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Abstract: Recent work has shown that local supersymmetry on a spacetime boundary inN -extended
AdS supergravity in chiral variables implies coupling to a boundary OSp(N |2)C super Chern–Simons
theory. Consequently there has been a proposal to define and calculate the entropy S for the boundary,
in the supersymmetric version of loop quantum gravity, for the minimal case N = 1, via this super
Chern–Simons theory. We give an overview of how supergravity can be treated in loop quantum
gravity. We review the calculation of the dimensions of the quantum state spaces of UOSp(1|2)
super Chern–Simons theory with punctures, and its analytical continuation, for the fixed quantum
super area of the surface, to OSp(1|2)C. The result is S = aH/4 for large (super) areas. Lower order
corrections can also be determined. We begin also a discussion of the statistical mechanics of the
surface degrees of freedom by calculating the grand canonical partition function at zero chemical
potential. This is a new result.

Keywords: chiral supergravity; black hole entropy; loop quantum gravity

1. Introduction

Since there are indications that horizons can meaningfully be assigned a thermody-
namic entropy [1–3], the challenge is to explain it as the von Neumann-type entropy of a
quantum description of the black hole. This challenge has been met with some measure
of success in string theory (the entropy of BPS black holes [4,5] for example) and loop
quantum gravity (entropy of isolated horizons, for example [6–13]). The two approaches
are very different in nature and are not applicable to the same type of black hole. In this
article, we review and expand on recent work [14] that starts to bridge this gap. The theory
considered is N = 1, D = 4 supergravity, on a manifold M with a boundary H = ∂M
with special boundary conditions. The boundary degrees of freedom are described by a
super Chern–Simons theory. We define the entropy of the boundary as the logarithm of the
dimension of the Chern–Simons state space. The level of the super Chern–Simons theory
is imaginary, and the structure group is non-compact, so the properties of the state space
are not known. We use an analytic continuation from a compact real form of the structure
group, following [15–17]. The Chern–Simons theory is constrained by the super area aH of
the boundary, and hence the entropy becomes area-dependent. The result is

S =
aH

4l2
p
+O(

√
aH/lp), (1)

where aH is the diffeomorphism and gauge invariant measure of area1 in the supergeomet-
ric setting.

We are using variables that were first proposed in [18] and whose geometric meaning
was recently clarified in [19–21]. A super Chern–Simons theory as a source of entropy
was first considered in [6]. Supergravity with canonical loop quantum gravity methods
has also been considered in [22], and using different variables in [23–25]. The spinfoam
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approach for D = 3 was developed in [26–28]. Our approach follows [6,18,22,29] in keeping
supersymmetry manifest, but it goes further. We use the geometric understanding for the
super Ashtekar connection developed in [19–21]. The boundary conditions follow from de-
manding supersymmetry at the boundary [21]. Our treatment is the first one that uses state
counting in super Chern–Simons theory, as far as we know. Additionally, this is the first
time that the Bekenstein–Hawking area law is verified within the supersymmetric setting.

We work in the Hamiltonian formulation of supergravity. The canonical variables are
a supersymmetric generalization [18–21] of the chiral Ashtekar connection A+, and the
corresponding canonical momentum, the super electric field E . As the classical Ashtekar
variables can be obtained from the Palatini action augmented with the Holst term, the vari-
ables used here can be derived from a Holst-type modification of the MacDowell–Mansouri
action [19,21] for supergravity. The structure group in this formulation is OSp(1|2). We
consider this theory in the presence of a causal boundary H = ∂M of spacetime manifold
M playing the role of the horizon. In the canonical formulation, the fields take values on a
spatial slice Σ of M, with boundary ∆ = Σ ∩ H. The requirement of local supersymmetry
also on the boundary uniquely fixes a supersymmetric boundary term that is given by an
OSp(1|2) Chern–Simons theory, and boundary conditions

F(A+)
⇐

∝ E⇐, (2)

linking the curvature F of the chiral super connection A+ and the super-electric field E on
the boundary ∆.

