerization of the connection variable θ in the gravitational sector
with a generic function h(µθ) satisfying

lim
µ→0

h(µθ)

µ2 = θ2. (4)
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This provides the possibility to either consider this model as a classical starting point
for a later loop quantization or to stay at the classical level and consider it as an effective
model. Choosing this function to be h(µθ) = sin(µθ)2 gives the usual LQC effective
Hamiltonian. The function f (θ, p) is an up to now arbitrary function and can be later chosen
to have a specific form in order to reproduce the wanted µ-scheme. The system has three
primary constraints

Cpλ
= pλ ≈ 0 Cpµ = pµ ≈ 0 CpN = pN ≈ 0. (5)

The stability of Cpλ
leads to the following gauge fixing condition for µ,

Cµ = Ċpλ
= µ− fµ(θ, p) ≈ 0 (6)

The stability of Cpµ gives

Cλ = Ċpµ = λ +
12
√

ph(µθ)

γ2κµ3 −
6θ
√

ph′(µθ)

γ2κµ2 =: λ + g(θ, p, µ) ≈ 0 (7)

with h′(X) = ∂Xh(X)|X=µθ . Note that the matter contribution Hmatter
0 does not contribute

to Cλ because it does not depend on µ as long as we do not consider a polymerization of
the matter part. Furthermore, the requirement of the stability for CpN yields the Hamilto-
nian constraint

C0 = H0(θ, p, µ, ϕA, πA) ≈ 0. (8)

The stability of Cµ and Cλ fix Lagrangian multiplier Λµ and Λλ, respectively, whereas
C0 is already stable.

The canonical transformation that we want to construct is a so-called partial Kuchař
decomposition of the original phase space. We call it partial here because we perform such a
decomposition only with respect to part of the constraints, namely those related to the choice
of the µ-scheme. Strictly speaking, we should also call the Dirac observable partial Dirac
observables because they span the partially reduced phase space but not the fully reduced
one, which needs to involve observables with respect to the Hamiltonian constraints.

In the following, we still call the partial Dirac observables simply Dirac observables
but have in mind that the Hamiltonian constraint has not been considered yet but could
easily be included following, for instance, the strategy used in [50] by using an additional
observable map based on matter clocks and where details on the construction of such
observable maps are presented.

For this purpose, we use the observable map as well as its dual version introduced
in [51] where a Kuchař decomposition [48,49] of the phase space was constructed in the
context of linearized gravity. This is necessary because originally we want to choose some of
the involved constraints as new canonical coordinates, and this requires that each constraint
commutes with all but one. As of this, we cannot use the original set of constraints for this
purpose. Applying different observable maps successively will, however, yield new phase
space coordinates that can be used for this purpose. We then show that the application
of the different observables maps is indeed a canonical transformation on the extended
phase space.

As a first step, we consider the two first class constraints Cpµ and Cpλ
. As there are

elementary momentum variables in phase space, they mutually commute with all remaining
phase space variables except µ, λ and as a consequence Cµ, Cλ. In particular θ and p are
obviously Dirac observables with respect to Cpµ , Cpλ

. This means that the corresponding
observable maps are defined as

Opµ

f :=
∞

∑
n=0

(−1)n(Cµ)n

n!
{ f , Cpµ}(n), Opλ

f :=
∞

∑
n=0

(−1)n(Cλ)
n

n!
{ f , Cpλ

}(n), (9)
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where {., .}(n) denotes the nested Poisson bracket with { f , g}(0) = f and { f , g}(n+1) =
{{ f , g}(n), g} and f is a function on phase space that becomes the identity map for functions
f that depend on (θ, p) only. In the language of the relational formalism the constraints
Cµ, Cλ play the role of clocks. Now, given the observable map in (9), we can define its dual
map along the lines of the work in [51] where the role of clocks and first class constraints
is interchanged.

However, if we want to consider dual observable maps for both pairs (Cµ, Cpµ) and
(Cλ, Cpλ

) we need that the ‘clocks’ Cµ, Cλ commute at least weakly. Considering the Dirac
matrix in (19), we see that this is not the case. Since we aim at constructing a canonical
transformation we even need the stronger requirement that the clocks strongly commute.
This can be achieved by successively applying the dual observable map as follows: in the
first step, we consider the following set of variables

Q1 := Cλ, P1 := Cpλ
, Q2 : = OCλ

Cµ
, P2 := OCλ

Cpµ
, (10)

with the dual observable map

OCλ
f :=

∞

∑
n=0

(Cpλ
)n

n!
{ f , Cλ}(n). (11)

By construction, we have {OCλ
f , Cλ} = 0. Using the result in [47] on the Poisson

algebra of the so-constructed Dirac observables and carrying it over to the dual observable
map, we obtain

{OCλ
Cµ

,OCλ
pµ } = O{Cµ ,pµ}

Cλ
D

= O{Cµ ,pµ} = 1, (12)

where {., .}Cλ
D denotes the submatrix of the Dirac bracket in (19) that includes the Poisson

brackets of the pair (Cλ, Cpλ
) only. Given this, we already have {Qj, Pk} = δ

j
k with j, k = 1, 2.

To extend that set by variables corresponding to the gravitational and matter degrees of
freedom that have the property to mutually commute with Qj, Pj for j = 1, 2 and satisfy
standard CCR, we define

Q3 := O
Cλ ,OCλ

Cµ

θ , P3 := O
Cλ ,OCλ

Cµ
p , Q4 := N, P4 := pN , QI := O

Cλ ,OCλ
Cµ

φA , PI := O
Cλ ,OCλ

Cµ
πA , (13)

with I ∈ 5, · · · , L# + 4 being an index set covering the matter degrees of freedom for all A

at the level of the observables. The notation O
Cλ ,OCλ

Cpµ

f means that, in the first step, we apply
the dual observable map from (11) on f and afterwards the following dual observable map

O
OCλ

Cµ

f :=
∞

∑
n=0

(OCλ
Cpµ

)n

n!
{ f ,OCλ

Cµ
}(n). (14)

For the canonical pair (N, pN), we used that both variables trivially commute with
Cλ, Cµ, and thus these maps act similar to the identity map on N, pN .

Now, it remains to show that Q3, P3, Q4, P4, QI , PI satisfy standard CCR and have
vanishing Poisson brackets with Q1, Q2, P1, P2. For the pair (Q4, P4), this is the case because
we have {Q4, P4} = 1, and none of the constructed observables depends on N, pN so that
they mutually commute with them. To show that it also for the remaining set Q3, P3, QI , PI ,
somewhat more work is needed. By construction, Cλ and OCλ

Cµ
commute and hence the

order of the application of the two (dual) observable maps is irrelevant and will yield a
quantity that commutes with Q1 as well as Q2 by construction. To compute the Poisson
bracket with the momenta, we use

O
Cλ ,OCλ

Cµ

f =
∞

∑
n=0

1
n!

(
OCλ

pµ

)n
{OCλ

f ,OCλ
Cµ
}(n) =

∞

∑
n=0

1
n!

(
OCλ

pµ

)n
OCλ

{ f ,Cµ}
Cλ
D(n)

, (15)
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where { f , g}Cλ

D(n) denotes the iterated Dirac bracket with respect to the pair (Cλ, Cpλ
) with

{ f , g}Cλ

D(0) = f and { f , g}Cλ

D(n+1) = {{ f , g}Cλ

D(n), g}Cλ
D .

The last step in (15) can be easily shown using again the result on the observable
algebra from [47] iteratively as well as a proof by induction, which we present in the
Lemma 1 below. The Lemma 1 is not discussed in [47] but can be easily proven using the
theorem presented in [47], and we present the proof in Appendix C.

Lemma 1. For the iterated Poisson bracket of observables, we have

{OCλ
f ,OCλ

g }(n) = O
Cλ

{ f ,g}Cλ
D(n)

. (16)

Using these results, the Poisson brackets with the momenta yield

{Q3, P2} = {O
Cλ ,OCλ

Cµ

θ ,OCλ
Cpµ
} =

∞

∑
n=0

1
n!
{(OCλ

Cpµ
)nOCλ

{θ,Cµ}
Cλ
D(n)

,OCλ
Cpµ
}

=
∞

∑
n=0

1
n!
(OCλ

Cpµ
)n{OCλ

{θ,Cµ}
Cλ
D(n)

,OCλ
Cpµ
} =

∞

∑
n=0

1
n!
(OCλ

Cpµ
)nOCλ

{{θ,Cµ}
Cλ
D(n),Cpµ}

Cλ
D

,

where we used the result of Lemma 1 in the second and one before the last step.
Now, we consider the Dirac bracket {θ, Cµ}Cλ

D(n). For n = 0, we have {θ, Cµ}Cλ

D(0) = θ.
For n ≥ 1, we find

{θ, Cµ}Cλ

D(n) = {θ, Cµ}(n) = {θ, fµ}(n),

where, by assumption, the function fµ depends on the gravitational degrees of freedom
only, and thus {θ, fµ}(n) will do so as well. Here, we used, in the first step, that θ, Cµ both
commute with pλ. Since any partial derivative of f as well as θ commutes with pλ we
obtain for n ≥ 1

{{θ, Cµ}Cλ

D(n), Cpµ}
Cλ
D = {{θ, Cµ}Cλ

D(n), Cpµ} =
∂

∂µ
{θ, fµ}(n) = 0.

