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Abstract: This paper aims to analyze a generalized Chaffee–Infante equation with power-law nonlin-
earity in (1+3) dimensions. Ansatz methods are utilized to provide topological and non-topological
soliton solutions. Soliton solutions to nonlinear evolution equations have several practical applica-
tions, including plasma physics and the diffusion process, which is why they are becoming important.
Additionally, it is shown that for certain values of the parameters, the power-law nonlinearity Chaffee–
Infante equation allows solitons solutions. The requirements and restrictions for soliton solutions are
also mentioned. Conservation laws are derived for the aforementioned equation. In order to com-
prehend the dynamics of the underlying model, we graphically show the secured findings. Hirota’s
perturbation method is included in the multiple exp-function technique that results in multiple wave
solutions that contain new general wave frequencies and phase shifts.

Keywords: Chaffee–Infante equation in (3+1) dimensions; non-topological; singular; dark soliton
solutions; conservation laws; multiple exp-function method

1. Introduction

Numerous physical phenomena, such as fluid mechanics, plasma waves, solid state
physics, and plasma physics, are modeled through the theory of nonlinear evolution
equations. The interactions between the nonlinear and dispersive elements of nonlinear
partial differential equations lead to solitary waves, also known as solitons. Therefore,
in order to have a comprehensive analysis of nonlinear partial differential equations, it
is crucial to compute these types of solutions. There is no single approach for solving
nonlinear partial differential equations, despite the fact that many efforts have been made
in this direction, and conservation laws are crucial to the solution extraction process of
nonlinear partial differential equations. Often, the initial step in solving a problem is to
identify the conservation laws of a system of nonlinear partial differential equations. A
system of nonlinear partial differential equations is said to be integrable if it has a significant
number of conservation laws. Examples of such nonlinear evolution equations are the
Sasa–Satsuma equations [1,2], nonlinear Schrodinger equations [3], and Korteweg–de Vries
equations [4]. Therefore, finding closed-form solutions to these equations is essential.
Since there is no one method for solving all NLEEs, several researchers have developed
robust and efficient mathematical strategies to find closed-form solutions. A few of the
main methods used to carry out the integration of NLEEs are the inverse Hirota’s bilinear
approach [5,6], the tanh method [7,8], the Lie symmetry analysis method [7], the Darboux
transformation method [9], and the Hirota bilinear method [10].

The nonlinear evolution equations depicted below [11,12]

ut − uxx = αu(1− u2) (1)
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uxt +
(
−uxx + αu3 − αu

)
x
+ σuyy = 0. (2)

are the Chaffee–Infante-type equations in (1+1) and (2+1) dimensions, respectively. They
constitute reaction duffing equations that appear in mathematical physics [11]. The pa-
rameter α adjusts the relative balance of the diffusion term and the nonlinear term and it
should be noted that the above equations are also called Newell–Whitehead-type equations
when α = 1 [11]. The exp-function method was applied to (1) and (2) to generate traveling
wave solutions in [12].

In this work, we study a generalized (1+3)-dimensional Chaffee–Infante equation with
a power-law nonlinearity:

uxt − uxxx + aunux + bux + cuyy + ρuzz = 0. (3)

The Chaffee–Infante equation in (3+1) dimensions is a reaction diffusion equation that
depicts high-energy physical processes, environmental science, and many other related
areas of mathematical physics [13].

The parameters (a, b, c, ρ, n) are real non-zero constants while the wave amplitude u is
a function of the three scaled spatial variables (x, y, z) and t the temporal variable. The term
uxt is the evolution term while unux is the nonlinear term with the power-law denoted by
the exponent n, whereas the terms (ux, uxxx), uyy, uzz are the dispersions in the x-direction,
y-direction, and z-direction, respectively.

This paper is organized into three sections. In Section 2, we apply a number of
analytical methods to derive closed-form solutions to a power-law nonlinear Chaffee–
Infante equation in (3+1) dimensions. There are three different soliton solutions: bright,
dark, and singular. Section 3 deals with conservation laws of a Chaffee–Infante equation
with (3+1) dimensions with the aid of a variational approach. Finally, in Section 4, we
compute several waves of physical interest with innovative general wave frequencies and
phase shifts via the multiple exp-function approach, which is a generalization of Hirota’s
perturbation strategy.

