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Abstract: A substantial body of phenomenological and theoretical work over the last few years
strengthens the possibility that the vacuum energy density (VED) of the universe is dynamical, and in
particular that it adopts the ‘running vacuum model’ (RVM) form, in which the VED evolves mildly
as δρvac(H) ∼ νeffm2

PlO
(

H2), where H is the Hubble rate and νeff is a (small) free parameter. This
dynamical scenario is grounded on recent studies of quantum field theory (QFT) in curved spacetime
and also on string theory. It turns out that what we call the ‘cosmological constant’, Λ, is no longer
a rigid parameter but the nearly sustained value of 8πG(H)ρvac(H) around any given epoch H(t),
where G(H) is the gravitational coupling, which can also be very mildly running (logarithmically).
Of particular interest is the possibility suggested in past works that such a running may help to cure
the cosmological tensions afflicting the ΛCDM. In the current study, we reanalyze the RVM in full
and we find it becomes further buttressed. Using modern cosmological data, namely a compilation
of the latest SNIa+BAO+H(z)+LSS+CMB observations, we probe to what extent the RVM provides
a quality fit better than the concordance ΛCDM model, with particular emphasis on its impact on
the σ8 and H0 tensions. We utilize the Einstein–Boltzmann system solver CLASS and the Monte Carlo
sampler MontePython for the statistical analysis, as well as the statistical DIC criterion to compare
the running vacuum against the rigid vacuum (νeff = 0). On fundamental grounds, νeff receives
contributions from all the quantized matter fields in FLRW spacetime. We show that with a tiny
amount of vacuum dynamics (νeff � 1) the global fit can improve significantly with respect to the
ΛCDM and the mentioned tensions may subside to inconspicuous levels.

Keywords: cosmology; cosmological constant; vacuum energy; dark energy; quantum field theory

1. Introduction

The vanilla concordance model of cosmology, or standard ΛCDM model (the cur-
rent standard model of cosmology with flat three-dimensional geometry), is based on the
Friedmann–Lemaître–Robertson–Walker (FLRW) metric and has been a rather success-
ful paradigm for the phenomenological description of the universe for more than three
decades [1,2]. Its consolidation after a solid observational underpinning, however, was only
possible in the late nineties [3]. The vanilla model has remained robust and unbeaten for
a long time, as it is essentially consistent with a large body of observations. These have
indeed provided strong support for a spatially flat and accelerating universe in the present
time. The ultimate cause of such an acceleration is currently unknown, but it is attributed
to an energy component in the universe popularly called “dark energy” (DE), which may
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adopt a large number of picturesque forms depending on the favored theoretical preference
of different cosmologists, see, e.g., [4] for a large variety of options. DE constitutes ∼70%
of the total energy density of the universe and presumably possesses enough negative
pressure as to produce the observed cosmic acceleration. Nevertheless, the nature of DE
remains a complete mystery. The simplest candidate is the cosmological term in Einstein’s
equations, Λ, usually assumed to be constant, which is why it is usually called the cosmo-
logical constant (CC) [5,6]. Consistent observational measurements of Λ (treating it as a
mere fit parameter) made independently in the last quarter of a century using distant type
Ia supernovae (SNIa), the baryonic acoustic oscillations (BAO), and the anisotropies of the
cosmic microwave background (CMB), have formed the foundations of the concordance
ΛCDM model of cosmology [7–15].

Despite the vanilla (ΛCDM) model faring relatively well with the current observa-
tional data, it traditionally suffers from a variety of problems of different kinds which
seriously challenge its credibility. For a long time, people somehow decided to turn a blind
eye to the deepest questions and also to different spots and wrinkles which perturb that
flawless and immaculate condition. The profound theoretical problems (and the practical
wrinkles as well) are nonetheless still there, alive and kicking, whether we wish to look
at them or not. First and foremost, the hypothetical existence of dark matter (DM) still
lacks direct observational evidence. On a deeper level of mystery, the nature and origin
of DE (the dominant component of the cosmic energy budget) still lies in the limbo of the
most unfathomable cosmological riddles. Because if we admit the simplest proposal for
DE, that is to say, the cosmological constant Λ, one has to cope with the ‘cosmological
constant problem’ [16], perhaps the most inscrutable problem ever in theoretical physics
and cosmology [17]. It manifests itself in a dual manner, to wit: the fine-tuning problem
associated with the large value of Λ predicted by most theoretical approaches (“the old
CC problem” [16]); and also what it has become customary to call the ‘cosmic coincidence
problem’ [18]; see also [17,19,20] for a discussion of these enigmas, which lie at the interface
between cosmology and quantum field theory (QFT).

The toughest conundrum of all is probably that of explaining the relation between Λ
and the vacuum energy density (VED): ρvac = Λ/(8πGN), where GN is Newton’s constant.
Traditionally one assumes that the corresponding pressure is pvac = −ρvac. In this respect,
we note that in 1934 G. Lemaître pointed out the following [21]: “Everything happens as
though the energy in vacuum would be different from zero. In order that it shall not be
possible to measure motion relative to the vacuum, we have to associate a pressure to the
energy density of the vacuum. This is essentially the meaning of the cosmological constant.”;
see also [22]. The interrelationship between VED and Λ in the general quantum theory
context has been assessed by theoretical physicists for more than a century, as in the days of
W. Nernst and W. Pauli. At that time the issue was already troublesome [17]. However, the
most severe implications in the cosmological arena took shape only with the development
of the formal aspects of QFT. It is in this modern theoretical context where the notion of
VED seems to cause a serious conflict with the cosmological measurements, the reason
being that the typical contribution from the vacuum fluctuations of any quantum field
of mass m is expected (on mere dimensional grounds) to be proportional to the quartic
power of its mass: ρvac ∝ m4, as noted by Zeldovich [23,24]. Such a prediction must be
compared with the measured value of Λ expressed in terms of the corresponding VED,
which is ρvac ∼ 10−47 GeV4 in natural units. This is extremely small in comparison with
the energy density that one may estimate using any particle physics mass m from, say, the
electronvolt scale to the mass scale of the weak gauge bosons in electroweak theory, W±

and Z (∼80, 90 GeV), the Higgs mass (∼125 GeV) and the top quark mass (∼170 GeV).
The exception would be, of course, a millielectronvolt neutrino [17], but for any typical
standard model particle the value of ρvac ∝ m4 is mind-bogglingly too large, being indeed
dozens of orders of magnitude larger than the measured value of Λ, not to speak of the
situation in the grand unified theories (GUT’s), where the characteristic energy scale can
reach ∼1016 GeV. It is because of the cosmological constant problem phrased on these
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grounds that the VED option became outcast, as if it were to be blamed for all evils. The
aforesaid notwithstanding, the criticisms usually have nothing better to offer, except to
defend tooth and nail particular forms of the DE without providing any explanation about
the genuine subject involved in the original discussion of this problem, which is, of course,
to understand the role played by the VED in QFT and its fundamental relation with Λ.
Most, if not all, proposed forms of DE, are actually plagued with the same (purported)
fine-tuning problem that is attributed (in a way by fiat) to the vacuum option exclusively.
This is certainly the case with, e.g., the popular family of quintessence models, phantom
fields, and generalizations thereof; see, e.g., [5,6,25,26] and references therein. Attempts to
understand the vacuum energy as a form of repulsive gravitation capable of driving the
slow accelerating expansion of the universe, notwithstanding its exceedingly large value,
have been presented in the literature; see, e.g., [22,27,28] for a review.

In recent years, new approaches to the notion of vacuum energy in QFT and its relation
with the Λ-term suggest that these problems can be smoothed out to a large extent. In
fact, the VED can be properly renormalized in QFT in curved spacetime, thereby offering
a tamer theoretical context for the traditional vacuum energy approach to fit in with the
observations. In light of these developments, the quantum vacuum energy could well be
after all the most fundamental explanation for the DE in our universe; see, e.g., [17,19], as
well as the latest formal developments in [29–32], summarized in [20].

The vanilla ΛCDM model, to which modern cosmological observations have con-
verged in the last decades, is certainly an important triumph in our description of the
main background features of the cosmic expansion and the large-scale structure formation
processes in the universe. However, it is only a partial success. Its exceeding simplicity
eventually turned into a perilous double edged sword; in fact, the absence of any connec-
tion with fundamental physics is the literal expression of such a simplicity and is most
likely at the root of its many shortcomings. In truth, the ΛCDM does not possess enough
theoretical structure to explain the success of the observations (e.g., the measured value of
Λ) in a fundamental context, and at the same time it cannot even provide an explanation
for other measurements that are threatening its viability. If we pay attention to the existing
conflicts on several active fronts, the observational situation of the ΛCDM in the last decade
or so does not seem to paint a fully rosy picture anymore. Beyond formal theoretical
issues, a series of practical problems of a more mundane nature than those mentioned
above are piling up as well [33]. On a mere phenomenological perspective, the situation
is particularly worrisome, with some “tensions” existing with the data. For example, it
has long been known that there appear to exist potentially serious discrepancies between
the CMB observations (based on the vanilla ΛCDM) and the local direct (distance ladder)
measurements of the Hubble parameter today [34]. The persisting mismatch between these
measurements is what has been called the “H0 tension”. It is arguably the most puzzling
open question within the current cosmological paradigm and it leads, if taken at face
value, to a severe discrepancy of ∼ 5σ c.l. or more between the mentioned observables.
Many proposals have been put forward to shed some spark of light onto that puzzling
cosmological imbalance. Among the possibilities debated in the literature, it has been
conjectured, e.g., that it could stem from a possible intrinsic “running of H0(z) with the
redshift”, presumably connected with the differences that may appear in the (total) effective
equation of state (EoS) of the universe between the vanilla cosmology and the actual FLRW
model underlying the observations [35,36]. While these are interesting possibilities, we are
probably still far away from the resolution of this conundrum on fundamental grounds. At
the same time, there exists a smaller, but appreciable (∼2− 3, σ) tension in the realm of the
large-scale structure (LSS) growth data, called the “σ8 tension” [37]. This is concerned with
the measurements of weak gravitational lensing at low redshifts (z < 1). Such a tension is
usually evaluated with the help of the parameter S8 or, alternatively, by means of σ8; recall
that S8 ≡ σ8

√
Ω0

m/0.3. It turns out that these measurements favor matter clustering weaker
than that expected from the vanilla model using parameters determined by CMB mea-
surements; see, e.g., [38–45]. Recently, it has been claimed that S8 values determined from
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f σ8 increase with redshift in the ΛCDM [46], which, according to these authors provides
additional support to the fact that such a discrepancy may be physical in origin and with a
value in the enhanced 2− 4, σ range. In the constant pursuit of a possible late-time solution
to these tensions, it has been argued that within the large class of models where the DE is
treated as a fluid with EoS w(z), solving the H0 tension demands the phantom condition
w(z) < −1 at some z, while solving both the H0 and σ8 tensions requires w(z) to cross the
phantom divide and/or other sorts of transitions; see, e.g., [47–52]. Specific realizations
of the noticed double condition for the DE fluid can be found in the literature, e.g., in the
context of the ΛXCDM model [53,54], closely related to the idea of the running vacuum to
be discussed in the present work, see below. For detailed reviews on these tensions and
other challenges afflicting the concordance ΛCDM model; see, e.g., [33,55,56] and the long
list of references quoted therein bearing relation to these matters.

The severity of some of these tensions, and the huge number of proposals existing
in the literature trying to explain them through a large disparity of ideas, suggests
that it is perhaps time to come to grips anew with the fundamentals of the theoretical
formulations, such as quantum field theory and string theory. We have already pointed
to recent calculations claiming a more adequate renormalization prescription for the
VED in quantum field theory in FLRW spacetime, leading to the “running vacuum
model” (RVM). It turns out that this QFT approach may have a real impact not only
on the more formal theoretical problems described in the beginning, but also on the
practical issues concerning the aforementioned tensions. In fact, the VED resulting from
the RVM leads to a time-varying vacuum energy density, and hence a time-varying
(physical) Λ as well, in which Λ acquires a dynamical component through the quantum
vacuum effects: Λ → Λ + δΛ. The shift δΛ is calculable in QFT since it depends
on the contributions from the quantized matter fields (bosons and fermions). Upon
appropriate renormalization, one finds that δΛ depends on a term of the order of the
Hubble rate H(t) squared [29]: δΛ ∼ ν,O

(
H2) (ν � 1). This is the typical form of the

RVM. The connection of the latter with QFT can be motivated from semi-qualitative
renormalization group arguments on scale-dependence; see the reviews [17,19]. In
particular, we mention the old works [57,58] and also recent approaches along these
lines, such as [59]. However, an explicit QFT calculation leading to that form of ‘running
Λ’ (associated with the ‘running VED’) appeared only very recently [29–32].

A note of caution is in order here. Over time, a large variety of cosmological models
have been proposed to describe the DE and its possible dynamics. Apart from the
aforementioned quintessence and similar models [5,6,25,26], there is a very populated
habitat of models with a generic time-dependent cosmological constant, the so-called
“Λ(t)-cosmologies”. Many of these models, however, are of a purely phenomenological
nature, since the time dependence of Λ(t) is parameterized in an ad hoc manner. They
might have a connection with fundamental theory, but it is not implemented in an explicit
way in the corresponding papers. The list of models of this type is large and we will
cite here only a few of them [60–79]; see also the old review [80]. In some cases, the
parameterization is performed through a direct function of the cosmic time or of the
scale factor, and sometimes as a function of the Hubble parameter, or even a hybrid
combination of these various possibilities. Be that as it may, the general and rather
nonspecific class of the “Λ(t)-cosmologies” should not be confused with the “running
vacuum models” (RVMs) discussed above, in which the running of Λ stems from the
quantum effects on the effective action of QFT in curved (FLRW) spacetime. In other
words, the RVMs are to be understood in a much more restricted sense; in fact, one
that is closer to fundamental aspects of QFT, and only this precise type of time-evolving
VED cosmology will be dealt with here. Let us finally note that, apart from the QFT
formulation, a ‘stringy’ version of the RVMs is also available which can be very promising
too [81–84]. The potential dynamics of the cosmic vacuum is, therefore, well motivated
from different theoretical perspectives, and this fact further enhances the interest for
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the current study, whose main purpose is to focus exclusively on the phenomenological
implications of the class of RVM models.