For n = 0, the nested Dirac bracket also vanishes because {θ, Cpµ} = 0. From these
results, we immediately end up with

{Q3, P2} =
∞

∑
n=0

1
n!
(OCλ

Cpµ
)nOCλ

{{θ,Cµ}
Cλ
D(n),Cpµ}

Cλ
D

=
∞

∑
n=0

1
n!
(OCλ

Cpµ
)nOCλ

0 = 0. (17)

For the momentum P1, the calculation of the Poisson bracket leads to

{Q3, P1} = {O
Cλ ,OCλ

Cµ

θ , Cpλ
} = {O

Cλ ,OCλ
Cµ

θ , Cpλ
} = ∂

∂λ

∞

∑
n=0

(OCλ
Cpµ

)n

n!
{OCλ

θ ,OCλ
Cµ
}(n) = 0.

The last step follows from the fact that, if we consider (15), we see that, for functions
f that do not depend on pλ, the term linear in λ in Cλ does not contribute to the nested
Poisson bracket. Hence, neither OCλ

Cpµ
nor OCλ

Cµ
depend on λ. Since also ∂λO

Cλ
θ = 0, the

nested Poisson bracket in the above equation is independent of λ too.
The same steps can be performed if we replace Q3 by P3 as well as the matter degrees

of freedom QI , PI , and thus we have shown that, indeed, Q3, P3, QI , PI mutually commutes
with Q1, Q2, P1, P2.

Finally, we still need to show that Q3, P3 as well as QI , PI satisfy standard CCR and
mutually commute. For showing that they satisfy standard CCR, we restrict our discussion
to the canonical pair Q3, P3 and discuss the matter variables afterwards. For this purpose it
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is more convenient to directly work with the second class constraints (Cλ,OC˘
Cµ

, Cpλ
,OCλ

pµ )

and the variables OCλ
θ ,OCλ

p and their corresponding algebra. Then, we obtain

{O
Cλ ,OCλ

Cµ

θ ,O
Cλ ,OCλ

Cµ
p } = O

{OCλ
θ ,OCλ

p }
Cµ
D

= O
{OCλ

θ ,OCλ
p }

=
γκ

6
(18)

with

{OCλ
θ ,OCλ

p }
Cµ

D := {OCλ
θ ,OCλ

p }+ {OCλ
θ ,OCλ

Cµ
}{OCλ

Cpµ
,OCλ

p } − {OCλ
θ ,OCλ

Cpµ
}{OCλ

Cµ
,OCλ

p }

= {OCλ
θ ,OCλ

p } =
γκ

6
.

Here, we used that

{OCλ
θ ,OCλ

p } = O
{θ,p}Cλ

D
= O{θ,p} =

γκ

6
,

{OCλ
Cpµ

,OCλ
p } = O

{Cpµ ,p}Cλ
D

= O{Cpµ ,p} = 0

{OCλ
θ ,OCλ

Cpµ
} = O

{θ,Cpµ}
Cλ
D

= O{θ,Cpµ} = 0,

where, in all three cases, the Dirac bracket agrees with the Poisson bracket because θ, p
commute with Cpλ

, and we further use that θ, p also Poisson commute with Cpµ . The result
in (18) can be directly carried over to QI , PI the observables corresponding to the elementary
matter phase space variables φA, πA because the crucial property needed for this result is that
both θ, p Poisson commute with Cpλ

and Cpµ , which is also given for all φA, πA. Moreover,
this property is also sufficient to show that the sets Q3, P3 QI , PI mutually commute because,
also in this computation, the relevant Dirac brackets reduce to their corresponding Poisson
brackets, and then we can use that the original phase space variables p, θ and φA, πA are
sets of mutually commuting elementary variables in phase space.

Summarizing the canonical transformation that allows to perform a (partial) Kuchař
decomposition of the (8 + 2L#) dimensional phase space separating the physical degrees of
freedom from the gauge degrees of freedom is given by

Q1 := Cλ, P1 := Cpλ
, Q2 := OCλ

Cµ
, P2 := OCλ

Cpµ
, Q3 := O

Cλ ,OCλ
Cµ

θ , P3 := O
Cλ ,OCλ

Cµ
p ,

Q4 := N, P4 := pN , QI := O
Cλ ,OCλ

Cµ

φA , PI := O
Cλ ,OCλ

Cµ
πA ,

with I = 5, · · · , L# + 4. In terms of the original variables θ, p, µ, pµ, λ, pλ, φA, πA, these are
rather complicated functions consisting of partly nested power series with phase space
depended coefficients. However, as shown above, the new variables satisfy standard CCR

{QJ , PK} = δ̃J
K, {QJ , QK} = 0, {PJ , PK} = 0, J, K = 1, . . . , L# + 4

with

δ̃J
K = δJ

K for J, K = 1, . . . , L# + 4 if J = K 6= 3 and δ̃3
3 =

γκ

6
.

The primary Hamiltonian in the new variables expressed as a function in terms of
the old canonical variables looks similarly complicated but has, in the new variables, the
following form:

HP = H0(Q3, P3, Q1 + fµ(Q3, P3), QI , PI) + (Q2 − g(Q3, P3, Q1 + fµ(Q3, P3)))Q1

+ΛλP2 + ΛµP1.
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If we consider the Hamiltonian constraint C0 in (8) on the partially reduced phase
space with respect to the constraints encoded in Q1, P1, Q2, P2 that we obtain by setting
Q1 = Q2 = P1 = P2 = 0, we end up with

C0 = H0(Q3, P3, fµ(Q3, P3), QI , PI)

showing that we obtain the Hamiltonian constraint in the µ-scheme characterized by the
choice of the function fµ in (6) and, in this sense, dynamically implemented the µ by a
canonical transformation on an extended phase space in terms of a Kuchař-decomposition
and the corresponding partial reduction afterwards. This can now be taken as the starting
point to either implement a Dirac quantization or reduced quantization with respect to the
Hamiltonian constraint and the remaining primary constraint pN , which are both first class
or work with corresponding effective models.

2.2. Gauge-Fixed Model for Cosmology

For the corresponding gauge fixed version of the model introduced in Section 2.1,
we use that the set of constraints C =

{
Cλ, Cµ, Cpλ

, Cpµ

}
form a second class system. The

Dirac matrix has the form

M =


0 Aλµ 1 Aλpµ

−Aλµ 0 0 1
−1 0 0 0
−Aλpµ

−1 0 0

 M−1 =


0 0 −1 0
0 0 Aλpµ

−1
1 −Aλpµ

0 Aλµ

0 1 −Aλµ 0

 (19)

with

Aλpµ
= −

6
√

p(6h(θµ) + θµ(−4h′(θµ) + θµh′′(θµ)))

γ2κµ4 (20)

Aλµ =
∂θ fµ(2h(θµ)− θµh′(θµ)) + 2µp∂p fµ(−h′(θµ) + θµh′′(θµ))

2γµ3√p
. (21)

The Poisson brackets between θ, p and constraints C are non-trivial for Cλ,µ only. As
a result, the Dirac brackets between θ and p recovers their Poisson brackets for generic
gauge-fixing function f , namely

{θ, p}D =
γκ

6
{θ, θ}D = {p, p}D = 0 (22)

Likewise, we obtain for the matter degrees of freedom{
φA, πB

}
D
= δA

B {φA, φB}D = {πA, πB}D = 0, A, B ∈ 1, . . . , L#. (23)

The remaining Hamiltonian constraint has, in the partially reduced phase space, the
following form

C = H0(θ, p, fµ(θ, p), φA, πA). (24)

The canonical transformation in Section 2.1 and the gauge fixing here does not further
restrict the function fµ(θ, p) and particularly allows to choose the special case of a constant
function, which corresponds exactly to the µ0-scheme in LQC.

Now, if we require in addition, invariance under the following transformation

θ → αθ, p→ α2 p (25)

then this further restricts the form of fµ(θ, p) to fµ(p) = c1√
|p|

where c1 is some constant.