2. Non-Topological Soliton Solutions

Several everyday occurrences must be understood using nonlinear evolution equations.
In order to fully understand NLEEs, it is crucial to perform research and discover exact
solutions to these equations. Nevertheless, integrating NLEEs is not always simple. Instead,
the objective of this section is to use ansatz techniques to integrate Equation (3). We start
by applying the following solitary wave ansatz:

u(t, x, y, z) = λsechpϑ, (4)

so as to compute the one-soliton solution of Equation (3). Here the wave variable is denoted
by ϑ:

ϑ = η1x + η2y + η3z− υt, (5)

where λ is the amplitude of the soliton, (η1, η2, η3) are the inverse widths of the soliton, υ is
the velocity of the soliton, and finally p is a parameter to be determined. The utilization of
Equations (3) and (4) leads to the following:

p(p + 1)λ(ση2
2 − η1υ)sechp+2ϑ + pλ(υη1 − ση2

2)sechpϑ

−pλη1(α− (3p + 2)η2
1)sechpϑtanhϑ− pβη1λn+1sechnp+pϑtanhϑ

+p(p + 1)(p + 2)λη3
1(sechpϑtanhϑ− sechp+2ϑtanhϑ)

+p(p + 1)λρη2
3sechp+2ϑ− pλρη2

3sechpϑ = 0. (6)

The exponents of sechp+2ϑ and sechnp+pϑtanhϑ are equated in (6) so as to extract the least
positive integer value of p. Consequentially, one attains:
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p + 2 = np + p (7)

which results in the following analytical condition:

p =
2
n

. (8)

Substituting p = 2
n on powers of sechϑ and powers of sechϑtanhϑ in Equation (6) and

thereafter setting the respective coefficients of powers of sechϑ and powers of sechϑtanhϑ
terms to zero leads to the following four algebraic systems of equations:

cη2
2 + ρη2

3 − η1υ = 0, (9)

4η2
1 − n2b = 0, (10)

nυη1 + 2υη1 − 2cη2
2 − ncη2

2 − ρnη2
3 − 2ρη2

3 = 0, (11)

2n2η2
1 + 6nη2

1 + n2aλn + 4η2
1 = 0. (12)

Solving the above systems yields:

η1 =
n
2

√
b, υ =

2(cη2
2 + ρη2

3)

n
√

b
, b > 0, λ =

(
− b

2a
(1 + n)(2 + n)

) 1
n

, a < 0. (13)

Substituting the values of the wave amplitude λ, the soliton’s velocity υ, the inverse width
η1, and the exponent p into Equation (4), we can determine the bright soliton or one-soliton
solution of a generalized (2+1)-dimensional Chaffee–Infante Equation (3) as:

u(t, x, y, z) =
(
− b

2a
(1 + n)(2 + n)

) 1
n

sech
2
n

(
n
2

√
bx + η2y + η3z−

2(cη2
2 + ρη2

3)

n
√

b
t
)

, (14)

where the wave inverse widths η2, η3 are free parameters in this particular case.
It is important to note that the one-soliton solution for a generalized (2+1)-dimensional

Chaffee–Infante Equation (3) only exists if b > 0, 0 < a, and n > 0, while the inverse
widths η2, η3 remain as free parameters. This important observation is being made for the
first time to our knowledge. The evolution of the travelling wave solution (14) is given in
Figures 1–3.

Figure 1. A 3D profile structure of Solution (14) with parameters t = 0, z = 0, b = 4, η2 = −1,
a = −12, n = 1.
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Figure 2. A 2D side view of Figure 1.

Figure 3. A density plot of non-topological soliton of (14) with parameters t = 0, z = 0, b = 4,
η2 = −1, a = −12, n = 1.