We should mention that the running vacuum framework has already been tested
with considerable success in previous works over the years. It has been known for quite
some time that the RVM-type of cosmological models can help in improving the overall
fit to the cosmological observations and also in smoothing out the mentioned tensions as
compared to the ΛCDM; see, for instance, [41,85–95] for a short summary. For this reason,
we believe it is worthwhile to keep on exploring the phenomenological consequences of
the running vacuum in the light of the latest observations on all of the main data sources:
SNIa+BAO+H(z)+LSS+CMB. The state-of-the-art-phenomenological performance of RVMs
was reported not too long ago, in [85]. In the current work, however, we definitely enhance
the scope of the results presented in that paper by considering an updated cosmological
dataset in combination with an extended analysis of the CMB part. In point of fact, the
main focus in this paper is to delve into the practical ability of the RVM to tackle the σ8 and
H0 tensions versus the vanilla ΛCDM model. It is reassuring to find that the global fit to
the cosmological observations can be improved within the running vacuum framework
with respect to the ΛCDM. The optimal situation is when the VED presents a threshold
in the recent past, where its dynamics becomes activated, and/or when the gravitational
coupling is mildly running.

All in all, the dynamical DE models may offer a clue not only to relieve some high-level
aspects of the cosmological constant and coincidence problems, but also to straighten out
some very practical ones, such as helping to modulate the processes of structure formation
which may impinge positively on the σ8 tension. Last but not least, they can help to explain
the existing mismatch between the distinct values of H0 derived from measurements of the
local and the early universe.

The paper is organized as follows. In Section 2, we present the running vacuum model
(RVM) from a phenomenological point of view and emphasize its connection with QFT in
curved spacetime. For convenience, we introduce the model variant of the RVM which
we call RRVM, as we did in [85]. In it, the VED can be expressed entirely in terms of the
curvature scalarR (which is of order ∼ H2) at the background level. We study two types
of RRVMs: type I and type II. The type depends on whether the gravitational coupling G
is fixed at its current local gravity value, G = GN , or evolving mildly with the expansion,
G = G(H), a feature which in our case is linked to the interaction or not, respectively, of
the evolving vacuum energy with cold dark matter (CDM). Type I is studied at length in
Section 3, where we describe the background cosmological equations and their solutions
under appropriate conditions. At the same time, we discuss the corresponding perturbation
equations. Type II, on the other hand, is studied in detail in Section 4, where again we
provide the background solution and analyze the perturbations. In Section 5, we enumerate
and briefly describe the different sources of observational data employed in this paper and
the methodology used to constrain the free parameters of the models under discussion.
We also define the four characteristic datasets (Baseline and Baseline+SH0ES with and
without CMB polarization data) that will be used to test the running vacuum models and
their comparison with the vanilla ΛCDM model. The outcome of our analyses under the
different datasets is presented and discussed in detail in Section 6. Finally, in Section 7, we
summarize our findings (see Tables 4–7 and Figures 1–4) and present the main conclusions
of this study. In Appendix A, at the end of our work, we include additional tables with a
detailed breakdown of the different χ2 contributions from each observable.

2. Running Vacuum in the Universe

As indicated, throughout our study we will assume that the background spacetime
is FLRW with flat three-dimensional hypersurfaces. The general low-energy form of the
vacuum energy density (VED) within the running vacuum model (RVM) has been explored
phenomenologically on several previous occasions and with a remarkable degree of success,
in the sense that in all cases it has proven to be rather competitive with the ΛCDM and
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even able to surpass the fitting performance of the latter; see, e.g., [41,85–93]. Herein,
we shall test if this is still the case with the current wealth of observations and using the
state-of-the-art methods of analysis of the cosmological data. The dynamical structure of
the running VED adopts the perspicuous form [29,30]

ρvac(H) =
3

8πGN

(
c0 + νH2 + ν̃Ḣ

)
+O(H4). (1)

For ν = ν̃ = 0, this expression reduces to ρvac = Λphys/(8πGN), where Λphys = 3c0
retakes the traditional role of the cosmological constant term. However, for nonvanishing
values of the coefficients ν and ν̃, the vacuum acquires a certain amount of dynamics,
which is provided by the H2 and Ḣ contributions. Here, the dot indicates the derivative
with respect to the cosmic time and H = ȧ/a is the Hubble function. As we can see, the
two leading dynamical terms of ρvac in Equation (1) are both of O(H2) since Ḣ ∼ H2,
this being true both in the matter- and radiation-dominated epochs. Despite the fact that
the higher-order powers O(H4) in the above expression are also predicted in the QFT
context along with the lower-order ones O(H2) [30], the former are unimportant for the
current universe and will be hereafter ignored in favor of the latter. The additive parameter
c0 is constrained to satisfy ρvac(H0) = ρ0

vac, where ρ0
vac is the value of the VED today,

and hence is connected with the physical value of the measured cosmological constant
through ρ0

vac = Λphys/(8πGN). In this case, however, Λphys 6= 3c0 is a quantity nontrivially
connected to the dynamical terms in Equation (1), since a formal renormalization of the
theory becomes necessary within the QFT context [29,30]. Upon renormalization, the bulk
of the physical value is still provided by c0 since the two (dimensionless) coefficients ν and
ν̃ adjoined to the two dynamical terms in (1) are expected to be small (ν, ν̃� 1) [96]. They
encode the running character of the vacuum at low energy and can be computed in QFT in
curved spacetime, receiving contributions from the quantized bosons and fermion fields.
The explicit calculation was first presented in [29,30] and was recently completed in [32].
In these references, it is shown that the above VED structure can be formally derived from
quantum effects on the effective action of QFT in FLRW spacetime.

Indeed, as shown in the works [29–32], fully within the spirit of the renormalization
group (RG) analysis inherent to the RVM structure [17], the Hubble rate H (with the natural
dimension of energy) can be viewed as an RG scaling parameter. For the sake of simplicity,
let us illustrate the type of effects that contribute to the coefficient ν of the H2 terms in the
VED (1), albeit focusing only on one quantized scalar field of mass m and non-minimal
coupling ζ. The independent contributions to ν̃ will not be shown [30] for this summarized
discussion of the QFT aspects, and will be assumed to vanish. Then, one may write for the
RVM energy density ρvac(H) which connects two given values of the Hubble parameter,
say, one at the H era and the other at another epoch (the current one, H0, for example):

ρvac(H) = ρ0
vac +

3ν

8πGN

(
H2 − H2

0

)
, (2)

where

ν =
1

2π

(
ζ − 1

6

) m2

m2
Pl

ln

(
m2

H2
0

)
, (3)

in which mPl is the Planck mass. According to the QFT calculation, ν actually appears as a
very mildly (logarithmically) dependent function of H = H(t)—see the exact expression
in [30]. Since it remains essentially invariable with H, for fitting purposes we can fix
H = H0 in it and take ν as a constant fitting parameter. Notice also that in arriving at
Equation (2), ln(m2/H2

0) � 1 has been used (an inequality which is valid for virtually
any massive particle). The previous considerations justify in part the structure of the
VED in Equation (1). Regarding the Ḣ term, it has a similar structure [30], but the above
considerations should suffice to grasp the kind of QFT contributions that are found. As
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previously noted, ζ is the non-minimal coupling of the (quantized) scalar matter fields
with gravity (in general, one expects a different coupling for each scalar field). In the
conformal limit (certainly not our case) one would have ζ = 1/6 and the running of the
VED from the scalar sector would disappear, as could be expected. The quantity ρ0

vac in
(2) denotes the vacuum energy density at the current era and hence it is connected with
the measured value of the cosmological ‘constant’ through the aforementioned relation
ρ0

vac = Λphys/(8πGN).
We should also mention, for the sake of a more complete summary of this QFT part,

that the exact formula for scalars (including an arbitrary number of them) can be found
in [30], and that the calculation of the scalar contribution recently became complemented
with the QFT calculation of the (quantized) fermionic contributions, also in an arbitrary
number; see [32]. It is therefore clear, that at present a theoretical quantitative prediction for
the coefficients ν and ν̃ cannot be performed in practice since they depend on contributions
from the masses and non-minimal couplings of the various scalar fields, as well as from the
masses of the different species of fermions. Furthermore, from the above formulas it should
be clear that the relevant fields contributing significantly (at one-loop and higher orders) to
the VED running are not the low-energy fields of the standard model of particle physics but
the very heavy fields belonging to the given grand unified theory (usually accompanied
with large multiplicity factors). All that being said, and despite the fact that a quantitative
QFT prediction of the cosmic running of the VED cannot be presently furnished, the great
virtue of these formal calculations is, at least from our point of view, that they provide a
theoretical link between cosmologically relevant quantities and the QFT framework, and
hence contribute to establishing a deeper connection of cosmology with the fundamental
principles of theoretical physics.

In practice, therefore, the values of ν and ν̃ must be fitted to the cosmological ob-
servations. Thus, in what follows we will focus exclusively on the phenomenological
consequences of the RVM. What is important is that these coefficients are expected to be
small and of order ∼ M2

X/m2
Pl � 1, where mPl ' 1.22× 1019 GeV is the Planck mass and

MX ∼ 1016−17 GeV is of the order of a typical GUT scale (or even a string scale slightly
above it) times a multiplicity factor accounting for the number of heavy particles in the
GUT [96]. For ν = ν̃ = 0 we recover the ΛCDM smoothly. This is a very welcome property
of the RVM since DE models having no smooth ΛCDM limit, e.g., predicting a VED of the
form ρvac(H) ∝ H2 or a combination of H2 and Ḣ (without any additive term), would be
excluded owing to their absence of an inflexion point from deceleration into acceleration
in the cosmic evolution; see [93,97,98]. The presence of the nonvanishing additive term
c0 is therefore crucial for the RVM to avoid this unwanted situation, something that other
models (e.g., entropic and ghost models of the DE) cannot avoid, thereby getting into
trouble [99,100]. Holographic models with dynamical cutoff L = H−1 also lack an additive
term in the DE and are also unfavored already at a purely cosmographic level [101]. In
stark contrast, the condition c0 6= 0 is always warranted within the class of RVMs.

It is important to realize that the dynamics of the VED must preserve, of course, the
Bianchi identity satisfied by the Einstein tensor. In practice, this means that the total energy–
momentum tensor (EMT), which receives the contributions from nonrelativistic matter,
radiation, and vacuum (assumed here to be ideal fluids), must be covariantly conserved,
namely ∇µTtot

µν = 0. The total EMT reads,

Ttot
µν = (pt − ρvac)gµν +

(
ρt + pt

)
UµUν, (4)

where Uµ is the 4-velocity vector of the cosmic fluid. We have defined ρt = ρm + ρncdm + ργ,
where ρm = ρcdm + ρb denotes the contribution to the proper density of nonrelativistic
matter from cold dark matter and baryons, ρncdm (non-cold dark matter) corresponds to
the energy density of neutrinos, and ργ designates the energy density associated with
photons. In other words, ρt refers to the sum of all the species in the universe excluding
the vacuum. Analogous notation applies to the pressures. We shall, however, be more
specific in our treatment of the various contributions to the EMT in the next section. Notice
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that in the above expression we have used pvac = −ρvac for the EoS of the vacuum fluid,
as indicated in the introduction. Even though this condition may be violated slightly by
quantum effects within a formal treatment of the subject in QFT [31], we shall nonetheless
stick for now to the traditional EoS of the vacuum. We shall come back to this point later
on. Upon expanding ∇µTtot

µν = 0, it amounts to the local covariant conservation law in an
FLRW universe:

d
dt
[G(ρt + ρvac)] + 3GH(ρt + pt) = 0, (5)

where, in general, not only ρvac but also G may be functions of the cosmic time. This will
depend on the particular implementation assumed for the matter sector. If we assume that
there is an interaction of the VED with matter, then G can stay fixed at the usual value
GN (the local gravity value), whereas if matter is locally conserved, then G must vary
accordingly in order to preserve the covariant conservation law (5).

In order to ease the comparison with previous results, we shall adhere to the approach
of [85] and assume ν̃ = ν/2. In this way, the RVM model is left with one single parameter
and at the same time adopts the suggestive form

ρvac(H) =
3

8πGN

(
c0 +

ν

12
R
)
≡ ρvac(R), (6)

in whichR = 12H2 + 6Ḣ is the curvature scalar. That particular implementation is called,
for obvious reasons, the RRVM, since it is a version of the RVM which involves the scalar
of curvature [85]. One additional advantage is that it is automatically well-behaved in the
radiation-dominated epoch, since in itR/H2 � 1 and the standard BBN is not perturbed
at all by the presence of vacuum energy. In the general case (1), such a condition can also
be fulfilled by assuming sufficiently small (absolute) values of ν and ν̃ [90].

Finally, despite the general structure of the running VED being of the form (1), for
convenience we define two types of RRVM scenarios. In the type-I scenario, the vacuum is
in interaction with matter, whereas in the type-II scenario, matter is conserved at the expense
of an exchange between the vacuum and a slowly evolving gravitational coupling G(H).
The combined cosmological ‘running’ of these quantities ensures the accomplishment of
the Bianchi identity (and the associated local conservation law). In the following sections
we study these two cases separately.