The arrows under the symbols denote pullback to the boundary. As in the non-
supersymmetric case [8], the idea is to quantize bulk and boundary separately and couple
them via the boundary condition. The line-like excitations of the gravitational field in
the bulk can end on the boundary ∆. There, they couple to the Chern–Simons theory by
creating particle-like curvature defects.

The quantum theory in the bulk is built in analogy to that of the non-supersymmetric
theory. There are unresolved issues, such as the construction of the full Hilbert space
from a projective limit [19], but only states on fixed graphs are relevant for the entropy
calculation; hence this does not present an obstacle for our purposes. On the other hand,
many aspects of the non-supersymmetric theory suitably generalize to the supersymmetric
situation.2 In particular, one can obtain a graded holonomy-flux algebra, a supersymmetric
generalizations of spin networks, and a supersymmetric area operator [14], see also [22].
OSp(1|2) is non-compact, leading to various technical problems. We, therefore, start
from the Chern–Simons theory of a compact real form of this group, UOSp(1|2) and use
analytical continuation in the corresponding Verlinde-type formula that is counting its
states, following and generalizing [15,16].

Let us explain in what respects the present account of black hole entropy differs
from the one in string theory. Our setup involves a large class of surfaces that carry local
supersymmetry, whereas, in string theory, the relevant surfaces are horizons of BPS black
holes; hence there is greater geometric restriction but also specificity. Additionally, in the
present calculation, we start from the quantum states of a super Chern–Simons theory and
couple to a quantum theory that is invariant under local supersymmetry. Hence fermionic
degrees of freedom are part of the calculation from the beginning, whereas they do not seem
to play a direct role in the string theory calculation. One could hope that these fermionic
fields have interesting consequences in a more detailed treatment, see for example [30],
where it was demonstrated that a nontrivial supercharge can lead to an additional term in
the first law of black hole mechanics.

2. Chiral Supergravity from a Modified MacDowell–Mansouri Action

We use the Cartan geometric description of pure AdS Holst-supergravity with N -
extended supersymmetry with N = 1, 2. Details are in [19–21] (see also [31,32] using
standard variables, and [26–28] in the context of spinfoam models in D = 3).
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Pure AdS (Holst-)supergravity can be described in terms of a super Cartan geome-
try modeled on the super Klein geometry (OSp(N |4), Spin+(1, 3)× SO(N )) with super
Cartan connection

A = eI PI +
1
2

ω I J MI J +
1
2

ÂrsTrs + Ψα
r Qr

α. (3)

Here we have split the connection in terms of generators adapted to subalgebras of
osp(N |4). The P generate translations, M rotations and boosts, T generate the R-symmetry.
These are all even generators. The odd generators are the Q. Along with this decomposition
of osp(N |4) goes the decomposition ofA into the tetrad e, the so(3, 1) connection ω, SO(N )

gauge field Â, and fermion fields3 Ψ. This connection can be used in order to formulate a
Yang–Mills-type action principle for Holst-supergravity. One introduces a β-deformed inner
product 〈· ∧ ·〉β on g ≡ osp(N |4)-valued differential forms on the underlying spacetime
manifold M with β the Barbero-Immirzi parameter obtained via contraction of the Ad-
invariant supertrace with a β-dependent operator Pβ on Ω2(M, g) (the precise form of
this operator does not matter in what follows; for more details see [19,21]). Using this
inner product, the Holst–MacDowell–Mansouri action of N -extended pure Ads Holst-
supergravity takes the form

Sβ
H-MM(A) = L2

κ

∫
M
〈F(A) ∧ F(A)〉β, (4)

with F(A) the Cartan curvature of A.
In the chiral limit of the theory corresponding to an imaginary β = −i, the action (4)

becomes manifestly invariant under an enlarged Osp(N |2)C-gauge symmetry: The op-
erator P−i decomposes as P−i = P̃−i ◦ Posp(N |2) with Posp(N |2) : osp(N |4)→ osp(N |2)C
the projection operator onto the (complexified) chiral sub superalgebra osp(N |2)C of g.
Applying this projection operator on the super Cartan connection (3) yields the super
Asthekar connection