2.1. Singular Soliton Solutions

Using two solitary wave ansatz approaches, we derive two single-soliton solutions in
this subsection. The first hypothesis will take the form;

u(t, x, y, z) = λcschpϑ, (15)

where the wave variable ϑ is given by:

ϑ = η1x + η2y + η3z− υt. (16)

where the parameter λ is the amplitude of the soliton, (η1, η2, η3) are the inverse widths of
the soliton, and υ is the velocity of the soliton, whereas p is an unknown exponent. The
values of these parameters are now unknown, and they will be established once the soliton
solution of Equation (3) is derived. Employing Equations (3) and (15) gives rise to the
following:

−pλ((p− 1)υη1 + ση2
2)cschpϑ− p2λυη1cschp+2ϑ

−pλ(υη1 + (p− 1)ση2
2)cschpϑ coth2 ϑ− pλη1(α + (3p + 2)η2

1)cschpϑ coth ϑ

+p(p + 1)(p + 2)λη3
1cschpϑ coth3 ϑ− pβη1λn+1cschnp+pϑ coth ϑ

p(p + 1)λρη2
3cschpϑcsch2ϑ− pλρη2

3cschpϑ = 0. (17)
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Now, equating the powers of cschp+2ϑ and cschnp+pϑ coth ϑ in (17) yields:

p + 2 = np + p. (18)

Upon solving the above equation we find that:

p =
2
n

. (19)

Substituting this value of p in (17), and thereafter equating the respective coefficients of
powers of cschz and powers of cschz coth z terms to zero, results in the following four
algebraic systems of equations:

cη2
2 − η1υ + ρη2

3 = 0, (20)

4η2
1 − n2α = 0, (21)

n2υη1 + 2υη1 − 2cη2
2 − n2cη2

2− = 0, (22)

−2n2η2
1 − 6nη2

1 + n2aλn − 4η2
1 = 0. (23)

The solution for the unknown parameters is:

η1 =
n
2

√
b, υ =

2(cη2
2 + ρη2

3)

n
√

b
, b > 0 (24)

and:

λ =

(
b

2a
(1 + n)(2 + n)

) 1
n

, a > 0. (25)

As a result, the singular soliton solution for a (2+1)-dimensional Chaffe–Infante equation is:

u(x, y, z, t) =
(

b
2a

(1 + n)(2 + n)
) 1

n
csch

2
n

(
n
2

√
bx + η2y + η3z−

2(cη2
2 + ρη2

3)

n
√

b
t

)
(26)

with the wave widths η2 and η3 being free parameters.
It should be noted that a (3+1)-dimensional Chaffe–Infante equation possesses a

singular soliton solution (26) if the elements (a, b, n) fulfill the requirements a > 0, b > 0,
and n > 0, although the inverse widths η2 and η3 remain free parameters. This is the first
time that this observation has been recorded. A graphical simulation of the travelling wave
solution (26) is given in Figures 4–6.

Figure 4. A 3D profile structure of a singular soliton (26) with parameters t = 0, z = 0, b = 4, η2 = −1,
a = 12, n = 1.
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Figure 5. A 2D side view of Figure 4.

Figure 6. A density plot of a singular soliton (26) with parameters t = 0, z = 0, b = 4, η2 = −1,
a = 12, n = 1.

The second solitary wave ansatz approach of the type

u(t, x, y, z) = λcothpϑ, (27)

where the wave variable ϑ is defined as:

ϑ = η1x + η2y + η3z− υt (28)

will be used to determine the second singular soliton solution of Equation (3).
We derive the following two cases for which Equation (3) permits a singular soliton

solution by using the same approach as given above.
Case 1: n = 1, p = 2.
In this case, a (3+1)-dimensional Chaffe–Infante Equation (3) possesses a singular

soliton solution of the form:

u(x, y, z, t) =
−3b
2a

coth
2
n

(√
−1

8
bx + η2y + η3z−

2
√

2(cη2
2 + ρη2

3)√
−b

t

)
, (29)

where:

η1 =

√
−1

8
b, υ =

2
√

2(cη2
2 + ρη2

3√
−b

, λ =
−3b
2a

, b < 0, a 6= 0. (30)
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Case 2: n = 2, p = 1.
Here, a (3+1)-dimensional Chaffe–Infante Equation (3) has a singular soliton solution

of the form:

u(x, y, z, t) =
√
−3b√

a
coth

(√
−b√
2

x + η2y + η3z−
√

2(cη2
2 + ρη2

3)√
−b

t

)
, (31)

where:

η1 =

√
−b√
2

, υ =

√
2(cη2

2 + ρη2
3)√

−b
, λ =

√
−3b√

a
, b < 0, a > 0. (32)

It is important to note that a generalized (3+1) Chaffee–Infante equation does accept
singular soliton solutions, but only if certain conditions are satisfied, including b < 0, a 6= 0,
n = 1, and p = 2, while the inverse widths η2, and η3 remain free parameters. Moreover,
we note that Equation (3) has a second singular soliton solution if α < 0, a > 0, n = 2,
and p = 1, while the inverse widths η2, η3 are left as free parameters. It should also be
pointed out that there are no other values of the power-law nonlinearity element n for
which singular soliton solutions will exist with respect to the cothp function. This is a
very commendable observation that is reported for the first time here and the graphical
simulations of (29) and (31) is given in Figures 7–9 and 10–12, respectively.

Figure 7. A 3D profile of a singular soliton (29) with parameters t = 0, z = 0, b = −8, η2 = −1, a = 12,
n = 1.

Figure 8. A 2D side view of Figure 7.
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Figure 9. A density plot of a singular soliton (29) with parameters t = 0, z = 0, b = −8, η2 = −1,
a = 12, n = 1.

Figure 10. A 3D profile of a singular soliton (31) with parameters t = 0, z = 0, b = −2, η2 = −1, a = 6,
n = 2.

Figure 11. A 2D side view of Figure 10.
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Figure 12. A density plot of the periodic structure of a singular soliton (31) with parameters t = 0,
z = 0, b = −2, η2 = −1, a = 6, n = 2.

2.2. Dark Soliton Solution

This subsection aims to derive dark or shock wave soliton solutions for a generalized
(3+1)-dimensional Chaffee–Infante Equation (3). In order to achieve this, we invoke the
solitary wave ansatz hypothesis of the form [14]:

u(t, x, y, z) = λtanhpϑ, (33)

where the wave variable ϑ is defined as:

ϑ = η1x + η2y + η3z− υt, (34)

where λ symbolizes the soliton amplitude while (η1, η2, η3) are soliton inverse widths
and υ is the velocity of the soliton, whereas p is an unknown exponent. Although these
physical parameters in the soliton solution are unknown at this point, their exact values
will be determined during the process of deriving the dark or topological soliton solution
of Equation (3). Using Equation (33) and finding all the partial derivatives appearing in
Equation (3) yields:

ux = pη1λtanhp−1ϑ− pη1λ tanhp+1 ϑ, (35)

uxt = −p(p− 1)λη1υtanhp−2ϑ + 2p2λη1υtanhpϑ

−p(p + 1)λη1υtanhp+2ϑ, (36)

uxxx = p(p− 1)(p− 2)λη3
1tanhp−3ϑ− p(3p2 − 3p + 2)λη3

1tanhp−1ϑ

+p(3p2 + 3p + 2)λη3
1tanhp+1ϑ− p(p + 1)(p + 2)λη3

1tanhp+3ϑ, (37)

unux = pη1λn+1tanhnp+p−1ϑ− pη1λn+1tanhnp+p+1ϑ, (38)

uyy = p(p− 1)λη2
2tanhp−2ϑ− 2p2λη2

2tanhpϑ

+p(p + 1)λη2
2tanhp+2ϑ, (39)

uzz = p(p− 1)λη2
3tanhp−2ϑ− 2p2λη2

3tanhpϑ

+p(p + 1)λη2
3tanhp+2ϑ. (40)

Inserting Equations (35)–(39) into Equation (3) gives:
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−p(p− 1)λ(υη1 − cη2
2)tanhp−2ϑ + 2p2λ(η1υ− cη2