3. Type I: Running Vacuum Interacting with Dark Matter

In this section, we consider the type-I RRVM scenario, in which the vacuum can be
running at the expense of exchanging energy with matter. We will assume that only cold
dark matter (CDM) is involved in such an exchange (therefore no baryons, neutrinos or
photons are transferred to or from the vacuum). Whether it is the vacuum that generates
new CDM or the CDM that disappears into the vacuum depends on the sign of the
parameter ν in Equation (6). For ν > 0, the vacuum decays into tiny amounts of CDM,
whilst for ν < 0 some dark matter disappears into the vacuum. We do not presume which
of these situations holds, we will fit the value (and sign) of ν to the cosmological data. This
requires solving the background and linear perturbation equations of the type-I running
vacuum model, which we demonstrate in Sections 3.1 and 3.2.

3.1. Background Equations

The VED expression (6) can be cast more explicitly as follows,

ρvac =
3

8πGN

[
c0 + ν

(
H2 +

1
2

Ḣ
)]

. (7)



Universe 2023, 9, 262 9 of 40

The above energy component now becomes a part of the Friedmann and the pressure
equations written in terms of the energy densities and the pressures for the different species,
which read

3H2 = 8πGN(ρt + ρvac) = 8πGN(ρm + ρncdm + ργ + ρvac), (8)

3H2 + 2Ḣ = −8πGN(pt + pvac) = −8πGN(pncdm + pγ + pvac). (9)

The following comment is in order. As is well known, there is a transfer of energy from
the relativistic neutrinos to the nonrelativistic ones throughout the whole of cosmic history.
It is difficult to make a perfect separation of the relativistic and nonrelativistic phases and,
strictly speaking, this splitting can be a little bit inaccurate at those epochs of the expansion
history for which a neutrino species is in an intermediate step, between the ultra-relativistic
and nonrelativistic regimes, since in this case one cannot classify such neutrino species
in any of these two categories. Nevertheless, it is useful to obtain approximate formulas
for the two components, as we shall see in a moment. We proceed as in the Einstein–
Boltzmann solver CLASS1 [102,103], where we have implemented our model. CLASS solves
the Einstein and Boltzmann differential equations at any value of the scale factor and, in
particular, provides the functions ρncdm(a) and pncdm(a). CLASS then performs a rather
artificial splitting of these quantities, as if they came from the sum of an ultra-relativistic
fluid (denoted with a subscript ν) and a nonrelativistic one (denoted with a subscript h),

ρh = ρncdm − 3pncdm ; ph = 0; (10)

ρν = 3pncdm ; pν = pncdm. (11)

At this point, we can rewrite the combination H2 + (1/2)Ḣ appearing in (7) in terms
of the energy densities and pressures using (8) and (9),

H2 +
1
2

Ḣ =
2πGN

3
(ρm + 4ρvac + ρncdm − 3pncdm). (12)

In this expression, we can appreciate that the nonrelativistic contribution from massive
neutrinos, namely ρh = ρncdm − 3pncdm, is present. This is a problem if we want to solve
the background equations, since it carries a complicated (non-analytic) dependence on the
scale factor. In order to solve this problem, we can consider a reasonable approximation,
which is the following:

r ≡ ρh
ρm

=
ρh

ρcdm + ρb
' 0. (13)

We have checked explicitly the validity of this approximation with CLASS, computing
the ratio r = ρh/ρm for the whole of cosmic history. We have found that r varies smoothly
from 10−7 at redshift z = 1014 to 10−3 at z = 0, considering a massive neutrino with mass
∼ O(0.1) eV. In addition, r is multiplied by ν in Equation (7), so the resulting quantity is
of the order O

(
10−5) at most. Therefore, we deem it natural and licit to drop this term to

make things easier without any significant loss in accuracy in our calculation.
Under this very good approximation, we can express the vacuum energy density (7)

as follows,
ρvac(a) = ρ0

vac +
ν

4(1− ν)
(ρm(a)− ρ0

m), (14)

with ρvac(a = 1) = ρ0
vac and ρm(a = 1) = ρ0

m. We still need to find ρm(a) though. The
starting point is Equation (5) which yields the interaction law between vacuum and matter
in the general case. Now, since we assume that G is strictly constant for the type-I models,
Equation (5) can be reduced to

ρ̇m + 3Hρm = −ρ̇vac, (15)
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where we are neglecting the pressure of the matter components. Notice that the previous
equation is entirely equivalent to the interaction law between CDM and the vacuum,

ρ̇cdm + 3Hρcdm = −ρ̇vac, (16)

owing to the fact that we are assuming that baryons do not interact at all with the vacuum,
which entails the relation ρ̇b + 3Hρb = 0. In this way we have obtained the conservation
equation of matter (baryons+CDM) for type-I models.

Combining the above equations, we arrive at the final result

ρ̇m + 3Hξρm = 0, (17)

where we have defined the dimensionless parameter

ξ ≡ 1− ν

1− 3
4 ν

. (18)

It is then straightforward to find out the expressions for the various energy densities:

ρm(a) = ρ0
ma−3ξ , (19)

ρcdm(a) = ρ0
ma−3ξ − ρ0

ba−3, (20)

ρvac(a) = ρ0
vac +

(
1
ξ
− 1
)

ρ0
m

(
a−3ξ − 1

)
. (21)

In the limit ξ → 1 (ν → 0) we recover the expected forms of these equations in the
ΛCDM. It is also possible to encode the deviations with respect to the standard cosmological
model in terms of an effective parameter νeff, defined as

ξ =
1− ν

1− 3
4 ν
' 1− ν

4
+O

(
ν2
)
≡ 1− νeff +O

(
ν2

eff

)
. (22)

We will report all our fitting results in terms of parameter νeff. As with ν, positive
values of νeff lead to a decay of the vacuum into CDM, whereas negative values source an
energy transfer from CDM to the vacuum.

3.2. Perturbation Equations

We have implemented the perturbation equations in CLASS, using the synchronous
gauge. Denoting by τ the conformal time, the perturbed (flat three-dimensional) FLRW
metric in the conformal frame reads [104],

ds2 = a2(τ)[−dτ2 + (δij + hij)dxidxj], (23)

with

hij(τ,~x) =
ˆ

d3ke−i~k·~x
[

k̂i k̂ jh(τ,~k) +
(

k̂i k̂ j −
δij

3

)
6η(τ,~k)

]
, (24)

and k̂i = ki/k. The above formula represents the perturbation expressed as a Fourier
integral on the two fields in k-space, h(τ,~k) and η(τ,~k), which parameterize the non-
traceless and traceless parts, respectively. The nonvanishing trace is the h function. The
perturbed Einstein equations in Fourier space adopt the same form as in the ΛCDM. They
read as follows:

Hh′ − 2ηk2 = 8πGN a2 ∑
l

δρl , (25)

η′k2 = 4πGN a2 ∑
l
(ρ̄l + p̄l)θl , (26)
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h′′ + 2Hh′ − 2ηk2 = −24πGN a2 ∑
l

δpl , (27)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = −24πGN a2(ρ̄ + p̄)σ, (28)

where H ≡ aH, the sums run over the different matter components, the primes denote
derivatives with respect to the conformal time, and

(ρ̄ + p̄)σ ≡ −
(

k̂i k̂ j −
δij

3

)(
Ti

j −
δi

j

3
Tk

k

)
(29)

carries the information of the anisotropic stress, with Tµν the total energy–momentum
tensor. The bars in these equations indicate background quantities and θl is the divergence
of the perturbed velocity of the fluid l. Equations (25) and (26) are obtained from the 00
and 0i components of Einstein’s equations, respectively, whereas Equations (27) and (28)
are the trace and the part proportional to k̂i k̂ j of the ij component.

All the perturbed conservation equations are also the same as in the standard model,
except those that relate CDM and the vacuum, which take the following form,

θ′cdm +Hθcdm =
ρ̄′vac
ρ̄cdm

θcdm − k2 δρvac

ρ̄cdm
, (30)

δ′cdm −
ρ̄′vac
ρ̄cdm

δcdm +
δρ′vac
ρ̄cdm

+ θcdm +
h′

2
= 0, (31)

with δcdm = δρcdm/ρ̄cdm the CDM density contrast and θcdm the divergence of the per-
turbed CDM 3-velocity. We consider a vacuum–geodesic CDM interaction such that there
is no net momentum transfer between the vacuum and cold dark matter [41,105,106]. Thus,
we can fix the gauge by setting θcdm = 0, as in the ΛCDM. This automatically sets δρvac = 0.
In this setup, Equation (31) simplifies to

δ′cdm +
h′

2
− ρ̄′vac

ρ̄cdm
δcdm = 0. (32)

This is actually the only perturbation equation that must be modified in CLASS in order
to accommodate the dynamical character of the VED, i.e., the fact that ρ̄′vac 6= 0. In this
work, we consider adiabatic perturbations for the various matter and radiation species.

3.3. Type I with Threshold

Once we have obtained the background and the perturbation equations we are in
a position to study the cosmological evolution of the RVM in different situations. The
conventional option would be to assume that the above equations are valid throughout the
entire cosmic history (subsequent, of course, to the inflationary period, which will not be
dealt with here at all). The phenomenological analyses of [88–93], for example, were based
on that standard assumption. However, we may also entertain the intriguing possibility
that the interaction between the vacuum and dark matter is only relatively recent. In that
case, we could have a scenario where the dynamics of the vacuum starts approximately at
the time when it becomes dominant over matter (i.e., at about the outset of what is usually
referred to as the DE epoch). Such a situation should be characterized by the presence of a
‘threshold point’ for the vacuum dynamics at some redshift value z∗, where the transition
occurs. The idea is to study the response of our fit to the overall cosmological data when
we switch off the interaction between the VED and the CDM for most of cosmic history,
except when we approach the usual epoch of vacuum dominance. Since the conventional
DE epoch in the late universe is usually assumed to commence at around a redshift value
of z∗ ' 1, we will assume that its evolution also begins at around that point (see below).

We will implement the simplest version of such a threshold scenario through a Heavi-
side Θ-function, and for definiteness it will be restricted to type-I models only. Thus, let



Universe 2023, 9, 262 12 of 40

a∗ be the value of the scale factor where the activation of the vacuum dynamics occurs
(z∗ = a−1

∗ − 1 being the corresponding redshift value). Before reaching that point (that is,
at earlier epochs a < a∗) the vacuum is rigid, whereas after that point (hence nearer to our
present time) the vacuum evolves with the expansion following the type-I running vacuum
behavior; see Equation (21). We have checked that the optimal value for this parameter is
a∗ ' 0.5, which indeed corresponds to z∗ ' 1.2

It should be noted that while the VED function ρvac(a) will remain continuous in our
implementation of the step function procedure, its time derivative ρ̇vac does not, and in fact
it is modified through a Heaviside function factor Θ(a− a∗). Accordingly, the derivative of
the CDM energy density must also change in a discontinuous way. In contradistinction, all
the energy densities are continuous at a = a∗. Consequently, we find that in order to fulfill
these requirements we must implement the analytical expressions for the various density
functions in the following way:

a < a∗ (z > z∗)

ρcdm(a) = ρcdm(a∗)
(

a
a∗

)−3
(33)

ρ∗vac = ρ0
vac +

(
1
ξ
− 1
)

ρ0
m

(
a−3ξ
∗ − 1

)
= const. (34)

a > a∗ (z < z∗)

ρcdm(a) = ρ0
ma−3ξ − ρ0

ba−3 (35)

ρvac(a) = ρ0
vac +

(
1
ξ
− 1
)

ρ0
m

(
a−3ξ − 1

)
. (36)

In the above expression, we have defined

ρcdm(a∗) = ρ0
ma−3ξ
∗ − ρ0

ba−3
∗ = const. (37)

It goes without saying that the same modifications have to be applied in the per-
turbation sector. We denote this version of the type-I RRVM with threshold as type-I
RRVMthr..

We do not wish to speculate here on the possible origin of the threshold postulated
above, it could be a manifestation of a late-time interaction in the dark sector. However,
we mention that a fundamental microscopical explanation might come from the RVM
framework emerging from QFT in curved spacetime [31], which indicates that the EoS
of the quantum vacuum stays in the characteristic DE range (0 < wvac < −1/3) only
below a redshift value (threshold) in our recent past z∗ ' 1. For z > z∗, instead, one has
wvac > −1/3 and the vacuum no longer behaves as DE. This is of course impossible for the
classical vacuum, for which wvac = −1 all the time. Additional studies will obviously be
necessary to gauge the impact of such EoS behavior on the global fits to the cosmological
data and its potential relation with the type-I scenario with threshold that we have defined
above. Finally, we mention that the behavior of the type-I RRVM with threshold should
be essentially the same as that of the ‘canonical RVM’ with threshold, namely, the original
RVM form with the dynamical component ∼ H2; see [17,19] and references therein. The
latter corresponds to (1) with only the single parameter ν (with ν̃ = 0). At low z, the two
models are expected to be indistinguishable from the phenomenological point of view.

4. Type II: Running Vacuum with Running G

For type-II RRVM we have an entirely different sort of scenario, in which matter is
strictly conserved, in particular dark matter, and hence no interaction of any sort is per-
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mitted between matter and vacuum. However, to switch off the energy exchange between
matter and vacuum in a fully consistent way with the Bianchi identity, we must allow
for the running of the gravitational coupling with the expansion, G = G(H). Therefore,
for type-II models we have both the running of the vacuum energy density ρvac and the
running of G. Let us briefly see how this comes about. If matter is conserved, we have
ρ̇t + 3H(ρt + pt) = 0, where as in the previous sections the subscript t refers to the sum
of all the species in the universe excluding the vacuum. Whereupon the general Bianchi
identity (5) can be reduced to3

Ġ(ρt + ρvac) + Gρ̇vac = 0. (38)

Since the running of ρvac is still fixed by (7), the previous equation is essential to
determine the running of G. Being ρ̇vac ∝ ν, the sign of ν determines the sign of Ġ, i.e., if
ν > 0 (ν < 0) G increases (decreases) with the cosmic expansion. Of course, we have to
make sure that G evolves in a very mild way, which in fact turns out to be the case as we
shall verify explicitly.