A+ := Posp(N |2)A = A+iT+
i +

1
2

ÂrsTrs + ψA
r Qr

A. (5)

In the chiral limit, the action becomes

Sβ=−i
H-MM(A) = i

κ

∫
M

(
〈F(A+) ∧ E〉+ 1

4L2 〈E ∧ E〉
)
+ Sbdy, (6)

with E the super electric field canonically conjugate to the super Asthekar connection
A+ and transforming under the Adjoint representation of OSp(N |2)C. L is related to the
cosmological constant, L2 = −3/Λcos. The boundary action is given by

Sbdy(A+)=
k

4π

∫
H
〈A+ ∧ dA++

1
3
A+∧ [A+∧A+]〉, (7)

i.e., the action of a OSp(N |2)C super Chern–Simons theory with (complex) Chern–Simons
level k = i4πL2/κ = −i12π/κΛcos. As discussed in detail in [19,21], this boundary action
arising from (4) in the chiral limit is unique if one imposes supersymmetry invariance at
the boundary (see also [31,32]).

The decomposition of (6) into a bulk and boundary action leads to an additional
boundary condition coupling bulk and boundary degrees of freedom in order to ensure
consistency with the equations of motion of the full theory,

F(A+)
⇐=

= − 1
2L2 E⇐. (8)

This is an equation for two super two-forms on the boundary, obtained by pull-
back from the bulk. We note the close analogy to the boundary conditions in the non-
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supersymmetric theory [12], which also connects curvature and the (two-form dual of) the
densitized triad field on the boundary. An important difference is the constant, which in
our case, is related to the cosmological constant.

3. Quantum Theory of the Bulk

We will now turn to the quantum theory of the bulk. Many structures found in the
non-supersymmetric theory generalize to the present setting. For details see [19].

3.1. Super Spin Networks and the Super Area Operator

In standard LQG, for the construction of the bulk Hilbert space Hbulk
γ associated to

a graph γ embedded in the spatial slices Σ of the spacetime manifold M = R× Σ, one
considers spin network states, a class of states invariant under local gauge transformations.
They are constructed via the contraction of matrix coefficients of irreducible representations
of the underlying gauge group. In the case where the bosonic group is compact, these states
form an orthonormal basis of the full Hilbert space. This follows from the well-known
Peter–Weyl theorem, which is valid for compact bosonic groups.

To have a well-defined action of holonomy operators, it is necessary that the set
of representations on which the quantum theory is built from a tensor category under
the tensor product. In this way, matrix elements of holonomies in representations in
this category map representations within this category. Finite-dimensional irreducible
representations of the orthosymplectic series OSp(N |2) forN = 1, 2 have been investigated
(e.g., [33–36], see also [26–28]). For the caseN = 1, these representations form a subcategory
closed under the tensor product. The corresponding spin network states have been studied
for instance in [22,28,29]. For the case N = 2, the subclass of typical representations form
such a category (see [27,33]).

We now describe the construction of the super spin network states for a suitable
subclass Padm of irreducible representations. They can be finite- or infinite-dimensional,
and they include those constructed in [14] of OSp(N |2) with N = 1, 2. For any subset
~π := {πe}e∈E(γ) ⊂ Padm, we define the cylindrical function Tγ,~π,~m,~n via

Tγ,~π,~m,~n[A+] := ∏
e∈E(γ)

πe(he[A+])me
ne , (9)

where, for any edge e ∈ E(γ), he[A+] denotes the super holonomy (parallel transport) of
the connection A+ along e (see [19,37]) and (πe)

me
ne denote certain matrix coefficients of

the representation πe ∈ Padm. In order to obtain a gauge invariant state, at each vertex
v ∈ V(γ) of the graph γ, we have to contract (9) with an intertwiner Iv projecting onto the
trivial representation at any vertex. As a result, the so-constructed state transforms trivially
under local gauge transformations and thus indeed forms a gauge-invariant state which
we call a (gauge-invariant) super spin network state. We take these states as a basis of the
state space of the bulk theory. We assume that an inner product can be found that turns
this space into a super Hilbert space Hbulk