In the case of the cosmological models, this is the only possible scale invariant choice.
Choosing this constant to be c1 :=

√
∆ with ∆ := 2

√
3πγ`2

p, where γ is the Barbero–
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Immirzi parameter and `p denotes the Planck length, we end up with the usual µ scheme
used in LQC [52].

In this section, we demonstrate that we can implement the choice of a generic phase-
space dependent function in the argument of the polymerization function dynamically in
the following sense: in Section 2.1, this was achieved in terms of a canonical transformation
on the extended phase space that allows a Kuchař decomposition [48,49] of the extended
phase space. We extended the usual kinematical phase space used in LQC by two additional
canonical pairs, which come along with two first class constraints so that the number of
physical degrees of freedom does not change.

A later reduction to the physical sector associated with these additional first class
constraints then corresponds to a specific choice of a µ-scheme. Furthermore, we showed
that, in this extended phase space, we can also understand the choice of a given µ-scheme as
a gauge fixing. We extend our analysis to the spherically symmetric case in the next section.

3. Implementing the µ-Scheme in Spherically Symmetric Models

In this section, we want to generalize the formalism used for cosmology in Section 2.1
to spherically symmetric models. The main difference is that on the one hand, we deal
with a 1 + 1-dimensional field theory, and thus the diffeomorphism constraint is no longer
trivial. Moreover, since the number of gravitational (field) variables is larger here, we need
to extend the phase space by more variables in order to be able to allow an independent
polymerization for the different connection variables involved. In case we describe the
Schwarzschild black hole using isometry with Kantowski–Sachs vacuum cosmology, where
the diffeomorphism is trivially satisfied, the system is similar to cosmological models with
a larger phase space.

3.1. Extended Phase Space for Spherically Symmetric Models: Canonical Transformation and
Dirac Observables

In spherically symmetric symmetry-reduced case after implementing the Gauß con-
straint, the Ashtekar–Barbero variables (Aj

a, Ea
j ) have the following form

Aj
aτj dXa = 2γKx(x)τ1 dx +

(
γKϕ(x)τ2 +

∂xEx(x)
2Eϕ(x)

τ3

)
dθ

+

(
γKϕ(x)τ3 −

∂xEx(x)
2Eϕ(x)

τ2

)
sin(θ)dϕ + cos(θ)τ1 dϕ

Ea
j τ j ∂

∂Xa = Ex(x) sin(θ)τ1∂x + (Eϕ(x)τ2) sin(θ)∂θ + (Eϕ(x)τ3)∂ϕ,

where Xa = (x, θ, ϕ), a = 1, 2, 3 denote spherical coordinates, as before, γ the Barbero–
Immirzi parameter and τj = − 1

2 σj with σj being the Pauli matrices. The with respect to the
Gauß constraint partially gauge-fixed phase space includes two canonical pairs denoted by
(Kx(x), Ex(x)) and

(
Kϕ(x), Eϕ(x)

)
. In addition, as in the cosmological case, we consider a

set of matter degrees of freedom that we do not further specify whose phase space variables
are (φA(x), πA(x)) with A ∈ 1, . . . , L#. Their non-vanishing Poisson brackets read

{Kx(x), Ex(y)} = Gδ(x, y) {Kϕ(x), Eϕ(y)} = Gδ(x, y) {φA(x), πB(y)} = δA
B δ(x, y),

with G being Newton’s constant. We consider this phase space as the starting point for our
extension. We introduce the following additional set of canonical pairs

(e1(x), pe1(x)), (e2(x), pe2(x)), (µx(x), pµx (x)), (µϕ(x), pµϕ(x)).

with standard CCR

{eI(x), peJ (y)} = δI
J δ(x, y), I, J = 1, 2 {µK(x), pµM (y)} = δK

L δ(x, y), K, L = x, ϕ.
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Note that, here, we considered already the partially reduced phase space with respect
to the constraint pN(x) associated with the momentum of the lapse function N(x) such
that the latter becomes a Lagrange multiplier here and is not part of the elementary-phase
space variables. We start with the following primary Hamiltonian

H =
∫

dx
[
C∆

tot + NxCtot
x + e1(µx − fµx (Ex, Eϕ, Kx, Kϕ)) + e2(µϕ − fµϕ(Ex, Eϕ, Kx, Kϕ))

+ΛNx pNx + Λe1 pe1 + Λe2 pe2 + Λµx pµx + Λµϕ pµϕ

]
(x), (26)

where we considered a partial gauge fixing that yields for the lapse function N = 1.
This can, for instance, be achieved by choosing a suitable external matter field that is
chosen as a temporal reference field such that N = 1 is implemented. As a consequence,
in contrast to the cosmological model in Section 2.1 here the polymerized contribution
C∆

tot is not a secondary constraint but plays the role of a physical Hamiltonian instead,
once the reduction with respect to the spatial diffeomorphism constraint has also been
performed. We consider here a partial gauge fixing because, in general, we also expect
further restrictions on the possible polymerizations from the closure of the algebra of
constraints. Such a general analysis is beyond the scope of this article and is planned for
future work, although the analysis performed here will be useful as a first step.

Here, C∆
tot and Ctot

x are given by

C∆
tot = C∆ + Cmatter(Ex, Eϕ, φA, πA) Ctot

x = Cx + Cmatter
x (φA, πA) (27)

with

C∆(x) =
1

2G

[
Eϕ

√
Ex

(
f1(µxKxµϕKϕ)

µ2
ϕ

+ Γ2 − 1− 4Ex f2(µxKxµϕKϕ)

µxµϕEϕ

)
+ 2
√

ExΓ′
]
(x) (28)

Cx =
1
G

(
EϕKϕ

′ − KxEx ′
)
(x) (29)

with Γ(x) =
(

Ex ′

2Eϕ

)
(x) the spin connection, and f1, f2 represent general polymerization

functions satisfying

lim
µϕ→0

f1(µxKx, µϕKϕ)

µ2
ϕ

= K2
ϕ lim

µx ,µϕ→0

f2(µxKx, µϕKϕ)

µxµϕ
= KxKϕ (30)

In order that C∆ is a scalar density of weight 1, we are forced to choose µx being as
scalar with density weight−1 since Kx has density weight 1. Furthermore, µϕ needs to have
density weight 0. As a result, the only allowed functions fµx and fµϕ will be of the form

fµx (Ex, Eϕ, Kx, Kϕ) = (Eϕ)−1 f̃µx (Ex, Kϕ, (Eϕ)−1Kx) , (31)

fµϕ(Ex, Eϕ, Kx, Kϕ) = f̃µϕ(Ex, Kϕ, (Eϕ)−1Kx). (32)

Here, the appearance of Eϕ, and the combination of (Eϕ)−1Kx are essential in order to
have density weight of one and zero for fµx and fµϕ , respectively. This completely removes
the possibility of the usual µ0 scheme in the effective dynamics if we have polymerization
of Kx. If we require, in addition, the scaling invariance of f1 and f2 and remove the K
dependence in the gauge-fixing function, the only possible ansatz for fµx and fµϕ is the µ̄
scheme used in [4,29,31,41], which is given by

fµx (Ex, Eϕ) = α1
√

Ex(Eϕ)−1 , fµϕ(Ex, Eϕ) = α2
√

Ex (33)

for some constants α1, α2 proportional to the minimal area gaps introduced in LQG.
Note that the conditions (31) and (32) come from the fact that Kx has a non-trivial den-

sity weight, in contrast to Kφ, which has density weight 0. If we exclude the polymerization
of Kx and consider the polymerization of Kφ only:
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f1(µxKx, µϕKϕ) = f̃1(µϕKϕ) , f2(µxKx, µϕKϕ) = µxKx f̃2(µϕKϕ) (34)

e.g., as in the models presented in [6,9,10,16,17]. In this case, we can remove the condition
on fµx , and a gauge fixing leading to a µ0-scheme is still allowed.

The model has five primary constraints

CPri = [pNx , pe1 , pe2 , pµx , pµϕ ] ≈ 0. (35)

Starting from (26), we obtain the following five secondary constraints:

CSec = {H, CPri} = [Ctot
x , Cµx , Cµϕ , Ce1 , Ce2 ] ≈ 0. (36)

Here, Cµx ,µϕ are the constraints related to implementing the µ-scheme, they read

Cµx = µx − fµx , Cµϕ = µϕ − fµϕ (37)

and Ce1,e2 fix e1, e2 to be:

Ce1 = e1 +
4Ex f2µϕ − Kxµx

(
Eϕµx∂X f1 + 4Exµϕ∂X f2

)
2
√

Exµx2µϕ
2

, (38)

Ce2 = e2 +
Eϕµx

(
2 f1 − Kϕµϕ∂Y f1

)
+ 4Exµϕ

(
f2 − Kϕµϕ∂Y f2

)
2
√

Exµxµϕ
3

(39)

where we defined X := µxKx, Y := µϕKϕ. The stability of Ce1 , Ce2 , Cµx , Cµϕ can be ensured
by choosing the Lagrangian multipliers Λe1 , Λe2 , Λµx , Λµϕ appropriately, while the stability
of Ctot

x is automatically satisfied,

{H, Ctot
x } ≈ 0 . (40)

The sets CPri and CSec from (35) and (36) include all constraints of the model, so we
end up with ten constraints

Call = [pNx , pe1 , pe2 , pµx , pµϕ , Ctot
x , Cµx , Cµϕ , Ce1 , Ce2 ] ≈ 0.