2)tanhpϑ

−p(p + 1)λ(η1υ− cη2
2)tanhp+2ϑ + pλη1(b + (3p2 − 3p + 2)η2

1)tanhp−1ϑ

−pλη1(b + (3p2 + 3p + 2)η2
1) tanhp+1 ϑ− p(p− 1)(p− 2)λη3

1tanhp−3ϑ

+p(p + 1)(p + 2)λη3
1tanhp+3ϑ + pβη1λn+1tanhnp+p−1ϑ

−paη1λn+1tanhnp+p+1ϑ + p(p− 1)λρη2
3tanhp−2ϑ− 2p2λρtanhpϑ

+p(p + 1)λρη2
3tanhp+2ϑ = 0. (41)

We now equate the exponents of the tanhp+1ϑ and tanhnp+p−1ϑ terms in Equation (41) in
order to obtain the smallest positive integer value of p. Thus, we have:

np + p− 1 = p + 1, (42)

which yields the following analytical condition:

p =
2
n

. (43)

Now, setting the respective coefficients of powers of tanhϑ terms to zero leads to the
following seven algebraic systems of equations:

−bn2 − 8η2
1 = 0, (44)

2n2η2
1 + 4η2

1 + 6nη2
1 − aλn2 = 0, (45)

−2cη2
2 + 2νη1 + cnη2

2 − vnη1 + ρnη2
3 − 2ρη2

3 = 0, (46)

−nνη1 − 2νη1 + nρη2
3 + cnη2

2 + 2cη2
2 + 2ρη2

3 = 0, (47)

n2 − 3n + 2 = 0. (48)

Solving these systems prompts the following cases for which Equation (3) admits dark
soliton solutions.

Case 1: n = 1, p = 2.
In this case, a (3+1)-dimensional Chaffe–Infante Equation (3) has a dark soliton solution

of the form:

u(x, y, t) =
−3b
2a

tanh2

(√
−1

8
bx + η2y + η3z−

2
√

2(cη2
2 + ρη2

3)√
−b

t

)
, (49)

where:

η1 =

√
−1

8
b, υ =

2
√

2(cη2
2 + ρη2

3)√
−b

, λ =
−3b
2a

, b < 0, a 6= 0. (50)

Case 2: n = 2, p = 1.
Here, a (3+1)-dimensional Chaffe–Infante Equation (3) admits a topological one-soliton

solution of the form:

u(x, y, t) =
√
−3b√

a
tanh

(√
−b√
2

x + η2y + η3z−
√

2(cη2
2 + ρη2

3)√
−b

t

)
, (51)

where:

η1 =

√
−b√
2

, υ =

√
2(cη2

2 + ρη2
3)√

−b
, λ =

√
−3b√

a
, b < 0, a > 0. (52)

The 3D and 2D profile structures of solution (49) are given in Figures 9 and 10 below.
The evolution of travelling wave solutions of (49) and (51) is given in Figures 13–15

and 16–18, respectively.
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Figure 13. A 3D profile structure of a dark soliton solution (49) with parameters t = 0, z = 0, b = −8,
η2 = −1, a = 12, n = 1.

Figure 14. A 2D side view of Figure 13.

Figure 15. A density plot of a dark soliton solution (49) with parameters t = 0, z = 0, b = −8, η2 = −1,
a = 12, n = 1.
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Figure 16. A 3D profile structure of a dark soliton solution (51) with parameters t = 0, z = 0, b = −2,
η2 = −1, a = 6, n = 2.

Figure 17. A 2D side view of Figure 16.

Figure 18. A density plot of a dark soliton solution (51) with parameters t = 0, z = 0, b = −2, η2 =

−1, a = 6, n = 2.

Remark 1. It is should be pointed out that dark soliton solutions for a generalized (3+1)-dimensional
Chaffee–Infante Equation (3) do exists provided b < 0, a 6= 0, n = 1 and p = 2, whereas the
inverse widths η2, η3 remain free parameters. We further observe that Equation (3) admits a kink
soliton solution if and only if α < 0, a > 0, n = 2, and p = 1, while the inverse width η2 remains a
free parameter. It is also shown that there are no other values of the power-law nonlinearity element
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n apart from n = 1 and n = 2 for which dark soliton solutions will exist associated with the tanhp

function. This is a very crucial observation that is mentioned for the first time here.