γ .
In the space of super spin networks, one can introduce a gauge-invariant operator in

analogy to the area operator in ordinary LQG. More precisely, since the super electric field
E defines a g-valued 2-form, for any oriented (semianalytic) surface S embedded in Σ, one
can define the graded or super area gAr(S) via

gAr(S) :=
√

2
∫

S

√
〈ES, ES〉, (10)

where, in analogy to [38–40], ES is defined as the unique g-valued function on S such that
ι∗SE = ES volS. For the special case N = 1, the expression (10) coincides with the super
area as considered in [22]. Here, the prefactor

√
2 has been chosen such that in the case of

vanishing fermionic degrees of freedom, the super area reduces to the standard area of S in
ordinary Riemannian geometry.
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By definition, the quantity (10) solely depends on the super electric field, which defines
a phase space variable. Thus, we can implement it in the quantum theory (see [14] for
more details). As a result, for N = 1, it follows for instance in the case that the surface S
intersects the graph γ of a (gauge-invariant) super spin network state Tγ,~π,~m,~n labeled by
super spin quantum numbers j ∈ C corresponding to the principal series representations
of OSp(1|2) as constructed in [14] in a single divalent vertex v ∈ V(γ) that the action of
super area operator is given by

ĝAr(S)Tγ,~π,~m,~n = −8πil2
p

√
j
(

j +
1
2

)
Tγ,~π,~m,~n, (11)

with j ∈ C the superspin quantum number labeling the edge e ∈ E(γ) intersecting the
surface S. For j ∈ N0

2 , this coincides with the result of [22].
According to (11), the super area operator has complex eigenvalues. This is to be

expected since we are working with a complexification of supergravity. However, we are
interested in the real sector, corresponding to real supergravity. Reality conditions require
a real spatial metric in particular. Importantly, there are principal series representations
that have purely imaginary eigenvalues of the Casimir and hence real super area. This is
the case for representations labeled by superspin quantum numbers of the form

j = −1
4
+ is with s ∈ R. (12)

In those representations,

ĝAr(S)Tγ,~π,~m,~n = 8πl2
p

√
s2 +

1
16

Tγ,~π,~m,~n. (13)

This is analogous to the non-supersymmetric theory for complex Ashtekar variables,
where one can also find representations with real area eigenvalues [15].

3.2. Coupling of Boundary and Bulk

As described in Section 3.1 the quantum excitations of the bulk degrees of free-
dom are represented by super spin network states associated with the gauge supergroup
OSp(N |2)C. On the other hand, in Section 2, we have explained that the boundary theory
is described in terms of a OSp(N |2)C super Chern–Simons theory. Hence, for a given finite
graph γ embedded in Σ, we define the Hilbert space Hfull,γ w.r.t. γ of the full theory as the
tensor product

Hfull
γ = Hbulk

γ ⊗H
bdy
γ , (14)

with Hbulk
γ the Hilbert space of the quantized bulk degrees of freedom as constructed in

Section 3.1 and H
bdy
γ the Hilbert space corresponding to the quantized super Chern–Simons

theory on the boundary.
On this Hilbert space, we have to implement the boundary condition (8). Let p ∈

Pγ := γ ∩ ∆4 denote a puncture and let Dε(p) be a disk in ∆ around p with radius ε in
some fiducial metric. We define

E [α](p) := lim
ε→0

∫
Dε(p)

〈α, E〉 , F[α](p) := lim
ε→0

∫
Dε(p)

〈α, F(A+)〉 , (15)

where α is an arbitrary tuple of smearing functions. These quantities (or, in the case of the
curvature, a suitable function thereof) can be promoted to well-defined operators in the
quantum theory. Thus, (8) yields the additional constraint equation
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1⊗ F̂A(p) = −2πi
κk
ÊA(p)⊗ 1 (16)

at each puncture p ∈ Pγ, in analogy to the bosonic theory [9,12]. The quantized super
electric flux ÊA(p) acts as a derivation on the cylindrical functions of the connection A+.
As such, the flux is carried by the spin network edges, and the flux into the boundary
is concentrated at the punctures. Under the boundary conditions (16), this means that
the Chern–Simons curvature is similarly concentrated at the punctures. This is perfectly
compatible with the Chern–Simons equations of motion in the presence of curvature defects
at the punctures Pγ. The excitations of the Chern–Simons theory are thus described by
a Hilbert space given as a conformal block of a super conformal QFT. The dimension
of these conformal blocks is central to the computation of the black hole entropy in the
non-supersymmetric theory [9,12].