It remains to classify the constraints (or suitable combinations thereof) as first or
second class. We immediately see that pNx is first class. Since Ctot

x may not be first class as
it will have non-trivial brackets with the constraints Cµx , Cµϕ as well as the polymerization
functions in Ce1 , Ce2 , Cµx , Cµϕ . However, to circumvent this, we introduce an extended
diffeomorphism C̃tot

x on the entire phase space by taking into account the density weight of
the individual phase space variables:

C̃tot
x (x) = Ctot

x (x)− 2pµx (x)µ′x(x)− p′µx (x)µx(x)− pµϕ(x)µ′ϕ(x)

+pe1(x)e′1(x) + 2p′e1
(x)e1(x) + p′e2

(x)e2(x)
(41)

One can verify that C̃tot
x is first class, the explicit derivation of this result is presented

in Appendix A. Note that this extension is always possible and does not change the con-
straint structure because the linear momenta involved in the extra terms are all constraints
themselves. The remaining constraints are second class. Hence, from now on, we work
with the following set of constraints

C̃all = [pNx , pe1 , pe2 , pµx , pµϕ , C̃tot
x , Cµx , Cµϕ , Ce1 , Ce2 ] ≈ 0,

including two first class and eight second class constraints.
In an analogous manner to the cosmological case in Section 2.1, we construct a canoni-

cal transformation on the extended phase space that allows to perform a Kuchař decompo-
sition of the extended phase space introduced above. For this purpose, we consider the
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subset of second class constraints C =
[

pe1 , pe2 , pµx , pµϕ , Ce1 , Ce2 , Cµx , Cµϕ

]
. Similar to the

cosmological case, pµx , pµϕ , Cµx , Cµϕ do not commute with Ce1 , Ce2 , in addition, Ce1 , Ce2 do
not mutually commute. Therefore, as a first step, we introduce the following set of variables

Q1 := Ce2 , P1 := pe2 , Q2 := OCe2
Ce1

= OQ1

Ce1
, P2 := OCe2

Cpe1
= OQ1

Cpe1
,

Q3 := O
Ce2 ,O

Ce2
Ce1

Cµx
= OQ1,Q2

Cµx
, P3 := O

Ce2 ,O
Ce2
Ce1

pµx
= OQ1,Q2

pµx
,

Q4 := O
Ce2 ,O

Ce2
Ce1

,O
Ce2 ,O

Ce2
Ce1

Cµx
Cµϕ

= OQ1,Q2,Q3

Cµϕ
, P4 := O

Ce2 ,O
Ce2
Ce1

,O
Ce2 ,O

Ce2
Ce1

Cµx
pµϕ

= OQ1,Q2,Q3

pµϕ
.

In the spherically symmetric models, the individual dual observable maps can be
defined as

OQI

f (x) :=
∞

∑
n=0

∫
dy1· · ·

∫
dyn

∫
(PI(y1) · · · PI(yn))

n!
{. . . {{ f (x), QI(y1)}, QI(y2)} . . . }}, QI(yn)}. (42)

For these subsets of canonical variables, we have

{QI(x), PJ(y)} = δI
J δ(x, y), {QI(x), QJ(y)} = 0, {PI(x), PJ(y)} = 0, I = 1 · · · 4.

This is explicitly shown in Appendix D for the canonical pair (Q4, P4). If we consider
any of the other pairs (QI , PI) the computations work similarly with fewer steps since for
the construction of these observables fewer individual observable maps have been applied.
As the computation in Appendix D show in these cases the number of observable maps fit
again well such that the involved Poisson brackets can be mapped to their corresponding
Dirac brackets successively. By construction the observables QI mutually commute. It only
remains to show that all observables related to momenta mutually commute and that these
commute with all but one QI . In the two latter cases, the number of applied observable
maps for a given QI and PI will not be the same. Therefore, to show that these Poisson
brackets vanish works slightly differently in these cases. As an example, we consider

{P4(x), P2(y)} = {OQ1,Q2,Q3

pµϕ (x) ,OQ1

pe1
(y)} = {OQ2,Q3,Q1

pµϕ
(x),OQ1

pe1
(y)} = OQ1

{OQ2,Q3
pµϕ

(x),pe1 (y)}
Q1
D

= OQ1

{OQ2,Q3
pµϕ

(x),pe1 (y)}

In the second step, we used that the QIs mutually commute and in the last step that
pe1 commutes with Q1 = Ce2 , P1 = pe2 . Finally, from

{OQ2,Q3

pµϕ
(x), pe1(y)} =

δ

δe1(y)
OQ2,Q3

pµϕ
(x) = 0 we find {P4(x), P2(y)} = 0.

That the Poisson bracket above vanishes follows from the fact that e1(y) is involved in
Ce1 and when it is used in the observable map for other phase space variables than pe1 the
part linearly in e1(y) does not contribute to the nested Poisson bracket. Now, we extend the
set of canonical pairs in (42) by the corresponding observables with respect to Q1, · · · , Q4

of the geometrical and matter degrees of freedom. For this purpose let us introduce the

notation OQ1...4

f for the observable of the function f with respect to the constraints Q1···4.
Then, we consider the following canonical transformed variables

Q5 := OQ1...4

Kx
, P5 := OQ1...4

Ex , Q6 := OQ1...4

Kϕ
, P6 := OQ1...4

Eϕ ,

QJ := OQ1...4

φA , PJ := OQ1...4

πA , J = 7, · · · , L# + 6
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As shown in the Appendix D with these additional variables, we obtain a set of
canonical variables satisfying standard CCR given by

{QI(x), PJ(y)} = δ̃I
J δ(x, y), {QI(x), QJ(y)} = 0, {PI(x), PJ(y)} = 0, I, J = 1, · · · , L# + 6.

with

δ̃I
J = δI

J for I, J = 1, . . . , L# + 6 if I = J 6= 5, 6 and δ̃5
5 = δ̃6

6 = G.

In the new coordinates (QI , PI), a Kuchař decomposition [48,49] of the kinematical
phase space can be achieved. In the explicit computations of the individual Poisson brackets
one sees that the reason why they satisfy CCR is very close to the case of the cosmological
model but generalized to the field theory case and a larger number of phase space variables.
In both cases it turns out to be crucial that the constraints involving the gauge-fixing
functions f in the cosmological case and fµx , fµϕ are given in a form in which they split
into a part depending on the variables µ and µx, µϕ, respectively, and a further part that
depends on the gravitational degrees of freedom only, where the latter, in principle, can
be generalized to a dependence on the matter degrees of freedom as well. Furthermore,
also the fact that λ and e1, e2 , respectively, only enter linearly in the respective constraints
is important.

3.2. Gauge-Fixed Model

Similar to the cosmological model, we also discuss the corresponding gauge-fixed
model in the spherically symmetric case. As discussed above the set of constraints
C =

{
pe1 , pe2 , pµx , pµϕ , Ce1 , Ce2 , Cµx , Cµϕ

}
forms a second class system. The Dirac matrix

has a similar form as (19), which reads

DBH =



0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 D35 D36 −1 0
0 0 0 0 D45 D46 0 −1
1 0 −D35 −D45 0 D56 D57 D58
0 1 −D36 −D46 −D56 0 D67 D68
0 0 1 0 −D57 −D67 0 D78
0 0 0 1 −D58 −D68 −D78 0


, (43)

where the non-trivial components Dij are given explicitly in Appendix B. Note that D78 = 0
if the functions fµx and fµϕ in (31) do not contain Kx, Kϕ. The inverse of the DBH reads

D−1
BH =



0 D̃ D57 − D45D78 D58 + D35D78 1 0 D35 D45
−D̃ 0 D67 − D46D78 D68 + D36D78 0 1 D36 D46

D45D78 − D57 D46D78 − D67 0 D78 0 0 1 0
−D58 − D35D78 −D68 − D36D78 −D78 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
−D35 −D36 −1 0 0 0 0 0
−D45 −D46 0 −1 0 0 0 0


(44)

with

D̃ = D56 + D36D57 + D46D58 − D35D67 − D45D68 − D36D45D78 + D35D46D78. (45)