In what follows, we bring forth the relevant background and linear perturbation
equations for the type-II RRVM in Sections 4.1 and 4.2, respectively. As will become clear,
the solution of this model type is more complicated.

4.1. Background Equations

We come back to the following form of the vacuum energy density,

ρvac(R) = C0 +
ν

32πGN
R. (39)

which is of course equivalent to our original RRVM expression (6), with C0 ≡ 3c0/(8πGN)
andR = 12H2 + 6Ḣ. The Friedmann and pressure equations read, respectively,

3H2 = 8πG
[

ρt + C0 +
3ν

16πGN
(2H2 + Ḣ)

]
, (40)

−(3H2 + 2Ḣ) = 8πG
[

pt − C0 −
3ν

16πGN
(2H2 + Ḣ)

]
, (41)

where GN is Newton’s gravitational constant, whereas G stands for the running gravita-
tional coupling. For type-II models G evolves with the expansion, and hence it is generally
different from GN . At the same time, we remind the reader that for type-II models the
background energy densities and pressures of the matter species evolve as a function of the
scale factor exactly as in the ΛCDM, since now there is no energy exchange between them
and the vacuum.

A practical consideration is now in order, which will make clear immediately why
solving the type-II models is more difficult. Recall that for the numerical analysis we
are using the CLASS system solver [102,103]. Now, the point is that for the standard
cosmological model, CLASS computes H and Ḣ after computing the energy densities of the
various components that fill the universe. In the model under consideration though, we
cannot proceed in the same way, because we first need to compute G. Before explaining
how it is still possible to solve the system in the CLASS platform, it is useful to rewrite
the above equations in terms of the auxiliary variable4 ϕ ≡ GN/G. One expects ϕ ' 1 at
present and one may even impose this condition (see, however, below). In terms of ϕ, the
set of relevant equations read

3H2 =
8πGN

ϕ

[
ρt + C0 +

3ν

16πGN
(2H2 + Ḣ)

]
, (42)
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−(3H2 + 2Ḣ) =
8πGN

ϕ

[
pt − C0 −

3ν

16πGN
(2H2 + Ḣ)

]
, (43)

ϕ̇

ϕ
=

ρ̇vac

ρt + ρvac
, (44)

where the last one, Equation (44), is of course nothing but a rephrasing of Equation (38).
This equation is rather complicated since it is obvious from (7) that it involves not only H
and Ḣ, but also Ḧ. In order to compute the latter, it is possible, of course, to differentiate
the pressure equation and use it together with (42) and (43). Unfortunately, in doing so
one obtains Ḧ as a function of the derivative of the neutrinos’ energy density and pressure,
which should then be computed numerically. This approach looks too complicated, and
therefore we opt for the following alternative and simpler method. We first obtain a
differential equation for H. Dividing out Equations (42) and (43) we can lose ϕ, and after
some rearrangement we are led to the following differential equation:

0 =
3ν

8πGN
Ḣ2 + Ḣ

(
2C0 + 2ρt +

3νH2

4πGN

)
+ 3H2(ρt + pt). (45)

The previous equation can be restated in the more convenient form

Ḣ =
4πGN

3ν

−B +

√
B2 − ν

9H2

2πGN
(pt + ρt)

, (46)

where we have defined the function

B ≡ 2C0 + 2ρt +
3νH2

32GN
. (47)

Equation (46) can be solved much more easily than (44), although we still need to
employ a numerical procedure. We have all the necessary ingredients. As an initial
condition (at zini ∼ 1014) we can use

H2
ini =

8πGN
3ϕini

ρr(zini), (48)

because the radiation energy density clearly dominates over the nonrelativistic matter and
the vacuum. We can tell CLASS to apply the finite difference method to solve the system step
by step. In each of these steps CLASS computes Hn+1 from Hn and Ḣn (46). For the latter
it takes the various energy densities and pressures. Then, we can employ the Friedmann
equation to compute ϕn+1,

ϕ =
8πGN

3H2

[
ρt + C0 +

3ν

16πGN
(2H2 + Ḣ)

]
, (49)

and iterate the process till we have the complete expansion history to the necessary degree
of accuracy.

Next, we show the evolution of ϕ during the radiation-dominated (RDE) epoch. First,
let us write ρvac in terms of the energy densities, pressures, and ϕ. Notice that using (42)
and (43) we obtain:

H2 =
8πGN

3(ϕ− ν)

[
ρt + C0 −

3
4

ν

ϕ
(ρt + pt)

]
, (50)

Ḣ = −4πGN
ϕ

(ρt + pt). (51)
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Introducing these expressions into (39) we obtain:

ρvac(a) =
ϕ(a)C0 +

ν
4 [ρt(a)− 3pt(a)]

ϕ(a)− ν
. (52)

Even though we have solved the type-II model in an exact way using the aforemen-
tioned numerical strategy, the following approximate analytical considerations may help to
better understand the behavior of the solution. In the RDE, we have

ρvac(a) =
νρ0

m
4ϕ(a)

a−3 +O(ν2) (53)

since only the nonrelativistic component ρm = ρ0
ma−3 contributes in the term propor-

tional to ν in the numerator of (52) after the pressure and the radiation densities cancel
in the difference ρr(a)− 3pr(a). Finally, using (53) in (44) we can easily integrate the
resulting equation, since in the denominator we have ρvac(a) � ρt(a) ' ρ0

r a−4 in the
radiation epoch. Integrating from the initial scale factor value aini = 10−14 (see above)
up to an arbitrary value, we find the evolution of the gravitational coupling within this
analytical approximation:

ϕ(a) = ϕini −
3νeff
aeq

(a− aini), (54)

with aeq = Ω0
r,∗/Ω0

m and Ω0
r,∗ being the radiation density parameter computed assuming

that the neutrinos are all massless. Similarly to the type-I RRVM (cf. Section 3.1), we
have defined

νeff ≡
ν

4
, (55)

as in [85]. We actually report the fitting value of this parameter in our tables and contour
plots; see the discussion in Section 6. The term (a− aini)/aeq in (54) is much smaller than
1, since (54) is valid for a � aeq. Hence, the total variation in ϕ during the RDE is small
and of the order νeff, ∆ϕ ≈ −3νeff ∼ O(ν), despite being linear with the scale factor. It is
easy to see that the relation (53) still holds in the MDE, but the denominator of (44) is now
dominated by the term ρt(a) ' ρ0

ma−3. Integration now gives

ϕ(a) = C− 3νeff ln a, (56)

where C is a constant to be fixed by some initial condition in the MDE. It is easy to check
that the total variation in ϕ in the MDE will be of the order of∼ O(10)ν, i.e., ten times larger
than in the RDE. In the vacuum-dominated epoch, the right-hand side of Equation (44)
goes to zero and ϕ→ const, so G remains constant as well.

Traditional limits on the relative time variation in G can be found, e.g., in the re-
view [114]. More recent determinations, e.g., those based on measurements on the double
pulsar PSR J0737–3039A/B, yield rather tight bounds [115]:

Ġ
G

= (−0.8± 1.4)× 10−13 1
FAB

yr−1, (57)

where FAB ' 1 for weakly self-gravitating bodies. A previous limit from a binary pulsar
(PSR J1713+0747) provided [116]

Ġ
G

= (−0.1± 0.9)× 10−12yr−1, (58)
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which is a bit weaker but essentially in the same ballpark. On the other hand, the best
current limit on the relative variation in G obtained in the solar system is [117]

Ġ
G

< 4× 10−14yr−1. (59)

Assuming that (57)–(59) can be used to constrain the cosmological evolution of G, let
us tentatively use these limits (in order of magnitude) in combination with Equation (56)
to constrain the parameter νeff. The last equation implies ϕ̇ ' −3νeffH0 for H ' H0 '
1.023h × 10−10 yr−1 around our time (h ' 0.7) The previous relation is equivalent to
Ġ/G ' 3νeffH0 to order νeff. It is then easy to check that in order to fulfill the above limits
we must require νeff . (2− 5)× 10−4, a condition which is satisfied by our fitting values
of νeff for the type-II models, even in the most restrictive case (see the fitting tables of
Section 6)5.

From the above considerations it is clear that ϕ = GN/G changes very slowly
(logarithmically) with the expansion, and proportionally to the small parameter ν. The
predicted variations in G within the type-II running vacuum models lie, in fact, within
the most restrictive experimental limits existing in the literature. This demonstrates
our contention, mentioned previously, that the running of G within these models is
consistent with the observations.

Finally, we mention that with the purpose of giving more freedom to the model, in
this work we will not impose the condition G(a = 1) = GN or, equivalently, ϕ(a = 1) = 1,
as we did in previous studies such as [85] and also in [118–120], within the context of
the Brans–Dicke model with a cosmological constant. We naturally expect ϕ(a = 1) ' 1,
of course. The obtained fitting values for ϕ at present are indicated in our tables as
ϕ(0) ≡ ϕ(z = 0). Let us finally note that cosmologies with variable G may have to rely on
an efficient screening mechanism that allows the recovery of GN at the solar system. We
will not focus on this issue, which has been addressed in several places in the literature (see,
e.g., [4,121,122] and references therein, and more recently in [123]), as it deserves a more
devoted study which is certainly beyond the scope of this work. Let us, however, note
that this situation affects mainly the Brans–Dicke-type models [113], where the effective
gravitational coupling is tied to a dynamical scalar field that could mediate long-range
interactions as a true degree of freedom of the underlying gravitational framework. As
indicated before, this is not our case. These situations may have an impact only in the
non-linear scales, which are anyway not strongly affected by the cosmological observables
employed in this study. We close this section by noting that, while in this paper we have
assumed that G may change with the cosmic time in type-II models, it could also evolve
with a distance scale in a galactic domain, G = G(r) (0 < r < L). Such an extension of
the running of the gravitational coupling was considered in [124] and could be helpful to
connect the running of G between the galactic/astrophysical and cosmological domains.

Table 1. Published values of BAO data; see the quoted references for details and for the corresponding
covariance matrices. The fiducial values of the comoving sound horizon appearing in the table are
rd,fid = 147.5 Mpc for [125] and rd,fid = 148.6 Mpc for [126].

Survey z Observable Measurement References

6dFGS+SDSS MGS 0.122 DV(rd/rd,fid) [Mpc] 539± 17 [Mpc] [125]

DR12 BOSS

0.32
Hrd/(103km/s) 11.549± 0.385

[127]
DA/rd 6.5986± 0.1337

0.57
Hrd/(103km/s) 14.021± 0.225

DA/rd 9.389± 0.1030
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Table 1. Cont.

Survey z Observable Measurement References

WiggleZ

0.44 DV(rd/rd,fid) [Mpc] 1716.4± 83.1 [Mpc]

[126]0.60 DV(rd/rd,fid) [Mpc] 2220.8± 100.6 [Mpc]

0.73 DV(rd/rd,fid) [Mpc] 2516.1± 86.1 [Mpc]

DESY3 0.835 DM/rd 18.92± 0.51 [128]

eBOSS Quasar 1.48
DM/rd 30.21± 0.79

[129]
DH/rd 13.23± 0.47

Lyα-Forests 2.334
DM/rd 37.5+1.2

−1.1 [130]
DH/rd 8.99+0.20

−0.19

Table 2. Values of H(z) from cosmic chronometers and their 1σ uncertainties, which include the
contribution of statistical and systematic effects [131]. They are expressed in km/s/Mpc. We have
considered the correlations between the data points marked with a *, as discussed in [131]. In some
of the quoted references, the authors provide measurements obtained with two different stellar
population synthesis (SPS) models. In these cases, we have employed the mean of the two central
values and statistical errors. The systematic uncertainty already accounts for the choice of SPS model.

z H(z)[km/s/Mpc] References

0.07 69.0± 19.6 [132]

0.09 69.0± 12.0 [133]

0.12 68.6± 26.2 [132]

0.17 83.0± 8.0 [134]

0.1791 * 77.72± 6.01 [135]

0.1993 * 77.79± 6.83 [135]

0.2 72.9± 29.6 [132]

0.27 77.0± 14.0 [134]

0.28 88.8± 36.6 [132]

0.3519 * 85.45± 15.75 [135]

0.3802 * 86.17± 14.61 [136]

0.4 95.0± 17.0 [134]

0.4004 * 79.90± 11.38 [136]

0.4247 * 90.39± 12.76 [136]

0.4497 * 96.24± 14.38 [136]

0.47 89.0± 49.6 [137]

0.4783 * 83.74± 10.18 [136]

0.48 97.0± 62.0 [138]

0.5929 * 106.80± 15.06 [135]

0.6797 * 94.875± 10.600 [135]

0.75 89.0± 49.6 [139]

0.7812 * 96.27± 12.72 [135]

0.8754 * 124.70± 17.13 [135]
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Table 2. Cont.

z H(z)[km/s/Mpc] References

0.88 90.0± 40.0 [138]

0.9 117.0± 23.0 [134]

1.037 * 133.35± 18.12 [135]

1.3 168.0± 17.0 [134]

1.363 * 163.95± 34.61 [140]

1.43 177.0± 18.0 [134]

1.53 140.0± 14.0 [134]

1.75 202.0± 40.0 [134]

1.965 * 191.10± 51.91 [140]

Table 3. Published values of f (z)σ8(z); see the quoted references and text in Section 5.