4. Entropy Calculation

A natural measure for the entropy of the boundary is (the logarithm of) the size of
the state space of the boundary theory, in our case OSp(1|2)C Chern–Simons theory with
punctures. The level of the Chern–Simons theory is complex. Unfortunately, little is known
about Chern–Simons theory with non-compact structure groups. It is also not clear how to
treat the purely imaginary level. However, these problems also arise in the chiral theory
in the non-supersymmetric case [16] (and also in string theory, see [41]). The approach
we chose is to adapt the method of [16]. We consider the Chern–Simons theory with the
compact real form UOSp(1|2) of OSp(1|2)C as structure group and real level, and suitably
analytically continue to OSp(1|2)C.

4.1. Super Characters of UOSp(1|2) and the Verlinde Formula

Let us consider the Chern–Simons theory with compact gauge supergroup given by
the unitary orthosymplectic group UOSp(1|2) = U(1|2) ∩OSp(1|2) and integer Chern–
Simons level k = −12π/κΛcos and punctures labeled by finite-dimensional irreducible
representations ~j of UOSp(1|2) with j ∈ N0

2 . We compute the number Nk(~j) of Chern–
Simons degrees of freedom given by the dimension of the superconformal blocks. We
then perform an analytic continuation by replacing j → j = − 1

4 + is for some s ∈ R for
each j ∈ ~j as well as k → ik in Nk(~j). To simplify the discussion, we assume that the
boundary H is topologically of the form R× S2, that is, the 2-dimensional slices ∆t are
topologically equivalent to 2-spheres. We also take the limit k → ∞ corresponding to a
small cosmological constant Λcos. In this limit, the dimension of the state space N∞(~j) is
given by the number of UOSp(1|2) gauge-invariant states, which in turn are described by
invariant tensors in the tensor product of the representations incoming to the boundary.
These tensors span the space of trivial sub-representations contained in the tensor product
representation

⊗
j πj. Let n be the number of punctures. By subdividing ~j into p ≤ n

subfamilies (nl , jl), l = 1, . . . , p, consisting of 0 < nl ≤ n punctures labeled by jl ∈ ~j,
and using the orthogonality of characters, one can express the supertrace of the projector
onto the invariant subspace in the tensor product as (for details see [14])

N∞({nl , jl}) =
1

2π

∫ π

0
dθ sin2(2θ)

p

∏
l=1

(
cos(djl θ)

cos θ

)nl
[

4− n +
p

∑
i=1

nidjl
tan(dji θ)

tan θ

]
, (17)

with dj := 4j + 1 the dimension of the spin-j representation of UOSp(1|2).

4.2. The Monochromatic Case

We use (17) to compute the entropy associated to the boundary by performing an ana-
lytic continuation OSp(1|2)C of chiral LQSG: We replace the superspin quantum numbers
j ∈~j in (17) by j→ − 1

4 + is, i.e., quantum numbers corresponding to the principal series
with respect to which the super area operator has purely real eigenvalues. We will first
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work with a simplifying assumption. We will stipulate that the punctures are all labeled by
the same representation, i.e., the same quantum number j. This case will be referred to as
the monochromatic case in the following. Then, by replacing j→ − 1

4 + is for some s ∈ R>0
in (17) for the special case p = 1 and using dj = i4s =: is̃ as well as cos(ix) = cosh(x) and
sin(ix) = i sinh(x), we can write the analytically continued version of (17) as a contour
integral in the complex plane (for details see [14])