Since Kx, Kϕ, Ex, Eϕ clearly commute with pe1 , pe2 , pµx , pµϕ , and we have a vanishing
D−1

BH for its sub-matrix corresponding to Ce1 , Ce2 , Cµx , Cµϕ , we recover the standard CCR
between the gravitational degrees of freedom Kx, Kϕ, Ex, Eϕ
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{Kx(x), Ex(y)}D = {Kϕ(x), Eϕ(y)}D = Gδ(x− y) (46)

{Kx(x), Kϕ(y)}D = {Ex(x), Eϕ(y)}D = 0 (47)

and, for matter contributions, we have

{φA(x), πB(y)}D = δA
B δ(x, y) , {φA(x), φB(y)}D = {πA(x), πB(y)}D = 0, (48)

where A, B ∈ 1, . . . , L#. With the allowed choice of the functions fµx and fµϕ in (31), that can
be understood as a gauge fixing for µx and µϕ, respectively, the gravitational contribution
to the Hamiltonian in the gauge-fixed model reads

C∆(x) =
1

2G

 Eϕ

√
Ex

 f1

(
f̃µx

Kx
Eϕ , f̃µϕ Kϕ

)
f̃ 2
µϕ

− 4Ex
f2

(
f̃µx

Kx
Eϕ , f̃µϕ Kϕ

)
f̃µx f̃µϕ

+ Γ2 − 1

+ 2
√

ExΓ′

(x)

We can rewrite it as

C∆(x) =
1

2G

[
Eϕ

√
Ex

(
f (Ex, Kϕ, (Eϕ)−1Kx) + Γ2 − 1

)
+ 2
√

ExΓ′
]
(x) , (49)

where we combine f1, f2 and the gauge fixing conditions into a single polymerization
function f (Ex, Kϕ, (Eϕ)−1Kx) := f1/ f̃ 2

µϕ
− 4Ex f2/( f̃µϕ f̃µx ). The polymerization function

depends on the combination of (Eϕ)−1Kx rather than depending on either of them only.
We remark that, in the gauge-fixed model with (49), we have

{C∆(x), Cx(y)}D = −∂xδ(x− y)C∆(y) (50)

which confirms that C∆ has density weight one. Further requiring scale invariance under
the transformation

Ex → µ2Ex, Eϕ → µ2Eϕ, Kx → µKx, Kϕ → µKϕ, (51)

leads to the following C∆,

C∆(x) =
1

2G

[
Eϕ

√
Ex

(
f

(
Kϕ√

Ex
,

√
ExKx

Eϕ

)
+ Γ2 − 1

)
+ 2
√

ExΓ′
]
(x) , (52)

which is compatible with the choice of µ-scheme used in [4,28,29,31,37]. We note that there
are special cases where one or both fµx and fµϕ are Dirac observables and constants of
motion under the effective dynamics, where fµx and fµϕ can still appear as constants, e.g.,
similar to the cases in [15].

4. Conclusions

In this article, we demonstrated that we can implement the choice of a given µ̄-scheme
dynamically. Such an implementation corresponds to choosing a phase-space dependent
function in the argument of a generic polymerization function, which replaces holonomies
in effective models. We perform the analysis in homogeneous cosmological models as well
as spherical symmetric models, which are 1 + 1-dimensional field theories. To construct
the models, we extended the usual kinematical phase space by additional canonical pairs,
which come along with a set of primary constraints so that the number of physical degrees
of freedom does not change.

These additional constraints build a set of second class constraints for which the
corresponding gauge-unfixed model can be constructed in the relational formalism. The
dynamical implementation of a µ̄-scheme can be achieved in terms of a canonical trans-
formation on the extended phase space that allows a Kuchař decomposition [48,49] of the
extended phase space where all constraints related to the dynamical implementation as
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well as the Dirac observables with respect to these constraints are the elementary-phase
space variables.

Furthermore, we showed that, in this extended phase space, we can also understand
the choice of a given µ-scheme as a gauge fixing, which gives the polymerized Hamiltonian
with the given µ-scheme in reduced phase space. This gives a possible way from a loop
holonomy on a fixed lattice to a polymerization with a µ-scheme. Such extension of the
phase space can be included in the path integral formulation of full LQG [38] to obtain
µ-effective dynamics.

In cosmological models, the canonical transformation on the extended phase space and
the gauge fixing does not further restrict the choice of gauge-fixing function. In particular,
the special case of a constant function that corresponds exactly to the µ0-scheme in LQC is
allowed. The µ̄-scheme used in LQC is determined only when we require in addition, scale
invariance. In contrast, in black hole models, the requirement of keeping the density weight
of the scalar Hamiltonian restricts the choice of the gauge-fixing functions and, hence, the
possible µ-schemes.

In such case, a constant µ0-scheme is generally not allowed, unless one does not
polymerize the densitized connection Kx carrying a density weight of one, e.g., as in the
models presented in [6,9,10,16,17]. A special case is if the gauge-fixing functions themselves
corresponding to some constant of motion under the effective dynamics, e.g., similar to the
model presented in [14].

In this work, we only consider the polymerization of the gravitational variables. The
analysis can be generalized to the models with polymerized matter degrees of freedom by
introducing additional functions fµmatter . With this, we can go beyond the standard µ0 and
µ scheme and allow more general gauge-fixing functions, which depend on all variables
containing both matter and geometry. Our results here, in particular, the construction of
the canonical transformation on the extended phase space, will work similarly in this more
general situation.

This becomes relevant for models, such as those in [21,53] in which the matter sector is
also polymerized. In these cases, because the momentum of the matter variables is a quantity
of density weight, one could also use it to construct quantities that yield a Hamiltonian with
density weight one. Another interesting situation is to extend the analysis to cases beyond
spherically symmetric spacetimes. We expect the canonical transformation on the extended
phase space and the gauge-fixing method will still work, similar to the spherically symmetric
case if the involved gauge-fixing functions depend on the matter and gravitational degrees
of freedom only.

In the general case, the requirement to have a Hamiltonian with density weight
one may give us more restrictions on the gauge-fixing functions, thus, constraining the
allowed µ-schemes. In the models studied in this work, the Gauß constraints were already
gauge fixed. The gauge fixing of the Gauß constraint was also required in some early
attempts to obtain a µ-scheme effective dynamics from full LQG [41,42]. It is interesting
to generalize the current approach to models that emerge from the LQG theory where the
Gauß constraints have not been gauge fixed.

The presence of Gauß constraints may give strong constraints to the possible form of
such gauge fixing conditions. Moreover, in this work, we did not consider a polymerization
of the diffeomorphism constraints. Such an assumption must be dropped if, for example,
we work with models based on a lattice theory on a fixed graph. We expect that work with
polymerized diffeomorphism constraints will provide further constraints on admissible
µ-schemes.
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Appendix A. C̃tot
x and Its Poisson Bracket

Here, we keep the gauge-fixing functions general without imposing (31), thus the
weight of µx, µϕ and e1, e2 are general. We derive the correct weight—and thus the re-
striction to gauge-fixing functions—such that we have a first class C̃ tot

x . We start with the
following ansatz,

C̃ tot
x (x) = Ctot

x (x) + (a− 1)pµx (x)µ′x(x) + ap′µx (x)µx(x) + (b− 1)pµx (x)µ′x(x) + bp′µx (x)µx(x)

cpe1(x)e′1(x) + (1 + c)p′e1
(x)e1(x) + dpe2(x)e′2(x) + (1 + d)p′e2

(x)e2(x)
(A1)

The non-trivial Poisson bracket between C̃x and Ce1 , Ce2 , Cµx , Cµϕ is given by

{C̃x(x), Cµx (y)} = −∂xδ(x− y)
(

a fµx − Kx∂Ex fµx − Eϕ∂Kφ
fµx

)
(y) (A2)

{C̃x(x), Cµϕ(y)} = −∂xδ(x− y)
(

b fµϕ − Kx∂Ex fµϕ − Eϕ∂Kφ
fµϕ

)
(y) (A3)

{C̃x(x), Ce1(y)} = ∂xδ(x−y)
2
√

Ex f 2
µx f 2

µϕ

(
4(1 + 2a + b + c)Ex f2 fµϕ − 4bEx f 2

µϕ
Kϕ∂Y f2

−(−1 + 2b + c)Eϕ f 2
µx Kx∂X f1 + fµx Kx

(
− 4(1 + 2a + b + c)Ex fµϕ ∂X f2

+bEϕ fµx fµϕ Kϕ∂X∂Y f1 + (1 + a)Eϕ f 2
µx Kx∂2

X f1

+4Ex fµϕ

(
b fµϕ Kϕ∂X∂Y f2 + (1 + a) fµx Kx∂2

X f2

)))
(y)