Survey z f (z)σ8(z) References

ALFALFA 0.013 0.46± 0.06 [141]

6dFGS+SDSS 0.035 0.338± 0.027 [142]

GAMA
0.18 0.29± 0.10 [143]

0.38 0.44± 0.06 [144]

WiggleZ

0.22 0.42± 0.07

[145]
0.41 0.45± 0.04

0.60 0.43± 0.04

0.78 0.38± 0.04

DR12 BOSS
0.32 0.427± 0.056

[127]
0.57 0.426± 0.029

VIPERS
0.60 0.49± 0.12

[146]
0.86 0.46± 0.09

VVDS 0.77 0.49± 0.18 [147,148]

FastSound 1.36 0.482± 0.116 [149]

eBOSS Quasar 1.48 0.462± 0.045 [129]

4.2. Perturbation Equations

The actual implementation of the linear perturbation equations for type-II models
in the CLASS computing platform is more difficult than the background part (which was
already nontrivial), and certainly much more involved than the one carried out for the
type-I variant (viz. the one with vacuum–CDM interaction). We use again the synchronous
gauge, but in this case the gauge unfortunately does not fix δρvac = 0, in contrast to the
situation in Section 3.2, so we have to keep the contribution of the vacuum perturbation in
our equations.

The 00, 0i, and ii components of the Einstein equations in Fourier space read, respectively,

Hh′ − 2ηk2 = 8πGN a2 ∑
l

(
δρl
ϕ̄
− ρ̄l

δϕ

ϕ̄2

)
, (60)

η′k2 =
4πGN

ϕ̄
a2 ∑

l
(ρ̄l + p̄l)θl , (61)
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h′′ + 2Hh′ − 2ηk2 =
24πGN a2

ϕ̄ ∑
l

(
p̄l
ϕ̄

δϕ− δpl

)
, (62)

where we have of course also split ϕ into a background contribution and a perturbation,
ϕ = ϕ̄ + δϕ. The equation coming from the part that is proportional to k̂i k̂ j of the Einstein
ij component reads,

h′′ + 6η′′ + 2H(h′ + 6η′)− 2ηk2 = −24πGN
ϕ̄

a2(ρ̄ + p̄)σ. (63)

The zero and spatial component of the covariant conservation equation of the vacuum
are, respectively,

0 =
ϕ̄′

ϕ

(
δρ

ρ̄
− δϕ

ϕ̄

)
+

δϕ′

ϕ̄
− δρ′vac

ρ̄
, (64)

0 = ϕ̄′( p̄ + ρ̄)θ − k2( p̄δϕ + ϕ̄δρvac), (65)

where in the last two equations

δρ = ∑
l

δρl ; p̄ = ∑
l

p̄l ; ρ̄ = ∑
l

ρ̄l ; ( p̄ + ρ̄)θ = ∑
l
( p̄l + ρ̄l)θl ≡ g. (66)

It is possible to isolate δρvac from (65) and substitute it into the other equations. The
only difficulty is found when the substitution is performed in (64), since in order to do
this we need to evaluate the quantity g′ ≡ [( p̄ + ρ̄)θ]′. CLASS computes g = [( p̄ + ρ̄)θ] but
not its derivative. If we knew how to write [( p̄ + ρ̄)θ]′ in terms of δϕ, δϕ′, g, and other
accessible quantities, then we could obtain the differential equation for δϕ from (64) and
implement it in CLASS without defining explicitly δρvac, just incorporating the effect of the
vacuum perturbation directly into the equations. This is actually possible. Let us start by
differentiating (65). We obtain:

δρ′vac = −
p̄
ϕ̄

δϕ′ − p̄′

ϕ̄
δϕ +

ϕ̄′′g + ϕ̄′g′ − (ϕ̄′)2g/ϕ̄

k2 ϕ̄
+

ϕ̄′ p̄δϕ

ϕ̄2 . (67)

Note that the quantity g′, which we have defined previously, appears in this expression.
As CLASS does not provide it to us we need to evaluate it by adding some supplementary
piece in the code. It is possible to obtain g′ upon differentiating (61) and combining it with
(62). The result reads

g′ =
k2 ϕ̄H

12πGN a2 (h
′ − k2 f ′) + k2

(
δp− p̄δϕ

ϕ̄

)
+

(
ϕ̄′

ϕ̄
− 2H

)
g, (68)

where f ≡ (h + 6ξ)/k2 and its derivative, f ′, are quantities that we can obtain from CLASS.
In addition, h′ is provided by CLASS. Now, we only need to substitute g′ from (68) into (67),
and substitute the resulting expression for δρ′vac into (64). In doing so, we finally obtain the
equation for the δϕ perturbation:

δϕ′ =
ρ̄

ρ̄ + p̄

[
δϕ

(
ϕ̄′

ϕ̄
− p̄′

ρ̄
+

ϕ̄′

ϕ̄

p̄
ρ̄

)
− ϕ̄′

δρ

ρ̄
+

ϕ̄′′g + ϕ̄′g′ − g(ϕ̄′)2/ϕ̄

k2ρ̄

]
. (69)

The initial condition for δϕ is easy to find. Deep in the RDE we can neglect all the
terms proportional to ϕ̄′ and ϕ̄′′, so we are left with the following simple equation:

δϕ′ = −δϕ
p̄′

ρ̄ + p̄
−→ a

dδϕ

da
= δϕ −→ δϕ = C̃a, (70)
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where in the RDE we have used p̄ = 1
3 ρ̄ = 1

3 ρ0
r a−4, of course. The background value of ϕ,

i.e., ϕ̄, remains almost constant during the RDE. It only grows very mildly with a, with a
constant of proportionality which is small. Hence, we would expect the constant C̃ to be
small as well. In any case, we expect δϕ ≈ 0 at zini = 1014, which is the initial condition
that we use for δϕ in our modified version of CLASS.

5. Data and Methodology

We fit the ΛCDM model, the running vacuum models under consideration (the type-I
RRVM, the type-I RRVMthr. and the type-II RRVM), and finally the XCDM [150] (also called
wCDM), a generic parameterization of the dynamical DE whose dark energy EoS, w0, is
constant and is one parameter of the fit (expected to lie near −1). To test the response of the
XCDM along with the relevant models under consideration can be useful, as it serves as a
benchmark scenario for generic models of dynamical dark energy. We fit all these models
to a large, robust, and updated set of cosmological observations from all the main sources.
Our dataset involves observations from: (i) distant type Ia supernovae (SNIa); (ii) baryonic
acoustic oscillations (BAO); (iii) a compilation of (differential age) measurements of the
Hubble parameter at different redshifts (H(zi)); (iv) large-scale structure (LSS) formation
data (specifically, an updated list of data points on the observable f (zi)σ8(zi)); and, finally,
(v) CMB Planck 2018 data of different sorts. A brief description now follows of each of
these datasets along with the corresponding references.

SNIa: We consider the data from the so-called ‘Pantheon+’ compilation [151], which
contains the apparent magnitudes and redshifts associated with 1701 light curves obtained
from 1550 SNIa in the redshift range 0.001 ≤ z ≤ 2.26. See Section 2.2 of [152] for details of
the theoretical formulae employed to take into account these data points. Interestingly, the
new Pantheon+ compilation also includes the 77 light curves from the 42 SNIa in the host
galaxies employed by the SH0ES team in their analysis [153,154]. The distance to the host
galaxies has been measured with calibrated Cepheids. The inclusion of these luminosity
distances in our dataset will be made clear by adding the label “+SH0ES”. They break the
existing full degeneracy between H0 and the absolute magnitude of SNIa, M, when only
SNIa are considered in the analysis. The SH0ES calibration of the supernovae in conjunction
with the cosmic distance ladder leads to larger preferred values of the Hubble parameter
of 73.04± 1.04 km/s/Mpc [153]. This large value, as compared to Planck’s measurement
(67.36± 0.54 km/s/Mpc, obtained from the TT,TE,EE+lowE+lensing data [155]), is at the
root of the ∼ 5σ H0 tension.

BAO: We employ 13 data points on isotropic and anisotropic BAO estimators. See
Table 1 for the exact values and the corresponding references.

Cosmic chronometers: In our analyses, we use 32 data points on the Hubble parameter
H(zi) measured with the differential age technique [156]. They span the redshift range
0.07 ≤ z ≤ 1.965. We provide the complete list of data points and the corresponding
references in Table 2. We have considered the effect of the known correlations between the
various data points, as explained in [131]; see also Table 2 and its caption. The covariance
matrix has been computed using the script provided in the following link6

LSS: Fifteen large-scale structure (LSS) data points between 0.01 . z . 1.5, embodied
in the observable f (zi)σ8(zi), which is known as the weighted linear growth rate, with f (z)
being the so-called growth factor and σ8(z) the root-mean-square mass fluctuations on the
R8 = 8h−1 Mpc scale. See Table 3 for the complete list of data points and the corresponding
references. We can take advantage of the relation f (z)σ8(z) = −(1 + z) dσ8(z)

dz to compute
this quantity. The function σ8(z) involves the matter power spectrum, which is computed
numerically by our modified version of the Einstein–Boltzmann code CLASS. It is important
to note that this way of computing f (z)σ8(z) can only be used provided that we are in
the linear regime, since in this case, and in our models, the matter density contrast can be
written as δm(a, k) = D(a)F(k), where the dependence on the scale factor and the comoving
wave number k is factored out. The term D(a) is known as the growth function and F(k)
encodes the initial conditions7.
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CMB: For the cosmic microwave background data, we utilize the full Planck 2018
TT,TE,EE+lowE likelihood [15]. This incorporates the information of the CMB temperature
and polarization power spectra, and their cross-correlation. We refer to this dataset simply
as “CMB”. We also test separately the Planck 2018 TT+lowE likelihood, which does not
include the effect of the high-` multipoles of the CMB polarization spectrum, in order to
check the impact of this particular dataset on our fitting results. It is also useful to compare
with our previous analyses [85], in which only this type of CMB data were used. In our
fitting scenarios, we indicate the removal of the high-` CMB polarization data from the
complete CMB likelihood with the label “CMB (No pol.)”.

As described in the preceding lines, for the SNIa we may or may not include the
information provided by the SH0ES team, whereas for the CMB we can consider the effect
of the high-` polarization data or not. An alternative calibration method of the absolute
magnitude of SNIa based on the tip of the red giant branch [159,160] instead of Cepheids
yields a measurement of H0 somewhat in the middle of those provided by Planck [15] and
SH0ES [153], H0 = 69.8± 1.7 km/s/Mpc8. In addition, it is also convenient to test the
impact of the CMB polarization data from Planck, since previous works in the literature
have found a moderate inconsistency between them and the Planck CMB temperature
data, both in the 2015 [40] and 2018 [42] releases. This inconsistency could be due to a
deficiency of the ΛCDM or the presence of unaccounted systematics in the data. Hence,
these arguments motivate us to explore the following four different datasets.

• Baseline: In our Baseline dataset, we consider the string SNIa+BAO+H(z)+LSS+CMB.
Note that here we do not include the SH0ES data.

• Baseline+SH0ES: The Baseline dataset is in this case complemented with the apparent
magnitudes of the SNIa in the host galaxies and their distance moduli employed
by SH0ES.

• Baseline (No pol.): The same as in the Baseline case, but now removing the high-`
polarization data from the CMB likelihood. That is to say, we have replaced the “CMB”
dataset with “CMB (No pol.)”.

• Baseline (No pol.)+SH0ES: The same as in “Baseline (No pol.)”, but including also
the data from SH0ES.

These are the four datasets that we employ to constrain our models. We present our
fitting results in Tables 4–7, Figures 1–3, and also in Tables A1–A4 of Appendix A.

Table 4. Mean values with 68% confidence intervals obtained from our fitting analysis of our
Baseline dataset, composed by the string SNIa+BAO+H(z)+LSS+CMB. We display the values of the
different cosmological parameters: the Hubble parameter (H0), the reduced baryon and CDM density
parameters (ωb ≡ Ω0

bh2 and ωcdm ≡ Ω0
cdmh2, respectively, with Ω0

i ≡ 8πGNρ0
i /3H2

0 ), the current
nonrelativistic matter density parameter (Ω0

m), the equation of state of the vacuum/DE fluid (w0),
the effective parameter of the running vacuum (νeff) (see (22) and (55)), the initial and current values
of the variable ϕ ≡ GN/G, the optical depth to reionization (τreio), the amplitude and spectral index
of the primordial power spectrum (As and ns, respectively), the absolute magnitude of SNIa (M), the
rms mass fluctuations at 8h−1 Mpc scale at present time (σ8), the derived parameter S8 ≡ σ8

√
Ω0

m/0.3,
and the comoving sound horizon at the drag epoch (rd). We also show the incremental value of DIC
with respect to the ΛCDM, denoted ∆DIC.

Baseline

Parameter ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

H0(km/s/Mpc) 68.27± 0.35 68.22± 0.47 67.65± 0.38 68.12± 0.97 67.49± 0.56

ωb 0.02251± 0.00013 0.02253± 0.00015 0.02252± 0.00013 0.02247± 0.00020 0.02258± 0.00013

ωcdm 0.11803± 0.00078 0.11807± 0.00078 0.1248± 0.0019 0.1181± 0.0011 0.11712± 0.00094
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Table 4. Cont.