I∞ =
1

2π

∫
C

dz µ(z)
(

4− n
[

1 + s̃
tan(s̃z)
tanh z

])
exp

(
n ln

(
cos(s̃z)
cosh z

))
, (18)

with density µ(z) := i sinh2(2z). C is a path from 0 to iπ. This integral can be approximately
calculated in the limit of macroscopic black holes. To this end, note that macroscopic black
holes are expected to have a large number n of punctures. This is borne out both in models
for black hole horizons from loop quantum gravity (see for example [10,15]), and self-
consistently in the present case (see (51)). In the limit n→ ∞, we can apply the method of
steepest descent, which requires us to deform C to pass through all critical points zc, in the
direction of steepest descent. From (18), one infers that the only part in the state sum that
grows exponentially in the macroscopic limit is given by the last factor in the integrand.
Hence, in this limit, the relevant action is given by

S(z) = ln
(

cos(s̃z)
cosh z

)
. (19)

Its critical points are all located in the interval [0, iπ] on the imaginary axis. Evaluating
S ′(zc) = 0 gives

s̃ tan(s̃zc) = − tanh(zc) (20)

The leading contribution comes from the critical point zc = i(π
2 − ε) where ε is of

order ε = o(s̃−1). We will see that in the present situation, the average s is large for a
macroscopic black hole, but even for moderate s, the leading and subleading order results
would not be changed by the presence of ε, so we will neglect it in the following. The
action (19) at the critical point is

I∞ =

√
2
π

1
32s3
√

n

(
2s
e

)n
exp

( aH
4
− i

π

2

)
, (21)

with aH = 8πns the super area of the boundary in the monochromatic case (see Equation (13))
and e is Euler’s constant. The analytic continuation of the state sum acquires an additional
complex phase which seems counterintuitive. This is, however, in analogy to the bosonic
theory [16] where it is argued that one instead needs to consider the modulus of (21).
Doing so, for indistinguishable punctures the entropy S := ln(|I∞|/n!) of the boundary is
given by

S =
aH

4l2
p
+ ν ln

(
2σ

ν

)√
aH

lp
− 2 ln

(
aH

l2
p

)
+O(1), (22)

where ν, σ > 0 are numerical coefficients such that in the macroscopic limit

n = ν

√
aH

lp
, s = σ

√
aH

lp
. (23)

This scaling can be justified, and ν and σ determined, by statistical arguments adapted
from [16] which we will present in Section 4.4.

We note that the highest order term in (22) exactly reproduces the Bekenstein–Hawking
area law.

No choices of parameters had to be made, unlike in the bosonic, non-chiral theory,
where the Immirzi-parameter has to be adjusted to obtain the correct prefactor. This
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parallels the result of [16] and hints that the chiral variables have some special properties
also in the quantum theory.

4.3. The Multi-Color Case

Let us finally very briefly summarize the case of j varying over the punctures. The an-
alytical continuation of (17) is then given by

I∞ =
1

2π

∫
C

dz µ(z) exp

(
p

∑
l=1

nl ln
(

cos(s̃lz)
cosh z

))
×

×
[

4− n−
p

∑
i=1

ni s̃i
tan(s̃iz)
tanh z

]
. (24)

The value of the integral in the limit of macroscopic black holes is ruled by the critical
points of the action

S(z) :=
p

∑
l=1

νl ln
(

cos(s̃lz)
cosh z

)
. (25)

Again, we use the method of steepest decent. For more details see [14]. One finds that
the entropy associated to the boundary is, at highest order, given by

S = ln(|I∞|/n!) =
aH

4l2
p
+ . . . . (26)

Again, the entropy follows the Bekenstein–Hawking relation without the tuning of
any free parameters.