(A4)

{C̃x(x), Ce2(y)} = ∂xδ(x−y)
2
√

Ex fµx f 3
µϕ

(
Eϕ fµx

(
2(3b + d) f1 − 2(1 + a) fµx Kx∂X f1

+ fµϕ Kϕ

(
−((4b + d)∂Y f1) + b fµϕ Kϕ∂2

Y f1 + (1 + a) fµx Kx∂X∂Y f1

))
+4Ex fµϕ

(
(1 + a + 2b + d) f2 − (1 + a + 2b + d) fµϕ Kϕ∂Y f2

+b f 2
µϕ

K2
ϕ∂2

Y f2 + (1 + a) fµx Kx

(
−∂X f2 + fµϕ Kϕ∂X∂Y f2

)))
(y)

(A5)

We notice that, in order to have {C̃x, Ce1,e2} ≈ 0 for generic f1, f2, we need

a = −1 , b = 0 , c = 1 , d = 0 (A6)

With this set of values, µx has density weight −1 and µϕ has density weight 0.
{C̃x, Cµx ,µϕ} now becomes:

{C̃x(x), Cµx ,µϕ(y)} = ∂xδ(x− y)
(

fµx + Kx∂Ex fµx − Eϕ∂Kφ
fµx

)
(y) , (A7)

{C̃x(x), Cµx ,µϕ(y)} = ∂xδ(x− y)
(

Kx∂Ex fµϕ − Eϕ∂Kφ
fµϕ

)
(y) (A8)

Requiring the right hand side to vanish gives the condition (31), which comes from
requiring C∆ to have the correct density weight. With this condition, one can easily
check that

{C̃x(x), C∆
tot(y)} = ∂xδ(x− y)C∆(y) (A9)

where we use {C̃matter
x (x), Cmatter(y)} = ∂xδ(x − y)Cmatter(y). As a result, we also have

{H, C̃ tot
x } = 0. With this fact, we finish the constraint analysis with pNx , C̃ tot

x are first class,
and C =

{
pe1 , pe2 , pµx , pµϕ , Cµx , Cµϕ , Ce1 , Ce2

}
form a second class system.

Appendix B. Explicit Form of the Dirac Matrix in BH

Here, we give, in detail, the elements Dij = Dijδ(x− y) of the Dirac matrix presented
in (43). Since there are no partial derivatives appearing in the second class constraint, the
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following elements are the same as these of the Dirac matrix for homogeneous Kontowski–
Sachs spacetime.

D35 =
8Ex f2µϕ + Kxµx

(
−8Exµϕ∂X f2 + Kxµx

(
Eϕµx∂2

X f1 + 4Exµϕ∂2
X f2
))

2
√

Exµx3µϕ
2

D36 =
EϕKx

(
−2∂X f1 + Kϕµϕ∂X∂Y f1

)
2
√

Exµϕ
3

+
2
√

Ex
(

f2 − Kϕµϕ∂Y f2 − Kxµx∂X f2 + KxKϕµxµϕ∂X∂Y f2
)

µx2µϕ
2

D45 =
EϕKx

(
−2∂X f1 + Kϕµϕ∂X∂Y f1

)
2
√

Exµϕ
3

+
2
√

Exµϕ

(
f2 − Kϕµϕ∂Y f2 − Kxµx∂X f2 + KxKϕµxµϕ∂X∂Y f2

)
2
√

Exµx2µϕ
2

D46 =
Eϕ
(
6 f1 + Kϕµϕ

(
−4∂Y f1 + Kϕµϕ∂2

Y f1
))

2
√

Exµϕ
4

+
2
√

Ex
(
2 f2 + Kϕµϕ

(
−2∂Y f2 + Kϕµϕ∂2

Y f2
))

µxµϕ
3

D56 =
−2ExKxµxµϕ

(
−Eϕµx∂Y f1 + Kϕµϕ

(
Eϕµx∂2

Y f1 + 4Exµϕ∂2
Y f2
))

∂X f1

8Ex2µx2µϕ
5

+
2Exµϕ

(
−2 f1+Kϕµϕ∂Y f1

)(
−4Exµϕ∂Y f2+Kxµx

(
Eϕµx∂X∂Y f1+4Exµϕ∂X∂Y f2

))
8Ex2µx2µϕ

5

+

(
EϕKxµx

2∂X f1 + 4Exµϕ( f2 − Kxµx∂X f2)
)

8Ex2µx2µϕ
5

×(
−2Eϕµx∂X f1 + µϕ

(
−4Ex∂X f2 + EϕKϕµx∂X∂Y f1 + 4ExKϕµϕ∂X∂Y f2

))
+

(
Eϕ∂X f1 + EϕKxµx∂2

X f1 + 4ExKxµϕ∂2
X f2
)

8Ex2µxµϕ
5

×(
Eϕµx

(
2 f1 − Kϕµϕ∂Y f1

)
+ 4Exµϕ

(
− f2 + Kϕµϕ∂Y f2

))
D57 =

−4Exµϕ∂Y f2 + Kxµx
(
Eϕµx∂X∂Y f1 + 4Exµϕ∂X∂Y f2

)
2
√

Exµx2µϕ

∂Eϕ f̃µx

+
EϕKxµx

2∂X f1 + 4Exµϕ( f2 − Kxµx∂X f2)

4Ex3/2µx2µϕ
2

∂Kx f̃µx

+
Eϕ∂X f1 + EϕKxµx∂2

X f1 + 4ExKxµϕ∂2
X f2

2
√

Exµϕ
2

∂Ex f̃µx −
Kx∂X f1∂Kϕ f̃µx

2
√

Exµϕ
2

D58 =
−4Exµϕ∂Y f2 + Kxµx

(
Eϕµx∂X∂Y f1 + 4Exµϕ∂X∂Y f2

)
2
√

Exµx2µϕ

∂Eϕ f̃µϕ

+
EϕKxµx

2∂X f1 + 4Exµϕ( f2 − Kxµx∂X f2)

4Ex3/2µx2µϕ
2

∂Kx f̃µϕ

+
Eϕ∂X f1 + EϕKxµx∂2

X f1 + 4ExKxµϕ∂2
X f2

2
√

Exµϕ
2

∂Ex f̃µϕ −
Kx∂X f1∂Kϕ f̃µϕ

2
√

Exµϕ
2
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D67 =
−Eϕµx∂Y f1 + Kϕµϕ

(
Eϕµx∂2

Y f1 + 4Exµϕ∂2
Y f2
)

2
√

Exµxµϕ
2

∂Eϕ f̃µx +
2 f1 − Kϕµϕ∂Y f1

2
√

Exµϕ
3

∂Kϕ f̃µx

−2Eϕ f1µx + 4Ex f2µϕ + Kϕµϕ

(
Eϕµx∂Y f1 − 4Exµϕ∂Y f2

)
4Ex3/2µxµϕ

3
∂Kx f̃µx

−2Eϕµx∂X f1 + µϕ

(
−4Ex∂X f2 + EϕKϕµx∂X∂Y f1 + 4ExKϕµϕ∂X∂Y f2

)
2
√

Exµϕ
3

∂Ex f̃µx

D68 =
−Eϕµx∂Y f1 + Kϕµϕ

(
Eϕµx∂2

Y f1 + 4Exµϕ∂2
Y f2
)

2
√

Exµxµϕ
2

∂Eϕ f̃µϕ +
2 f1 − Kϕµϕ∂Y f1

2
√

Exµϕ
3

∂Kϕ f̃µϕ

−2Eϕ f1µx + 4Ex f2µϕ + Kϕµϕ

(
Eϕµx∂Y f1 − 4Exµϕ∂Y f2

)
4Ex3/2µxµϕ

3
∂Kx f̃µϕ

−2Eϕµx∂X f1 + µϕ

(
−4Ex∂X f2 + EϕKϕµx∂X∂Y f1 + 4ExKϕµϕ∂X∂Y f2

)
2
√

Exµϕ
3

∂Ex f̃µϕ

D78 = −∂Eφ f̃µϕ ∂Kφ
f̃µx + ∂Eφ f̃µx ∂Kφ

f̃µϕ − ∂Ex f̃µϕ ∂Kx f̃µx + ∂Ex f̃µx ∂Kx f̃µϕ

Appendix C. Proof of Lemma 1

In this appendix, we present the proof of Lemma 1 used in the main text. For the
benefit of the reader, we also show lemma one here again

Lemma A1. For the iterated Poisson bracket of observables, we have

{OCλ
f ,OCλ

g }(n) = O
Cλ

{ f ,g}Cλ
D(n)

. (A10)