Baseline

Parameter ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

Ω0
m 0.3029± 0.0045 0.3036± 0.0056 0.3235± 0.0071 0.3032± 0.0089 0.3082± 0.0055

w0 −1 −1 −1 −1 −0.962± 0.022

νeff - 0.00006± 0.00030 0.0227± 0.0055 −0.00008± 0.00035 -

ϕini - - - 1.006± 0.024 -

ϕ(0) - - - 1.008± 0.028 -

τreio 0.0512± 0.0073 0.0511± 0.0080 0.0601± 0.0082 0.0505± 0.0078 0.0546± 0.0077

ln
(
1010As

)
3.033± 0.015 3.032± 0.016 3.053± 0.017 3.031± 0.016 3.038± 0.016

ns 0.9698± 0.0035 0.9701± 0.0038 0.9707± 0.0035 0.9681± 0.0069 0.9722± 0.0038

M −19.415± 0.010 −19.416± 0.014 −19.429± 0.011 −19.420± 0.030 −19.432± 0.014

σ8 0.8003± 0.0064 0.799± 0.011 0.7733± 0.0092 0.801± 0.010 0.7885± 0.0093

S8 0.804± 0.010 0.803± 0.011 0.803± 0.010 0.805± 0.015 0.802± 0.011

rd (Mpc) 147.46± 0.21 147.47± 0.25 147.44± 0.21 147.9± 1.9 147.62± 0.23

∆DIC - −2.04 +15.34 −4.18 +1.74

In order to study the performance of the various models when they are confronted
with the wealth of cosmological data, we define the joint χ2-function as follows,

χ2
tot = χ2

SNIa + χ2
BAO + χ2

H + χ2
LSS + χ2

CMB, (71)

where χ2
CMB and χ2

SNIa may include or not the contribution of the high-` CMB polarization
and SH0ES data, respectively, depending on the dataset that we consider.

To solve the background and perturbation equations of the type-I RRVM, type-I RRVMthr.,
and type-II RRVM we make use of our own modified versions of the Einstein–Boltzmann
system solver CLASS [102,103], which is now equipped with the additional features that
we have briefly described in the previous sections. We explore and put constraints on the
parameter spaces of our models with Markov chain Monte Carlo (MCMC) analyses. More
specifically, we make use of the Metropolis–Hastings algorithm [166,167], which is already
implemented in the Monte Carlo sampler MontePython9 [168,169]. We stop the MCMC
when the Gelman–Rubin convergence statistic is R− 1 < 0.02 [170,171], and analyze the
converged chains with the Python code GetDist10 [172] to compute the mean values of the
cosmological parameters, their confidence intervals, and the posterior distributions.

We have set conservative flat priors for the input parameters in the MCMC, much
wider than their marginalized posterior distributions. For the six primary cosmological
parameters that are common in all the models, we use: 0.005 < ωb < 0.1, 0.001 < ωcdm <
0.99, 20 < H0, [km/s/Mpc] < 100, 1.61 < ln(1010 As) < 3.91, 0.8 < ns < 1.2, and
0.01 < τreio < 0.8. The type-I RRVM and type-I RRVMthr. have one additional degree of
freedom (d.o.f.) compared to the ΛCDM, which is encoded in the parameter ν. We use
the flat prior −0.5 < νeff < 0.5. On the other hand, the type-II RRVM is characterized
by two extra parameters, νeff and the initial value of ϕ, for which we use the priors
− 1

6 < νeff <
1
6 and 0.7 < ϕini < 1.3. Finally, for the constant dark energy EoS parameter

of the XCDM model we employ the prior −3 < w0 < 0.2. In all our analyses we set the
current temperature of the CMB to T0 = 2.7255 K [173], and consider three neutrino species,
approximated as two massless states and a massive neutrino of mass mν = 0.06 eV.

To compare the fitting performance of the various models under study from a Bayesian
perspective, we utilize the deviance information criterion (DIC) [174], which takes into
account the presence of extra d.o.f.’s by duly penalizing the inclusion of additional parame-
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ters in the model; see, e.g., the review [175] for a summarized discussion on how to use
and interpret the information criteria in the cosmological context. The DIC value can be
computed through the following equation:

DIC = χ2(θ̄) + 2pD. (72)

In this equation, pD = χ2 − χ2(θ̄) represents the effective number of parameters and
2pD is the so-called ‘model complexity’. The latter is the quantity employed in the DIC
criterion to penalize the presence of extra d.o.f.’s. The term χ2 is the mean value of the
χ2-function, which is obtained from the Markov chains. In this sense the computation of
the DIC is a more sophisticated procedure of model comparison than other information
criteria such as the Akaike information criterion [176]. Finally, θ̄ in (72) represents the mean
value of the fitting parameters.

Table 5. Same as in Table 4, but adding the information from SH0ES to our Baseline dataset.

Baseline +SH0ES

Parameter ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

H0(km/s/Mpc) 68.82± 0.33 69.17± 0.43 68.33± 0.35 70.79± 0.69 68.67± 0.50

ωb 0.02264± 0.00013 0.02253± 0.00015 0.02266± 0.00013 0.02281± 0.00017 0.02265± 0.00013

ωcdm 0.11697± 0.00073 0.11685± 0.00075 0.01227± 0.0018 0.1178± 0.0011 0.11679± 0.00089

Ω0
m 0.2961± 0.0041 0.2928± 0.0049 0.3128± 0.0064 0.2808± 0.0058 0.2971± 0.0047

w0 −1 −1 −1 −1 −0.993± 0.020

νeff - −0.00037± 0.00029 0.0197± 0.0055 −0.00003± 0.00033 -

ϕini - - - 0.949± 0.016 -

ϕ(0) - - - 0.950± 0.021 -

τreio 0.0533± 0.0074 0.0501± 0.0079 0.0617+0.0081
−0.0095 0.0523± 0.0077 0.0539± 0.0078

ln
(
1010As

)
3.035± 0.015 3.031± 0.016 3.053+0.017

−0.019 3.041± 0.016 3.036± 0.016

ns 0.9726± 0.0035 0.9705± 0.0037 0.9736± 0.0034 0.9824± 0.0058 0.9730± 0.0037

M −19.3989± 0.0096 −19.390± 0.012 −19.410± 0.010 −19.339± 0.021 −19.402± 0.012

σ8 0.7978± 0.0064 0.808± 0.011 0.7747± 0.0093 0.807± 0.010 0.7955± 0.0089

S8 0.7927± 0.0094 0.799± 0.011 0.7910± 0.0098 0.781± 0.013 0.801± 0.010

rd (Mpc) 147.59± 0.21 147.44± 0.25 147.60± 0.21 143.3± 1.4 147.63± 0.23

∆DIC - −0.64 +10.94 +6.58 −1.92

Given a model X, we define the DIC difference with respect to the vanilla model (or
concordance ΛCDM) in a way such that a positive difference of DIC implies that the new
model (X) fares better than the vanilla model (and hence that X provides smaller values of
DIC than the concordance model), whereas negative differences mean just the opposite, that
is, that model X fares worse than the vanilla model. Therefore, the appropriate definition is

∆DIC ≡ DICΛCDM −DICX. (73)

In our case, X represents either the type-I or type-II running vacuum models in their
RRVM implementation; and also the XCDM, which, as indicated before, is used as a
benchmark scenario for dynamical DE. In the usual argot of the information criteria, values
0 ≤ ∆DIC < 2 are said to entail weak evidence in favor of the considered option beyond the
standard model. However, if 2 ≤ ∆DIC < 6, one then speaks of positive evidence, whilst if
6 ≤ ∆DIC < 10, it is considered that there is strong evidence in favor of the non-standard
model X. Finally, if it turns out that ∆DIC > 10, one may licitly claim (according to the rules
of these information criteria) that there is very strong evidence supporting the model under
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study as compared to the vanilla cosmology. In contrast, if the statistical parameter (73)
proves negative, it is an unmistakable sign that the vanilla cosmology is favored over model
X by the observational data.

Table 6. Same as in Table 4, but without including the high-` CMB polarization data from Planck in
our combined dataset.

Baseline (No pol.)

Parameter ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

H0(km/s/Mpc) 68.29± 0.38 68.10± 0.48 67.66± 0.41 68.8± 1.2 67.31± 0.56

ωb 0.02228± 0.00019 0.02235± 0.00022 0.02231± 0.00019 0.02242± 0.00026 0.02239± 0.00020

ωcdm 0.11746± 0.00085 0.11744± 0.00086 0.1242± 0.0019 0.1166± 0.0016 0.1160± 0.0011

Ω0
m 0.3011± 0.0048 0.3029± 0.0056 0.3215± 0.0072 0.294± 0.011 0.3068± 0.0055

w0 −1 −1 −1 −1 −0.948± 0.022

νeff - 0.00025± 0.00038 0.0223± 0.0056 0.00028± 0.00043 -

ϕini - - - 0.982± 0.030 -

ϕ(0) - - - 0.976± 0.035 -

τreio 0.0489+0.0084
−0.0076 0.0508± 0.0083 0.0581± 0.0082 0.0508± 0.0083 0.0540± 0.0080

ln
(
1010As

)
3.026+0.018

−0.016 3.028± 0.016 3.047± 0.017 3.030± 0.017 3.034± 0.016

ns 0.9695± 0.0037 0.9712± 0.0045 0.9703± 0.0037 0.9754± 0.0087 0.9736± 0.0041

M −19.415± 0.0011 −19.420± 0.014 −19.429± 0.012 −19.397± 0.038 −19.436± 0.0014

σ8 0.7965± 0.0069 0.790± 0.013 0.7710± 0.0094 0.792± 0.012 0.7799± 0.0098

S8 0.798± 0.011 0.793± 0.013 0.798± 0.011 0.783± 0.020 0.793± 0.012

rd (Mpc) 147.86± 0.30 148.00± 0.35 147.81± 0.30 146.5± 2.4 148.15± 0.33

∆DIC - −1.84 +14.54 −3.06 +3.82

Table 7. Same as in Table 4, but removing the high-` polarization data from Planck and including the
information provided by SH0ES.

Baseline (No pol.) +SH0ES

Parameter ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

H0(km/s/Mpc) 68.94± 0.37 69.10± 0.44 68.48± 0.39 71.69± 0.80 68.61± 0.51

ωb 0.02247± 0.00018 0.02240± 0.00022 0.02251± 0.00018 0.02280± 0.00024 0.02252± 0.00019

ωdm 0.11630± 0.00083 0.11632± 0.00083 0.1220± 0.0019 0.1160± 0.0015 0.1157± 0.0010

Ω0
m 0.2933± 0.0045 0.2919± 0.0062 0.3095± 0.0067 0.2702± 0.0068 0.2950± 0.0048

w0 −1 −1 −1 −1 −0.981± 0.021

νeff - −0.00022± 0.00036 0.0193± 0.0055 0.00048± 0.00040 -

ϕini - - - 0.919+0.019
−0.022 -

ϕ(0) - - - 0.908+0.025
−0.028 -

τreio 0.0512± 0.0074 0.0494± 0.0084 0.0595+0.0082
−0.0092 0.0528± 0.0085 0.0533± 0.0079

ln
(
1010As

)
3.029± 0.016 3.027± 0.017 3.047+0.017

−0.019 3.041± 0.017 3.032± 0.016

ns 0.9728± 0.0036 0.9715± 0.0044 0.9739± 0.0037 0.9915± 0.0070 0.9744± 0.0041

M −19.396± 0.011 −19.392± 0013 −19.406± 0.011 −19.311± 0.024 −19.403± 0.013

σ8 0.7939± 0.0068 0.801± 0.014 0.7719± 0.0094 0.794± 0.012 0.7876± 0.0096
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Table 7. Cont.

Baseline (No pol.) +SH0ES

Parameter ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

S8 0.785± 0.010 0.790± 0.014 0.784± 0.010 0.754± 0.017 0.781± 0.011

rd (Mpc) 147.97± 0.30 147.85± 0.85 147.92± 0.30 141.3± 1.6 148.08± 0.32

∆DIC - −0.10 +10.06 +13.78 −0.96

6. Discussion of the Results

The class of running vacuum models (RVMs) has proven to be theoretically sound
and thus worth being studied phenomenologically. It emerges as a generic framework out
of renormalizable QFT in curved spacetime; in fact, one which is capable of describing
the expansion history of the universe from the early times to our days from first princi-
ples [17,19,20]. If we take the quantum vacuum seriously, the RVM framework is a natural
consequence of it. The predicted changes are not dramatic, but can be crucial to fit the
pieces together. Indeed, the phenomenological expectations from the running vacuum
approach on the cosmological observables remain always very close to the ΛCDM, as can
be seen from the fitting results displayed in Tables 4–7. Nevertheless, small departures
are definitely predicted owing to the presence of vacuum fluctuations from the quantized
matter fields in the FLRW background. These vacuum effects must be properly renormal-
ized in the QFT context, and as a result they bring about small “radiative corrections” on
top of the standard ΛCDM predictions—recall their generic form in Equation (1). They
have been computed in detail in [29–32] and can help to fix the phenomenological hitches
currently besetting the standard model of cosmology, which is strictly based on GR and
no quantum effects at all. The generic RVM contains a few free parameters amenable
to fitting from the cosmological data, but the formal structure of the quantum effects is
unambiguous and well defined. In fact, the quantum corrections at low energy appear to
be proportional to ∼ H2 and ∼ Ḣ, as shown in Equation (1). These corrections induce a
dynamics in the physical value of the VED and the corresponding physical value of the
cosmological term, Λ. In other words, in the RVM these quantities acquire a cosmological
evolution rather than remaining strictly constant as in the ΛCDM. This fact may have
phenomenological consequences worth studying. In the present work, we have dwelled
upon particular realizations of the RVM exhibiting a rich phenomenology and we have
studied the conditions by which they may offer a helping hand to curb one or both tensions
(σ8 and H0) under study.