4.4. Grand Canonical Ensemble

In [42], it has been argued that a certain class of observers near an isolated horizon
would assign a quasilocal energy

E =
aH

8π`
(27)

where ` measures the distance of the observers to the horizon. This opens the possibility to
discuss the quantum statistical mechanics of the black hole and derive its thermodynamics.
If we assume that (27) is also valid for boundaries with the boundary condition (8) in super-
gravity, we can do the same. We will work in the grand canonical ensemble and follow the
calculation in [16] closely. In particular, we will also assume indistinguishable punctures.
For simplicity, we will just consider the monochromatic case. The results in the supersym-
metric situation are broadly the same as for the bosonic black hole. The differences stem
from the slight modifications that (22) carries as compared to the analogous formula for
the bosonic black hole. It will result in changes to the coefficients (23). Starting point is the
grand canonical partition function

Z(β) =
∫

ds Zs(β), Zs(β) =
∞

∑
n=0

N(n, s)
n!

e−βE(n,s), E(n, s) =
nsl2

P
`

, (28)

where N is the number of states. From (21), we obtain

N(n, s) ≈ 1√
ns3

(
2s
e

)n
e2πns (29)

for large n. The differences compared to the bosonic case are the numerical prefactors in
the exponential function and in the nth power. Making the definition

q =
2s
e

e−xs, x = β
l2
P
`
− 2π, (30)
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one can write

Zs(β) ≈ 1
s3

∞

∑
n=1

1√
n

qn

n!
(31)

as in [42].5 Again, there is a phase transition at

β = βU ≡
2π`

l2
P

, (32)

at which the partition function diverges. Near the phase transition, q can become very large.
Indeed the maximum goes as maxs q ' 2/e2x. We will analyze this regime, because argu-
ments can be given that it coincides with the approach to the thermodynamic limit [42].
The large-q-expansion of the partition function gives Zs(β) ≈ exp(q)/

√
qs3 [42] and hence

Z(β) ≈
∫

ds
1
s3

eq
√

q
=

√
e
2

∫
ds

1
s7/2 exp

[
xs
2

+
2s
e

e−xs
]

(33)

=

√
e
2

x
5
2

∫
du(− ln u)−

7
2 u−

3
2 exp

[
− 2

ex
u ln u

]
(34)

≈
√

π

2
e2x3 exp

(
2

e2x

)
(35)

=

√
π

2
e2 l6

p

`3 (β− βU)
3 exp

[
2
e2

`

l2
P

1
β− βU

]
, (36)

where the second line the substitution s 7→ u = exp−xs was made and, in the second to
last line, a saddle point approximation around the critical point u = e−1 was made.

Now we can calculate the statistical averages 〈aH〉, 〈s〉, and 〈n〉 of the horizon area,
the color, and the number of punctures. First off

〈aH〉 = −8π`
∂

∂β
ln Z(β) =

16π

e
`2

l2
P

1
(β− βU)2 +O((β− βU)

−1). (37)

For the mean color, we have to integrate:

〈s〉 = 1
Zs(β)

∫
ds s Zs(β) (38)

=
1

Zs(β)

√
e
2

x
3
2

∫
du(− ln u)−

9
2 u

3
2 exp

[
− 2

ex
u ln u

]
(39)

≈ 1
Zs(β)

√
π

2
e2x2 exp

[
2

e2x

]
(40)

=
1
x

(41)

=
`

l2
P

1
β− βU

, (42)

where again a saddle point approximation was used. Comparison with (37) gives

〈s〉 = σ

√
〈aH〉
lp

, σ =
1
4

√
e
π

. (43)
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Finally, for the average number of punctures

〈n〉 = 1
Z(β)

∫
ds

∞

∑
n=0

n
N(n, s)

n!
e−βE(n,s) (44)

≈ 1
Z(β)

∫
ds
√

q
s3 eq (45)

=
1

Z(β)

√
2
e

∫
ds

1
s5/2 exp

[
− xs

2
+

2s
e

e−xs
]

(46)

=
1

Z(β)

√
2
e

x
3
2

∫
du(− ln u)−

5
2

1√
u

exp
[
− 2

ex
u ln u

]
(47)

≈ 1
Z(β)

√
2πx2 exp

(
2

e2x

)
(48)

=
2
e2

1
x

(49)

=
2
e2

`

l2
P

1
β− βU

. (50)

Comparison with (37) gives

〈n〉 = ν

√
〈aH〉
lp

, ν =
1
2

1√
πe3

. (51)

Thus, as observed in [42] for the bosonic case, the assumption (27) allows us to
rigorously justify (23). This, in turn, gives a subleading correction in the entropy S that is
proportional to

√
aH , see (22).