Proof. We start with the case n = 2, for which we have

{OCλ
f ,OCλ

g }(2) = {{O
Cλ
f ,OCλ

g },OCλ
g } = {OCλ

{ f ,g}Cλ
D

,OCλ
g } = OCλ

{{ f ,g}Cλ
D ,g}Cλ

D

= OCλ

{ f ,g}Cλ
D(2)

In the second step, we used

{OCλ
f ,OCλ

g }(1) = {O
Cλ
f ,OCλ

g } = OCλ

{ f ,g}Cλ
D

which was proven in [47] involving a weak equality sign there. In our case, due to
{Cλ, pλ} = 1, this becomes a strong equality here. Now, we assume that the statement is
true for generic n and perform the induction step. We obtain

{OCλ
f ,OCλ

g }(n+1) = {{OCλ
f ,OCλ

g }(n),O
Cλ
g } = {OCλ

{ f ,g}Cλ
D(n)

,OCλ
g }

= OCλ

{{ f ,g}Cλ
D(n),g}

Cλ
D

= OCλ

{ f ,g}Cλ
D(n+1)

Appendix D. Kuchař Decomposition for the Spherically Symmetric Model

In this appendix, we present more details regarding how the Kuchar decomposition
can be explicitly constructed. For this purpose, first, we show that {QI(x), PJ(y)} = δ(x, y)
for I, J = 1, . . . , 4, and afterwards we show that {QI(x), PJ(y)} for I, J = 5 . . . N + 6 satisfies
standard CCR and that QI , PI for I = 5 . . . N + 6 commutes with all canonical pairs (QI , PI)
for I = 1 . . . 4. In both cases, we show this for one case only the remaining cases work
exactly similar. For the first case, we consider Q4, P4, and we have
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{Q4(x), P4(y)} = {OQ1,Q2,Q3

Cµϕ
(x),OQ1,Q2,Q3

pµϕ
(y)} = OQ3

{OQ1,Q2
Cµϕ

(x) ,OQ1,Q2
pµϕ

(y)}Q3
D

.

The involved Dirac bracket is given by

{OQ1,Q2

Cµϕ
(x) , OQ1,Q2

pµϕ
(y)}Q3

D = {OQ1,Q2

Cµϕ
(x) , OQ1,Q2

pµϕ
(y)} −

∫
dz{OQ1,Q2

Cµϕ
(x) , Q3(z)}{P3(z) , OQ1,Q2

pµϕ
(y)}

+
∫

dz{OQ1,Q2

Cµϕ
(x) , P3(z)}{Q3(z) , OQ1,Q2

pµϕ
(y)}.

(A11)

We further have

{OQ1,Q2

Cµϕ
(x) , P3(z)} = OQ2

{OQ1
Cµϕ

(x) ,OQ1
pµx (z)}

Q2
D

with

{OQ1

Cµϕ
(x) , OQ1

pµx
(z)}Q2

D = {OQ1

Cµϕ
(x) , OQ1

pµx
(y)} −

∫
dz{OQ1

Cµϕ
(x) , Q2(z)}{P2(z) , OQ1

pµϕ
(y)}

+
∫

dz{OQ1

Cµϕ
(x) , P2(z)}{Q2(z) , OQ1

pµϕ
(y)}.

Now, we can use

{OQ1

Cµϕ
(x) , P2(z)} = OQ1

{Cµϕ (x),pe1 (z)}
Q1
D

with

{Cµϕ(x), pe1(z)}
Q1

D = {Cµϕ(x), pe1(z)} −
∫

dz′{Cµϕ(x), Ce2(z
′)}{pe2(z

′), pe1(z)}

+
∫

dz′{Cµϕ(x), pe2(z
′)}{Ce2(z

′), pe1(z)}

= 0.

Likewise we obtain {P2(z) , OQ1

pµϕ
(y)} = {OQ1

Cµϕ
(x) , OQ1

pµx
(y)} = 0. Hence, we obtain

{OQ1,Q2

Cµϕ
(x) , P3(z)} = 0 , {P3(z) , OQ1,Q2

pµϕ
(y)} = 0,

Using this in (A11), we have

{OQ1,Q2

Cµϕ
(x) , OQ1,Q2

pµϕ
(y)}Q3

D = {OQ1,Q2

Cµϕ
(x) , OQ1,Q2

pµϕ
(y)}

Finally, we consider the remaining Poisson bracket

{OQ1,Q2

Cµϕ
(x) , OQ1,Q2

pµϕ
(y)} = OQ2

{OQ1
Cµϕ

(x) ,OQ1
pµϕ

(y)}Q2
D

with

{OQ1

Cµϕ
(x) , OQ1

pµϕ
(y)}Q2

D = {Cµϕ(x) , pµϕ(y)}
Q1

D −
∫

dz{Cµϕ(x), Ce2(z)}
Q1

D {pe2(z), pµϕ(y)}
Q1

D

+
∫

dz{Cµϕ(x), pe2(z)}
Q1

D {e2(z), pµϕ(y)}
Q1

D

= {Cµϕ(x) , pµϕ(y)} = δ(x, y).

Given this and reinserting it back into (A11), we finally have

{Q4(x), P4(y)} = OQ3

δ(x,y) = δ(x, y).
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Next we want to show that {QI(x), PJ(y)} for I, J = 5 . . . N + 6 satisfy standard CCR
and that QI , PI for I = 5 . . . N + 6 commute with all canonical pairs (QI , PI) for I = 1 . . . 4.
Here, we consider the canonical pair (Q5, P5) as an example that we discuss in detail. The
remaining combinations of variables work similarly. We start with

{Q5(x), P5(y)} = {OQ1...4

Kx
(x),OQ1...4

Ex (y)} = OQ4

{OQ1...3
Kx (x),OQ1...3

Ex (y)}Q4
D

We have, using Q4 = OQ1...3

Cµϕ
and P4 = OQ1...3

pµϕ
,

{OQ1...3

Kx
(x),OQ1...3

Ex (y)}Q4

D = {OQ1...3

Kx
(x),OQ1...3

Ex (y)} −
∫

dz{OQ1...3

Kx
(x),OQ1...3

Cµϕ
(z)}{OQ1...3

pµϕ
(z),OQ1...3

Ex (y)}

+
∫

dz{OQ1...3

Kx
(x),OQ1...3

pµϕ
(z)}{OQ1...3

Cµϕ
(z),OQ1...3

Ex (y)}.

Next we want to show that the Poisson brackets involving OQ1...3

pµϕ
all vanish. For this

purpose we consider the following as an example

{OQ1...3

pµϕ
(z),OQ1...3

Ex (y)} = OQ3

{OQ1...2
pµϕ

(z),OQ1...2
Ex (y)}Q3

D

with

{OQ1...2

pµϕ
(z),OQ1...2

Ex (y)}Q3

D = {OQ1...2

pµϕ
(z),OQ1...2

Ex (y)} −
∫

dz′{OQ1...2

pµϕ
(z),OQ1...2

Cµx
(z′)}{OQ1...2

pµx
(z′),OQ1...2

Ex (y)}

+
∫

dz′{OQ1...2

pµϕ
(z),OQ1...2

pµx
(z′)}{OQ1...2

Cµx
(z′),OQ1...2

Ex (y)},

where we used Q3 = OQ1...2

Cµx
and P3 = OQ1...2

pµx
. Here, we consider the Poisson brackets

involving OQ1...2

pµx
(z′) further and find

{OQ1...2

pµx
(z′),OQ1...2

Ex (y)} = OQ2

{OQ1
pµx (z

′),OQ1
Ex (y)}Q2

D

with

{OQ1

pµx
(z′),OQ1

Ex (y)}Q2

D = {OQ1

pµx
(z′),OQ1

Ex (y)} −
∫

dz′′{OQ1

pµx
(z′),OQ1

Ce1
(z′′)}{OQ1

pe1
(z′′),OQ1

Ex (y)}

+
∫

dz′′{OQ1

pµx
(z′),OQ1

pe1
(z′′)}{OQ1

Ce1
(z′′),OQ1

Ex (y)}.

Given the last equation it is easy to show that {OQ1

pµx
(z′),OQ1

Ex (y)}Q2

D = 0 because
we have

{OQ1

pµx
(z′),OQ1

Ex (y)} = OQ1

{pµx (z′),Ex(y)}Q1
D

= 0

{OQ1

pe1
(z′′),OQ1

Ex (y)} = OQ1

{pe1 (z
′′),Ex(y)}Q1

D

= 0

{OQ1

pµx
(z′),OQ1

Ce1
(z′′)} = OQ1

{pµx (z′),Ce1 (z
′′)}Q1

D

= 0.