In this section, we discuss in detail the results we have obtained for particular
RVM realizations, which in all cases are sourced by the same formal QFT structure
indicated in Equation (1), and compare them with those obtained with the ΛCDM
and the popular XCDM parameterization of the dark energy EoS parameter [150].
Above all, we should remark at this point that the results obtained here are fully
consistent with those reported in our last study confronting the RVMs against the
overall cosmological observations [85]. In the present instance, however, we have
updated our datasets and have extended significantly the reach of our considerations by
displaying a much more comprehensive numerical study; see Tables 4–7 and Figures 1–4.
Most significantly, the current presentation includes for the first time the effect of the
CMB polarization data from Planck. In fact, we recall that the companion analysis of [85]
focused exclusively on the Planck 2018 TT+lowE data, and hence was not sensitive to
the influence from the high-` polarizations. In contrast, in the current study we use
the two full likelihoods from Planck, namely, Planck 2018 TT+lowE and Planck 2018
TT,TE,EE+lowE (cf. Section 5) and compare their distinct impact on the fitting results of
each of the RVM realizations under focus, viz. the type-I and type-II implementations.

Let us start with the results obtained with the RRVM of type I, first, under the as-
sumption that the vacuum interacts with dark matter during the entire cosmic history.
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The CMB data from Planck put very tight constraints on the amount of dark energy at
the decoupling time (see, e.g., [177]) and, therefore, on the RVM parameter that controls
the exchange of energy in the dark sector, νeff. We obtain central values of νeff ∼ O(10−4)
with all our datasets, with associated error bars that make our measurements compatible
with 0 at . 1σ c.l., indicating no statistical preference for a non-null vacuum dynamics in
the universe in the context of this model. Although the type-I RRVM is fundamentally
different from the ΛCDM, its phenomenology is in practice quite similar, due to the strong
upper bounds on νeff. This explains why the constraints obtained on the other cosmological
parameters are so similar in the two models, and also the small impact the type-I RRVM
has on the cosmological tensions. This is the conclusion that follows if we assume that the
cosmological solution that we have found for the type-I models is valid all the way from the
present time up to the point in the radiation-dominated epoch where we have placed our
initial conditions following the standard setup of CLASS (see, however, below). We refer the
reader to Tables 4–7 for the detailed list of the fitting results. In particular, we would like to
mention that the results quoted in the last two tables (namely, Tables 6 and 7, where the
CMB data are used without polarizations) are perfectly compatible within error bars (both
in order of magnitude and sign) with the results obtained in our previous analysis [85].

Nevertheless, we cannot exclude the possibility that the vacuum dynamics undergoes
a transition between two (or more) epochs of the expansion history, e.g., through a change in
the value of νeff or of the effective EoS parameter wvac. As previously noted, the possibility
of a tomographic behavior of the DE throughout the cosmic expansion has been explored
previously in the literature; see, e.g., [107–110]. In the RVM case, we are further motivated
to think of a scenario of this sort since it is actually suggested within the context of the QFT
calculation supporting the RVM structure; see [31].

While we shall not go into theoretical details here, we have opted for mimicking
such a (continuous, although quite abrupt) transition with a phenomenological Θ-function
approach. Thus, we have explored the simplest scenario (with just one transition) in the
context of what we have called the type-I RRVMthr., i.e., the type-I model with a threshold.
We thereby assume that the interaction between vacuum and dark matter is activated only
at a threshold redshift lower than z∗ = 111. We have chosen this transition redshift after
performing a fitting analysis allowing z∗ to vary freely in the Monte Carlo process. The
value z∗ ∼ 1 turns out to maximize the posterior. When the Baseline dataset is employed,
we find νeff = 0.0227± 0.0055 and, hence, significant evidence for a late-time vacuum decay
into dark matter at 4.1σ c.l. This allows the suppression of the clustering in the universe
at z < z∗, as is clear from the fitting value σ8 = 0.773± 0.009 reported in Table 4 and the
left-most plots in Figure 1. The small values of matter fluctuations at linear scales allows
us to essentially solve the tension with the f σ8 data (see Figure 4 and [45]), decreasing the
value of χ2

f σ8
by ∼ 9 units with respect to the standard model, while keeping the good

description of the other datasets (cf. Table A1).
This is very remarkable and completely aligned with our previous results [85], in

which we already showed the outstanding capability of our model for producing lesser
growth in the late universe12. The vacuum decay leads to a decrease in the VED and
an enhancement of ρm at present. This produces larger values of the current Ωm, which
somehow compensates for the decrease in σ8 and gives rise to values of S8(= S̃8) of the
same order as those obtained in the ΛCDM and the other models studied in this paper.
The comparison of the results for the type-I RRVMthr. reported in our Tables 4–7 also
demonstrates the robustness and stability of the fitting output under changes in the dataset.
The values of DIC obtained with the Baseline configuration, and also considering the SH0ES
data with and without the use of the CMB polarization information from Planck, are in the
range 10 . DIC . 15. Therefore, we find in all cases very strong evidence for this model
from a Bayesian perspective, i.e., after penalizing the use of the extra parameter νeff. The
smallest values of DIC∼ 10 are obtained when the SH0ES data are also used in the analysis.
This triggers a decrease in the evidence for non-zero vacuum dynamics, which still renders
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at the ∼ 3.5σ c.l. The model is able to solve the σ8 tension, but does not alleviate the Hubble
tension, since the values of H0 stay close to those found in the ΛCDM.

Figure 1. Contour plots at 1σ and 2σ c.l. in the σ8 − H0, S8 − H0, and S̃8 − H0 planes and their
corresponding one-dimensional posteriors, obtained from the fit of the various models to the Baseline
dataset (cf. Section 5). The parameter S̃8 ≡ S8/

√
ϕ(0) can only differ from the standard S8 in the

type-II RRVM; see the main text of Section 6 and [85,119]. The type-I RRVMthr. can explain a value
of σ8 ∼ 0.78, much smaller than in the other models. This is accompanied by a 4.1σ evidence for a
non-zero value of the RVM parameter νeff; see Table 4. We find in all cases similar values of S̃8 and H0

to those found in ΛCDM, but the type-II RRVM has a much wider posterior for this parameter, and
hence this model can accommodate a larger Hubble constant. See also the comments in the main text.

Figure 2. Same as in Figure 1, but using the Baseline+SH0ES dataset (cf. Section 5). The inclusion
of the data from SH0ES shifts the one-dimensional posterior of H0 towards H0 ∼ 71 km/s/Mpc in
the type-II RRVM, a region that is still allowed by the Baseline dataset, cf. Figure 1. Remarkably,
the small values of σ8 found in the type-I RRVMthr. remain stable, and no important differences
between the models are found regarding the value of S̃8. The lower value of S8 obtained in the type-II
RRVM is due to the fact that this parameter does not account for the 2.4σ departure of ϕ(0) from 1,
ϕ(0) = 0.950± 0.021; see the caption of Table 4.
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Figure 3. Same as in Figure 2, but removing the high-` polarization data from Planck, i.e., considering
the Baseline (No pol.)+SH0ES dataset (cf. Section 5). Again, as in the other fitting analyses, the value
of σ8 is kept small in the type-I RRVMthr.. The absence of CMB polarization data allows for even
smaller values of ϕ(0) in the type-II RRVM, ϕ(0) = 0.908+0.025

−0.028, which is now 3.5σ below the GR
value ϕ(0) = 1. This explains the large value of H0 ∼ 72 km/s/Mpc, which basically renders the
Hubble tension insignificant, below the 1σ c.l.

Let us now move on to the type-II RRVM. Here, we switch off the exchange of energy
between the vacuum and the (dark) matter sector, but in compensation give allowance for
a possible variation in G at cosmological scales, which is induced by the running of the
vacuum in accordance with the Bianchi identity. In this type of model, therefore, the current
value of the gravitational coupling may depart from GN . We have previously defined the
auxiliary variable ϕ(z) ≡ GN/G(z) to parameterize such a departure. Let us also note that
type-II models have two additional free parameters as compared to the ΛCDM (one more
than type-I models): νeff and ϕini (the latter being the initial value of ϕ at high redshift
in the radiation-dominated epoch, before it starts evolving very slowly with the cosmic
evolution). Since G can vary for these models, stringent constraints on type-II models
should apply from the existing limits on the relative variation in the gravitational coupling
if one assumes that the cosmological value of G must satisfy them (cf. Section 4.1). These
constraints are in fact satisfied by our fitting results for this type of running vacuum model.
In fact, regardless of the dataset we use to fit the model, we obtain values of νeff ∼ O(10−4)
compatible with 0. There is no clear hint of vacuum dynamics in this case. However, in
the limit νeff → 0 we recover the ΛCDM only if ϕ(0) → 1. This is actually the crucial
ingredient that can make the type-II model a rather appealing framework for relieving the
H0 tension, but only in the presence of the SH0ES data, as we now explain. In its absence,
we obtain values of ϕ(0) compatible with 1 (the strict GR value) at < 1σ c.l. Using the
Baseline dataset we find ϕ(0) = 1.008± 0.028, whereas we find ϕ(0) = 0.982± 0.030 with
the Baseline (No pol.) alternative, which as we know is the same set but excluding the
polarizations. It is obvious that the polarization data favor larger values of ϕ (closer to 1)
or, equivalently, smaller values of G (closer to GN)13. The improvement in the description
of the data compared to the ΛCDM is in both cases only marginal within the Baseline
scenario, with or without polarizations (cf. Tables A1 and A3). This is indeed reflected in
the negative ∆DIC values gathered in both cases, viz. ∆DIC∼ −(3− 4), which point to a
positive preference for the standard cosmological model (see Tables 4 and 6). Now, in stark
contrast with the meager situation just described with the Baseline dataset, the inclusion
of the SH0ES data produces a dramatic turnaround of the results in the desired direction.
It shifts the posterior of ϕ(0) towards a region of lower values, which is more prominent
in the absence of the CMB polarization likelihoods, to wit: ϕ(0) = 0.950± 0.021 in the
Baseline+SH0ES analysis and ϕ(0) = 0.908+0.025

−0.028 in the Baseline (No pol.)+SH0ES one. This
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produces a significant decrease in the comoving sound horizon at the baryon-drag epoch
rd, which now lies in the ballpark rs ∼ 141− 143 Mpc rather than in the usual higher range
147− 148 Mpc usually preferred by the ΛCDM model. This fact, together with a significant
increase in the spectral index of the primordial power spectrum ns > 0.98 [119], generates a
noticeable increase in H0, whose fitting constraints in the context of our analysis now read
H0 = 70.8± 0.7 km/s/Mpc and H0 = 71.7± 0.8 km/s/Mpc, respectively14. The upshot is
that the Hubble tension is basically washed out in this running vacuum model scenario15.
The incremental DIC values with respect to the vanilla model corroborate in fact strong, or
even very strong, evidence in favor of running vacuum, depending on whether the CMB
polarization data are considered or not. As remarked, this happens only when we include
the information from SH0ES and at the expense of worsening a little the description of the
CMB temperature spectrum—cf. the supplementary Tables A2 and A4 in Appendix A, in
which we display the breakdown of the different χ2 contributions from each observable.
Regarding the description of the LSS, the type-II RRVM is not able to improve the fit to the
f σ8 data with respect to the other models under study, as is clear from Figure 4 and the
tables in Appendix A. The model allows the posterior values of S8 to be shifted towards the
region preferred by the weak lensing measurements, more conspicuously in the analysis
with the Baseline (No pol.)+SH0ES dataset. However, S8 might not be the most correct
quantity to make contact with observations in models with a renormalized gravitational
coupling at cosmological scales. Alternative estimators, such as S̃8 (see the captions of
Figures 1–3), might be more appropriate. The values of S̃8 are larger than those of S8 and
similar to those found in the other models explored in this work, including the ΛCDM.

Figure 4. Theoretical curves of f (z)σ8(z) for the various models together with the observational
data points listed in Table 3. We have employed the central values of the Baseline fitting analysis
(cf. Table 4). The type-I RRVMthr has the ability to solve the σ8 tension by suppressing the clustering
at z < 1.

Finally, we comment on the results obtained with the generic XCDM parameterization.
It is well known that a quintessence EoS parameter w0 > −1 allows the suppression of the
amount of structure in the universe due to the increase in dark energy in the past, which
fights against the aggregation of matter. It is also known, though, that quintessence cannot
alleviate the Hubble tension because the decaying nature of the DE makes in this case the
critical density and, hence, also H0 to be smaller at low redshifts; see, e.g., [86,183,184].
If we do not employ the SH0ES data, i.e., if we use the Baseline and Baseline (No pol.)
datasets, we find a ∼ 2σ deviation of the EoS parameter from w0 = −1 (a pure Λ) in the
quintessence region. This is in accordance with what we have already mentioned. The LSS
data, which points to a lower level of clustering than in the ΛCDM, prefers quintessence.
Actually, we obtain small values of σ8 ∼ 0.78. The XCDM is able to relieve the tension
with the LSS data in the absence of SH0ES, but the decrease in χ2

f σ8
is not as big as for the

type-I RRVMthr.; see, e.g., Table A1. One can see in that table that the contribution to χ2
f σ8

is significantly less (roughly a factor of two smaller) for the type-I model with threshold
than in a generic XCDM parameterization. On the other hand, the improvement is less
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robust for the XCDM, this being corroborated by the fact that the hints of DE dynamics
disappear when we include the data from SH0ES, since the latter favors a phantom dark
energy EoS parameter. This shifts w0 towards smaller values. For instance, in the analysis
with Baseline+SH0ES we obtain w0 = −0.993± 0.020. The phantom region, however, is not
attained because we include LSS data in our analysis. In fact, the structure formation data
do not favor the phantom region since in that case the amount of DE is smaller in the past,
and this does not help to prevent the excess of structure formation, which is tantamount to
saying that it does not help to relieve the σ8 tension. Thus, a compromise is needed, and in
the presence of the SH0ES data the XCDM provides a value of the EoS closer to w = −1
than in the absence of such data. If LSS data were not used, the SH0ES data would succeed
in pushing the EoS of the XCDM to the phantom domain [177]. In contrast to this voluble
behavior of the EoS for a generic DE fluid, the type-I RRVMthr. provides a substantially
better overall fit and its effective DE behavior is quintessence-like in the structure formation
region up to the present day. Indeed, we find νeff > 0 (both with or without SH0ES data) at
a large confidence level of (3.5− 4)σ. Hence, the vacuum energy density associated with
that model is indeed decreasing with the expansion within the relevant region of structure
formation for both datasets, Baseline or Baseline+SH0ES, with or without polarizations, cf.
Tables 4–7.