3. Conservation Laws

This section aims to investigate conservation laws of a generalized Chaffee–Infante
equation in (3+1) dimensions. Consider a differential equation E = 0, and Λ being the
characteristic function. ΛE is divergent if and only if Eu(QE) = 0, where Eu is the Euler–
Lagrange operator. Without loss of generality, we can now state the following theorems.

Theorem 1. A generalized Chaffee–Infante equation in (3+1) dimensions (3) formally admits a
unique characteristic function, namely:

Λ(t, x, y, z, u) = F(t, y, z), (53)

where F(t, y, z) satifies ρFzz + cFyy = 0.

Proof. A straightforward but lengthy computation can be carried out from εu(ΛE) = 0.
The expansion of this equation leads to an over-determined system of linear differential
equations in the unknown characteristic function Λ. Solving these equations, one obtains
the unique characteristic function (53).

The existence of this characteristic function prompts the following theorem.

Theorem 2. A generalized Chaffee–Infante equation in (3+1) dimensions (3) strictly admits an
infinite set of conservation laws corresponding to the unique characteristics Λ = F(t, y, z), namely:

Tt
F =

1
2

ux F(t, y, z),

Tx
F =

1
2(n + 1)

(
2ubnF(t, y, z) + 2aun+1F(t.y, z) + 2buF(t, y, z) + utnF(t, y, z)

)
+

1
2(n + 1)

(−2uxxxnF(t, y, z)− unFt + utF(t, y, z)− 2uxxF(t, y, z)− uFt),

Ty
F = −ucFy + cuy F(t, y, z);

Tz
F = −uρFz + uzρ F(t, y, z);

respectively.

Proof. The proof of Theorem 2 is straightforward but long. It consists of applying the
divergence equation ∂tTt + ∂xTx + ∂yTy + ∂zTz = 0, which vanishes for all solutions of a
generalized Chaffee–Infante equation in (3+1) dimensions (3), whenever F(t, y, z) satisfies
ρFzz + cFyy = 0.

It is important to note that a generalized Chaffee–Infante equation in (3+1) dimen-
sions (3) technically does not accept any conservation laws when the power-law index
n = −1. Conservation laws are mathematical representations that when investigated
illustrate a plethora of physical phenomena such as energy, mass momentum, angular
momentum, and other physical quantities. A careful observation of these conservation
laws indicates that they represent conservation of energy and momentum whenever the
arbitrary function is set to be constant.

4. Multiple Exp-Function Method

In this section, the multiple exp-function approach that involves the following steps
is shown:

Step 1. Defining differential equations that can be solved
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Consider a partial differential equation in the scalar (1+1) dimensions:

Ξ(x, t, ux, ut, · · · ) = 0. (54)

We introduce several new variables in succession: ζi = ζi(x, t), 1 6 i 6 n, and PDEs
that can be solved, such as the linear ones:

ζi,x = kiζi, ζi,t = −ωiζi, 1 6 i 6 n, (55)

where ki, 1 6 i 6 n are the angular wave numbers and ωi, 1 6 i 6 n are the wave
frequencies. It should be noted that solving such linear equations yields the solutions of
the exponential function and that this is frequently the first step in creating exact solutions
to nonlinear partial differential equations:

ζi = cieξi , ξi = kix−ωit, 1 6 i 6 n, (56)

where ci and 1 6 i 6 n are arbitrary constants.
Step 2. Nonlinear PDE transformation
Consider rational solutions in the new variables ζi, 1 6 i 6 n:

u(x, t) = M
$(ζ1, ζ2, · · · , ζn)

q(ζ1, ζ2, · · · , ζn)
, $ =

n

∑
r,s=1

M

∑
i,j=0

$rs,ijζirζ js,

ς =
n

∑
r,s=1

N

∑
i,j=0

ςrs,ijζirζ js, (57)