Using that {OQ1

pµx
(z′),OQ1

Ex (y)}Q2

D = 0 we can conclude {OQ1...2

pµx
(z′),OQ1...2

Ex (y)} = 0,

and likewise we obtain {OQ1...2

pµϕ
(z),OQ1...2

pµx
(z′)} = 0. This yields

{OQ1...2

pµϕ
(z),OQ1...2

Ex (y)}Q3

D = {OQ1...2

pµϕ
(z),OQ1...2

Ex (y)}.
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Now, with similar iterative steps we can show that

{OQ1...2

pµϕ
(z),OQ1...2

Ex (y)}Q3

D = {OQ1...2

pµϕ
(z),OQ1...2

Ex (y)}

= OQ1

OQ2
{pµϕ (z),Ex(y)}

= 0.

These results yield

{OQ1...3

pµϕ
(z),OQ1...3

Ex (y)} = OQ3

{OQ1...2
pµϕ

(z),OQ1...2
Ex (y)}Q3

D

= 0.

Then, for the second Poisson bracket involving OQ1...3

pµϕ
(z) we can perform exactly the

same steps to end up with

{OQ1...3

Kx
(x),OQ1...3

pµϕ
(z)} = OQ3

{OQ1...2
Kx (x),OQ1...2

pµϕ
(z)}Q3

D

= OQ3

{OQ1...2
Kx (x),OQ1...2

pµϕ
(z)}

= OQ1...3

{Kx(x),pµϕ (z)}
= 0.

This then leads to

{OQ1...3

Kx
(x),OQ1...3

Ex (y)}Q4

D = {OQ1...3

Kx
(x),OQ1...3

Ex (y)}.

The final step is to show that

{OQ1...3

Kx
(x),OQ1...3

Ex (y)} = Gδ(x, y) (A12)

This can be completed with similar iterative steps. First, we have

{OQ1...3

Kx
(x),OQ1...3

Ex (y)} = OQ3

{OQ1...2
Kx (x),OQ1...2

Ex (y)}Q3
D

= OQ3

{OQ1...2
Kx (x),OQ1...2

Ex (y)}
,

where the reduction to the Poisson bracket in the last step can be performed because, as in
the case of the Dirac brackets above, there will be always Poisson brackets involved in the
additional terms in the Dirac bracket that include the momenta P3, which can be shown to
vanish identically as above. Next, we have

{OQ1...2

Kx
(x),OQ1...2

Ex (y)} = OQ2

{OQ1
Kx (x),OQ1

Ex (y)}Q2
D

= OQ2

{OQ1
Kx (x),OQ1

Ex (y)}

and using that

{OQ1

Kx
(x),OQ1

Ex (y)} = OQ1

{Kx(x),Ex(y)}Q1
D

= OQ1

{Kx(x),Ex(y)} = Gδ(x, y)

we obtain directly

{Q5(x), P5(y)} = {OQ1...4

Kx
(x),OQ1...4

Ex (y)} = OQ4

{OQ1...3
Kx (x),OQ1...3

Ex (y)}Q4
D

= Gδ(x, y).

Now, it remains to show that the set of variables (QI , PI) for I = 5 . . . N + 6 mutually
commute with all QI , PI for I = 1 . . . 4. Here, in general, we have Poisson brackets of quan-
tities to which a different number of observable maps have been applied. We demonstrate
how the computation works in these cases for one specific example because the remaining
ones can be computed similarly. We start with
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{Q5(x), P3(y)} = {OQ1...4

Kx
(x),OQ1...2

pµx
(y)}

=
∞

∑
n=0

∫
dz1· · ·

∫
dzn{

(P4(z1) . . . P4(zn))

n!

{. . . {{OQ1...3

Kx
(x), Q4(z1)}, Q4(z2) · · · , }}, Q4(zn)},OQ1...2

pµx
(y)}

=
∞

∑
n=0

∫
dz1· · ·

∫
dzn

(P4(z1) . . . P4(zn))

n!

{{. . . {{OQ1...3

Kx
(x),OQ1...3

Cµϕ
(z1)},OQ1...3

Cµϕ
(z2) · · · , }},OQ1...3

Cµϕ
(zn)},OQ1...2

pµx
(y)}.

Next, we consider the nested Poisson bracket more in detail. We have

{{. . . {{OQ1...3

Kx
(x),OQ1...3

Cµϕ
(z1)},OQ1...3

Cµϕ
(z2) · · · , }},OQ1...3

Cµϕ
(zn)}

= OQ3

{{...{{OQ1...2
Kx (x),OQ1...2

Cµϕ
(z1)},OQ1...2

Cµϕ
(z2)··· ,}},OQ1...2

Cµϕ
(zn)}Q3

D

= OQ3

{{...{{OQ1...2
Kx (x),OQ1...2

fµϕ
(z1)},OQ1...2

fµϕ
(z2)··· ,}},OQ1...2

fµϕ
(zn)}Q3

D

= OQ3

{{...{{OQ1...2
Kx (x),OQ1...2

fµϕ
(z1)},OQ1...2

fµϕ
(z2)··· ,}},OQ1...2

fµϕ
(zn)}

,

(A13)

where we used the gravitational degrees of freedom commute with all momenta whose
corresponding observables are used as clocks in the individual observable maps to reduce
the Dirac bracket to the corresponding Poison bracket in the last step. Now, further,
we obtain

{{. . . {{OQ1...2

Kx
(x),OQ1...2

Cµϕ
(z1)},OQ1...2

Cµϕ
(z2) · · · , }},OQ1...2

Cµϕ
(zn)}

= OQ1...2

{{...{{Kx(x), fµϕ (z1)}, fµϕ (z2)},...,}}, fµϕ (zn)}.

We realize that, for all values of n ≥ 0, the nested Poisson bracket involves gravitational
degrees of freedom only. For a more compact notation, let us introduce the following
abbreviation

Fgrav(z1, . . . , zn) := {{. . . {{Kx(x), fµϕ(z1)}, fµϕ(z2)}, . . . , }}, fµϕ(zn)},

the label ‘grav’ should indicate that the function depends on the gravitational degrees of
freedom only. Note that the following steps will also hold if we generalize to the case
where this function depends on gravitational as well as matter degrees of freedom. Now,
we reinsert this function into (A13) and obtain

{{. . . {{OQ1...3

Kx
(x),OQ1...3

Cµϕ
(z1)},OQ1...3

Cµϕ
(z2) · · · , }},OQ1...3

Cµϕ
(zn)}

= OQ3

OQ1Q2

Fgrav(z1,...,zn)

=
∞

∑
m=0

1
m!

∫
ds1· · ·

∫
dsm(P3(s1) . . . P3(sm)){{. . . {OQ1Q2

Fgrav(z1,...,zn)
, Q3(s1)} . . . }, Q3(sm)}

=
∞

∑
m=0

1
m!

∫
ds1· · ·

∫
dsm(P3(s1) . . . P3(sm)){{. . . {OQ1Q2

Fgrav(z1,...,zn)
,OQ1Q2

fµx
(s1)} . . . },OQ1Q2

fµx
(sm)}

=
∞

∑
m=0

1
m!

∫
ds1· · ·

∫
dsm(P3(s1) . . . P3(sm))OQ1Q2

{...{Fgrav(z1,...,zn), fµx (s1)}... }, fµx (sm)}.
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If we reinsert this result into the (A13) and use that {P3(x), P3(y)} = 0, finally, we
end with

{Q5(x), P3(y)} =
∞

∑
n=0

∫
dz1· · ·

∫
dzn

(P4(z1) . . . P4(zn))

n!

∞

∑
m=0

∫
ds1dots

∫
dsm

(P3(s1) . . . P3(sm))

m!

{OQ1Q2

{...{Fgrav(z1,...,zn),OQ1Q2
fµx

(s1)}... },OQ1Q2
fµx

(sm)}
, OQ1Q2

pµx
(y)}

=
∞

∑
n=0

∫
dz1· · ·

∫
dzn

(P4(z1) . . . P4(zn))

n!

∞

∑
m=0

∫
ds1· · ·

∫
dsm

(P3(s1) . . . P3(sm))

m!

OQ1Q2

{{...{Fgrav(z1,...,zn),OQ1Q2
fµx

(s1)}... },OQ1Q2
fµx

(sm)} ,OQ1Q2
pµx (y)}

= 0,

where we used, in the last step,

{{. . . {Fgrav(z1, . . . , zn), fµx (s1)} . . . }, fµx (sm)} , pµx (y)} = 0

due to the fact that the involved iterated Poisson bracket depends on the gravitational
degrees of freedom only, and thus a further Poisson bracket with pµx trivially vanishes
along with, as a consequence, the application of the observables mapOQ1...2

. The remaining
combinations of elementary-phase space variables can be computed in a similar manner:
some of them with the same and others with fewer iterations involved, which is why we
considered the canonical pair (Q5, P3) as a representative example.
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