7. Conclusions

In this work, we have put to the test a class of dynamical dark energy (DDE) models
that go under the name of running vacuum models (RVMs). These have been discussed for
a long time in the literature; see, e.g., [17,19,20] as well as [185,186] and references therein.
These models have successfully withstood a number of litmus tests against all types of
modern data, thus demonstrating their maturity and robustness as serious competitors to
the concordance ΛCDM model, this being true not only in regard to their fitting power
but also, and indeed especially, in regard to improving the status of the ΛCDM and
generalizations thereof in the context of theoretical physics. The essential new feature
of the RVM class is that it predicts the existence of DDE associated with the vacuum, a
fundamental concept in QFT. Put another way, the running vacuum shows up here as
if it were a form of DDE, but in truth is (quantum) vacuum after all—not just another
artifact extracted from the blackbox of the DE aimed at mimicking or supplanting the
fundamental notion of vacuum energy in QFT. In the RVM paradigm, there is no rigid
cosmological term, Λ, owing to the fundamental need for renormalization of the VED
in QFT. The scale of renormalization is dynamical and hence the computed quantum
corrections produce a time-evolving VED with the expansion [20]. The general structure
of the RVM has been recently buttressed by explicit calculations in the context of QFT in
curved spacetime. We should mention that the smooth VED dynamics in the RVM was
long suspected from semi-qualitative renormalization group arguments, see the aforesaid
references and corresponding bibliography, but this was only recently substantiated in a
fully fledged QFT context; see the detailed works [29–31]. Within the RVM, the gravitational
coupling, G, will also be running in general. From its dynamical interplay with the vacuum
energy density (VED), ρvac(H), we find that G evolves very mildly as a logarithmic function
of the Hubble rate, G = G(ln H). As it turns out, what we call Λ (as a physical quantity,
not just as a formal parameter) in the RVM formulation, is actually nothing but the nearly
sustained value of 8πG(H)ρvac(H) around (any) given epoch. There is no such thing as
a true cosmological constant in the RVM framework, and as a matter of fact it is fair to
say that a (physically measurable) rigid parameter of this sort is not to be expected in
renormalizable QFT [20].

As for the specific details of the phenomenological analysis put forward in this work,
and for the sake of a better comparison with previous studies—particularly with the most
recent one in [85]—in the current presentation we have focused on an implementation
of the RVM which we have denoted RRVM. It has one single (extra) parameter in the
type-I formulation, νeff, and two additional free parameters (νeff and ϕini) in the type-II
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RRVM, with respect to the ΛCDM. The VED has a dynamical component proportional
to the scalar of curvature, R, with νeff being its coefficient; see Equation (6). Such a
coefficient can be accounted for analytically in QFT (see the above mentioned works)
but it depends on the masses of all the quantized matter fields, so in practice it must
be fitted to the overall cosmological data. This is actually the main task that we have
undertaken in the present work. In so doing, we have found significant evidence that
the VED is running with the cosmic expansion. In fact, upon performing a global fit to
the cosmological observations from a wealth of data sources of all the main sorts, thus
involving the full string SNIa+BAO+H(z)+LSS+CMB of relevant cosmological observables,
and comparing the rigid option νeff = 0 (namely, Λ =const. corresponding to the ΛCDM
model), with the running vacuum one (νeff 6= 0), we find that a mild dynamics of the
cosmic vacuum (νeff ∼ 10−4 − 10−2) is highly favored, depending on the model. For
type-I RRVM with threshold we find very strong direct evidence of such vacuum dynamics
through a nonvanishing value of νeff at more than 4σ c.l. and an overall statistical score of
∆DIC> +10 with respect to the vanilla model, whereas for type-II RRVM the evidence is
also strong, but indirect, through the change in G, which leads to a favorable scenario when
we consider the SH0ES data at the level of ∆DIC> +6(+10), depending on whether we
use CMB polarization data or not. We have also checked that the improvement of the fit is
not just caused by a generic form of the DDE, meaning that when we test if a simple XCDM
(wCDM) parameterization [150] would do a similar job we meet a negative result, i.e., in
the latter case we do not observe any significant amelioration with respect to the ΛCDM fit.

This is in stark contrast to the fitting results from the running vacuum. As previously
indicated, for type-I models the level of evidence turns out to be very strongly supported
by the DIC criterion (according to the conventional parlance used within the information
criteria), provided there exists a threshold redshift for the DDE near the present day
(z∗ ' 1) where the vacuum evolution becomes suddenly activated in the RRVM form. For
the sake of simplicity, here we have mimicked it just through a Θ-function. With a mild
level of dynamics, as indicated above, the σ8 tension is rendered essentially nonexistent.
The relief of the H0 tension, on the other hand, can be significantly accomplished only
within the type-II model with variable G (the tension subsisting only at an inconspicuous
level of < 2σ). Finally, let us note that even though the type-I model cannot deal with
the H0 tension, the overall fit quality that it offers in the presence of a DDE threshold is
really outstanding. Specifically, the DIC difference with respect to the vanilla ΛCDM is
∆DIC= +15.34, cf. Table 4. The type-I model with a threshold suppresses completely the
σ8 tension and provides a determination of νeff 6= 0 at a level of significance slightly more
than 4σ. We note that this intriguing result would stay even if the H0 tension faded away or
suddenly disappeared. If the data on f σ8 are free from unaccounted systematic errors, our
results suggest, first of all, that it is very likely that the DE is dynamical and that it takes
the running vacuum form; and, second, that such a vacuum dynamics started relatively
recently (z ∼ 1). This fact could be motivated by the same calculations underpinning
the general RVM structure of the vacuum energy in QFT. The potential significance of
these considerations cannot be overemphasized and we will certainly return to them in
future studies.
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Appendix A. Additional Tables

In this Appendix, we present Tables A1–A4, with the individual contributions of each
observable to the total χ2 for all the fitting analyses performed in this work, obtained from
the mean values of the cosmological parameters. These results must be close to the true
χ2

min, since the underlying posteriors are, to a very good approximation, Gaussian. We
prefer not to use the latter, since the minimum χ2 found by MontePython is not always very
precise; see footnote 10 in [169].

Table A1. Detailed breakdown of the different χ2 contributions from each observable in our Baseline
dataset with the cosmological parameters reported in Table 4. We call the contribution that contains
the correlations between the BAO and LSS datasets BAO- f σ8 (correl.) (see the references of Table 1),
whereas the uncorrelated contributions are simply called BAO and f σ8.

Baseline

Experiment ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

CMB 2770.70 2771.04 2770.14 2770.48 2773.68

SNIa 1405.49 1405.39 1403.24 1405.64 1402.82

f σ8 17.15 16.92 8.29 17.14 15.08

BAO- f σ8 (correl.) 19.96 19.92 14.54 19.92 17.91

H(z) 13.16 13.18 13.33 13.30 13.33

BAO 10.94 10.97 10.70 10.91 10.65

χ2
total 4237.40 4237.42 4220.24 4237.39 4233.48

Table A2. Same as Table A1 but for the Baseline+SH0ES dataset. We have employed the parameters
from Table 5.

Baseline+SH0ES

Experiment ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

CMB 2774.02 2771.46 2774.02 2777.50 2774.72

SNIa 1490.46 1488.22 1491.62 1474.38 1490.65

f σ8 15.33 16.92 8.21 17.27 14.92

BAO- f σ8 (correl.) 19.82 21.68 13.35 20.48 19.21

H(z) 12.97 12.85 13.07 12.47 13.00

BAO 10.77 10.77 10.43 10.76 10.69

χ2
total 4323.38 4321.91 4310.71 4312.85 4323.19
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Table A3. Same as Table A1 but for the Baseline (No pol.) dataset and making use of the parameters
provided in Table 6.

Baseline (No pol.)

Experiment ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

CMB 1184.03 1185.16 1183.39 1184.93 1186.79

SNIa 1405.84 1405.51 1403.41 1405.60 1402.65

f σ8 16.03 14.99 8.27 15.35 13.38

BAO- f σ8 (correl.) 19.44 19.12 14.12 19.20 16.99

H(z) 13.20 13.29 13.35 12.85 13.38

BAO 10.91 10.97 10.65 10.96 10.47

χ2
total 2649.45 2649.04 2633.19 2648.89 2643.66

Table A4. Same as Table A1 but for the Baseline (No pol.)+SH0ES dataset. In this case we have used
the parameters listed in Table 7.

Baseline (No pol.) + SH0ES

Experiment ΛCDM Type-I RRVM Type-I RRVMthr. Type-II RRVM XCDM

CMB 1186.28 1185.07 1186.32 1189.76 1187.75

SNIa 1490.20 1489.18 1490.80 1469.30 1490.24

f σ8 14.15 15.17 8.16 15.07 13.10

BAO- f σ8 (correl.) 20.49 21.50 14.07 19.25 19.26

H(z) 12.97 12.91 12.91 12.79 13.01

BAO 10.86 10.86 10.48 10.86 10.64

χ2
total 2734.95 2734.69 2722.74 2717.20 2734.00

Notes
1 https://lesgourg.github.io/class_public/class.html, accessed on 25 May 2023.
2 In practice this means that we have first fitted the value of z∗ as one more free parameter in our analysis. Subsequently, we have

assumed that the threshold point remains fixed at that point; see also [107–110] for a binned/tomographic approach to the DE. In
our case, we have just one threshold whose existence might be motivated by QFT calculations [30,31].

3 If (dark) matter is not conserved but G remains constant, we retrieve of course our previous scenario (16). In general, we may
expect a mixture of both situations, but we shall refrain from dealing with the general case since it would introduce extra
parameters; see, however, [111,112] for additional discussions that can be relevant for studies on the possible variation in the
fundamental constants of nature.

4 It should be clear that ϕ is not a dynamical degree of freedom, in contradistinction to Brans–Dicke-type theories of gravitation [113],
and therefore ϕ does not mediate any sort of long-range interaction that should be subdued by screening mechanisms.

5 Let us emphasize that Equation (56) is valid only in the MDE, and we have also pointed out that ϕ→ const. in the DE epoch. This
means that G becomes more and more rigid when it transits from the MDE to the DE epoch, and therefore the actual limits on νeff
are weaker than those that we have roughly estimated. This works to our benefit of course. In fact, a detailed calculation would
require computing ϕ in the DE epoch, but it proves unnecessary once we have shown that even in the most unfavorable case (i.e.,
when ϕ evolves more rapidly than it actually does in the DE epoch) the obtained limits on νeff are nonetheless preserved by our
fits. Notice that type-I models are totally unaffected by these limits, since G is in this case constant, so νeff can be, in principle,
larger for them.

6 https://gitlab.com/mmoresco/CCcovariance/-/blob/master/examples/CC_covariance.ipynb, accessed on 25 May 2023.
7 While it is common to rescale the measured values of f σ8 by a factor H(z)DA(z)

H̃(z)D̃A(z)
to account for the Alcock–Paczynski (AP)

effect [157] (in which the tildes denote the quantities computed in the fiducial cosmology employed by the galaxy surveys), there
does not not seem to exist a general consensus on the exact correction to apply; see, e.g., [158] and references therein. In this sense,
the above formula should be considered as just a rough estimate. We have checked that the AP-rescaling introduces negligible

https://lesgourg.github.io/class_public/class.html
https://gitlab.com/mmoresco/CCcovariance/-/blob/master/examples/CC_covariance.ipynb
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shifts in our fitting results, a conclusion that is well in accordance with previous analyses in the literature [38,39,158]. For this
reason, we have opted to not include this correction in our work.

8 This region is also preferred by late-time dynamical DE models when fitted to a very wide variety of background data that are
independent from the direct cosmic distance ladder and CMB, H0 = 69.8± 1.3 km/s/Mpc [161]. See [162–165] for measurements
of H0 more in accordance with SH0ES obtained also with the tip of the red giant branch method.

9 https://baudren.github.io/montepython.html, accessed on 25 May 2023.
10 https://getdist.readthedocs.io/en/latest/, accessed on 25 May 2023.
11 See Section 3.3 for the practical implementation.
12 Note that our work [85] is previous to [178], in which the authors propose a friction mechanism between CDM and DE to suppress

the clustering at z . 1.
13 This is something we already noted in previous studies within the context of the Brans–Dicke model with a cosmological

constant [118,119].
14 Noticeably, the central values of rd, H0, and the absolute magnitude of SNIa, M, obtained for the type-II RRVM when the CMB

polarization data are excluded in the fitting analysis are in very good agreement with the model-independent measurements
from low-z data reported in [152], which are also independent from the main drivers of the H0 tension. For the Hubble constant,
these authors find H0 = 71.6± 3.1 km/s/Mpc. However, these measurements still have large uncertainties and cannot arbitrate
the Hubble tension yet; see also [179].

15 A similar phenomenology is found in the context of some modified gravity theories with a mild time evolution of G and a
non-negligible shift of its value with respect to GN [118,119,180]. See also [181,182].
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