where M, $kl,i,j and ςkl,i,j are all constants to be determined from the original Equation (54).
By manipulating differential relations in (55), we can express all partial derivatives of u
with x and t in terms of ζi, 1 6 i 6 n. For example, we can have:

ut =
ς ∑n

i=1 $ζi ζi,t − $ ∑n
i=1 ςζi ζi,t

ς2

=
−ς ∑n

i=1 ωi$ζi ζi + $ ∑n
i=1 ωiςζi ζi

ς2 (58)

and:

ux =
ς ∑n

i=1 $ζi ζi,x − $ ∑n
i=1 ςζi ζi,x

ς2

=
ς ∑n

i=1 ki$ζi ζi − $ ∑n
i=1 kiςζi ζi

q2 (59)

where $ζi and ςζi are partial derivatives of $ and ς with respect to ζi. Substituting (57) and
its derivatives leads to a rational function equation with the new variables ζi, 1 6 i 6 n:

Q(x, t, ζ1, ζ2, · · · , ζn) = 0. (60)

This is called the transformed equation of the original Equation (54).
Step 3. Solving algebraic systems
Now, we set the numerator of the resulting rational function Q(x, t, ζ1, ζ2, · · · , ζn) to

zero. This yields a system of algebraic equations of all variables ki, ωi, $kl,ij, ςkl,ij. We solve
this system to determine the two polynomials $ and ς and the wave exponents ξi, 1 6 i 6 n.
As a result, the multiple wave solution u is computed and given by:

u(x, t) =
$(c1ek1x−ω1t, · · · , cneknx−ωnt)

ς(c1ek1x−ω1t, · · · , cneknx−ωnt)
. (61)
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4.1. Application of the Multiple Exp-Function Method to (3)

We will use the multiple exp-function method in this subsection to obtain one-, two-,
and three-wave solutions of (3). Phase shifts and general wave frequencies are included in
the solutions that follow.

4.1.1. One-Wave Solution of (3)

Employing multiple exp-function method as outlined in Section 2, we find that the
desired one-wave solution is of the form:

u(x, y, z, t) = M
$

ς
, (62)

$ = A1e−ω1t+xk1+yl1+zm1 , (63)

ς = 1 + e−ω1t+xk1+yl1+zm1 , (64)

A1 =
υ1

M
, k1 = υ2, ω1 = −

4υ2cl2
1 + 4υ2ρm2

1 − 3b2

2b
, (65)

where υ2
2 + b = 0, aυ1

2 + 3b = 0.

4.1.2. Two-Wave Solution of (3)

The intended two-wave solution, as determined by the multiple exp-function approach
described in Section 2, has the following two forms as depicted below:

u(x, y, z, t) = M
$

ς
, (66)

$ = 2k1e−ω1t+xk1+yl1+zm1 + 2k2e−ω2t+xk2+yl2+zm2

+2A1,2(k1 + k2)e−ω1t+xk1+yl1+zm1e−ω2t+xk2+yl2+zm2 ,

ς = 1 + e−ω1t+xk1+yl1+zm1 + e−ω2t+xk2+yl2+zm2

+A1,2e−ω1t+xk1+yl1+zm1e−ω2t+xk2+yl2+zm2 ,

CASE I

a =
3

2M2 , b = −2k2
2, A1,2 = 1, k1 = 0, ω2 =

cl2
2 + ρm2

2 − 3k3
2

k2
,

CASE II

a =
3

2M2 , b = −2k2
1, A1,2 = 1, k2 = 0, ω1 =

l2
1c + m2

1ρ− 3k3
1

k1

4.1.3. Three-Wave Solution of (3)

The multiple exp-function method outlined in Section 2 is used to determine the
anticipated two-wave solution, which takes the following five forms as depicted in the
ensuing cases:

u(x, y, z, t) = M
$

ς
, (67)

$ = 2k1e−ω1t+xk1+yl1+zm1 + 2k2e−tω2+xk2+yl2+zm2 + 2k3e−ω3t+xk3+yl3+zm3

+2A1,2(k1 + k2)e−ω1t+xk1+yl1+zm1e−tω2+xk2+yl2+zm2

+2A1,3(k1 + k3)e−ω1t+xk1+yl1+zm1e−ω3t+xk3+yl3+zm3

+2A2,3(k2 + k3)e−tω2+xk2+yl2+zm2e−ω3t+xk3+yl3+zm3

+2A1,2 A1,3 A2,3(k1 + k2 + k3)e−ω1t+xk1+yl1+zm1e−tω2+xk2+yl2+zm2e−ω3t+xk3+yl3+zm3 ,
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ς = 1 + e−ω1t+xk1+yl1+zm1 + e−tω2+xk2+yl2+zm2 + e−ω3t+xk3+yl3+zm3

+A1,2e−ω1t+xk1+yl1+zm1e−tω2+xk2+yl2+zm2

+A1,3e−ω1t+xk1+yl1+zm1 e−ω3t+xk3+yl3+zm3 + A2,3e−tω2+xk2+yl2+zm2e−ω3t+xk3+yl3+zm3

+A1,2 A1,3 A2,3e−ω1t+xk1+yl1+zm1e−tω2+xk2+yl2+zm2e−ω3t+xk3+yl3+zm3 ,

CASE I

a =
3

2M2 , b = −2k2
2, c = −

ρm2
3

l2
3

, A1,2 = 1, A1,3 = 1, k1 = 0, k3 = 0, l2 =
l3(2ρm2m3 − k2ω3)

2ρm2
3

,

ω2 = −
12ρk2

2m2
3 − 4ρm2m3ω3 + k2ω2

3
4ρm2

3
;

CASE II

a =
3

2M2 , b = −2k2
2, A1,2 = 1, A2,3 = 1, k1 = 0, k3 = 0, ω2 =

cl2
2 + ρm2

2 − 3k3
2

k2
;

CASE III

a =
3

2M2 , b = −2k2
2, c = −

ρm2
3

l2
3

, A1,2 = 1, k1 = 0, k3 = 0, l1 =
l3m1

m3
, l2 =

(2ρm1m2 − k2ω1)l3
2ρm3m1

,

ω2 = −
12ρk2

2m2
1 − 4ρm1m2ω1 + k2ω2

1
4ρm2

1
, ω3 =

m3ω1

m1
;

CASE IV

a =
3

2M2 , b = −2k2
2, c = −

ρm2
1

l2
1

, A1,3 = 1, A2,3 = 1, k1 = 0, k3 = 0, ω1 =
2ρm1(l1m2 − l2m1)

k2l1
,

ω2 =
ρl2

1m2
2 − ρl2

2m2
1 − 3k3

2l2
1

k2l2
1

;

CASE V

a =
3

2M2 , b = −2k2
2, c = −

ρm2
1

l2
1

, k1 = 0, k3 = 0, l2 =
l1(2ρm2m3 − k2ω3)

2ρm1m3
, l3 =

l1m3

m1
, ω1 =

m1ω3

m3
,

ω2 = −
12ρk2

2m2
3 − 4ρm2m3ω3 + k2ω2

3
4ρm2

3
.

It should be pointed out that the above traveling wave solutions can also be written in
terms of hyperbolic functions.

5. Concluding Remarks

The purpose of this research was to investigate a generalized the Chaffee–Infante
equation in (1+3) dimensions with power-law nonlinearity. To create topological and
non-topological soliton solutions, ansatz approaches were used. Additionally, it was
shown that the power-law nonlinearity Chaffee–Infante equation permits solitons solutions
for certain values of the parameters. Infinitely many conservation laws were computed.
Finally, the underlying model’s multiple wave solutions were built using the multiple
exp-function approach, which is a generalization of Hirota’s perturbation strategy that
yielded novel general wave frequencies and phase shifts. The techniques employed in
this research to find novel precise solutions may also be used for the solution of other
nonlinear partial differential equations of physical importance. The methods presented in
this paper are crucial for certain significant classical mathematical and physical models.
The exact solutions found in this work may be compared to numerical simulations in
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theoretical physics and fluid mechanics, and the conservation laws found can be used to
build numerical integrators for the system at hand.
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