5. Discussion and Outlook

It has been shown that in loop quantum gravity based on non-chiral real variables,
apparent horizons (isolated horizons, to be precise) carry surface degrees of freedom
whose entropy, in the quantum theory, is proportional to the area of the horizon [6–13].
The constant of proportionality can be set to the Bekenstein–Hawking value by a judicious
choice of the free parameter of the theory, the Immirzi parameter.

However, when analytically continuing the state counting function in Immirzi param-
eter and state quantum numbers in a way suggesting a transition from real variables to
the chiral Ashtekar variables, the correct factor in the area-entropy relation is recovered
without any fine tuning [15,16].

Here we have explained that a similar result holds true in N = 1 supergravity
quantized with loop quantum gravity methods [14]. The isolated horizons are now replaced
by boundaries with a boundary condition that preserves local supersymmetry on the
boundary. The calculations strongly suggest that the boundary theory has an entropy
S = A/4—a quarter of its super-area in Planck units. We also have considered the statistical
physics of the boundary degrees of freedom for the first time, assuming an area-energy
relation as in the non-supersymmetric theory. We were able to show that the grand
canonical ensemble exists below a critical temperature and compute expectation values for
the area, spins, and number punctures. These results are again analogous to those of the
non-supersymmetric theory.

These results were by no means assured from the get-go. The first non-trivial result
was that the boundary theory was a Chern–Simons theory precisely for the chiral case,
and that the requirement of supersymmetry on the boundary uniquely fixes boundary
conditions (8) that are structurally similar to those of the non-supersymmetric theory.
The next important puzzle piece is the existence of a compact real form of OSp(1|2)C.
We were able to calculate a Verlinde-type formula explicitly for the case of a large level.
Moreover, there exist OSp(1|2)C representations with the real area, and the corresponding
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analytic extension of the formula for the number of states makes sense and yields the
Bekenstein–Hawking relation.

We note that Chern–Simons level is proportional to the inverse of the cosmological
constant. Therefore the large-k limit makes physical sense; we could deal with the classical
superalgebra instead of a quantum supergroup. We also note that there is a slight change
in the leading order term in the number of states, as compared to the non-supersymmetric
theory: there appears an additional factor of two in the exponent, but it can be interpreted
simply as the area spectrum for two-sided punctures.

A further difference to the bosonic case is that the boundary conditions are not directly
tied to the boundary being an isolated horizon. One can, however, speculate that the
boundary condition in the bosonic case is only a necessary condition, not sufficient for the
existence of an isolated horizon (see, for instance, the discussion in [43,44]) and that the
boundary condition we considered can be shown to be necessary for the existence of some
sort of apparent horizon through future work.

There is a further issue with our calculation that needs greater understanding. The cou-
pling of the bulk excitations to the boundary theory can be interpreted as required gauge
invariance, which in turn is equivalent to the implementation of the left supersymmetry
constraint. The right-handed supersymmetry constraint was not implemented directly.
However, one can speculate that it does not reduce the number of surface states in the
highest order. This is very similar to the assumption for the Hamilton constraint in the
bosonic theory, which is also not implemented. In addition, we have only implemented the
reality conditions in the sense of analytically continuing to representations with real areas.
It is possible that more is necessary. These issues warrant further attention.

Additionally, the results should be generalized to include extended supersymmetry,
N > 1. Ref. [19] provides a good understanding of how the bulk theory would look like
for N = 2. This could be a basis to extend the entropy calculation to more interesting
theories with N = 2. Complementary to this, one would like to understand how to
describe the horizons of BPS black holes and their boundary theory in loop quantum
gravity and attempt a calculation of their entropy to compare with the treatment in string
theory [4,5]. Additionally, OSp(m|n)C super Chern–Simons theories with a complex level
k are found as boundary theories in string theory [41]. We would like to understand the
possible connections of [41] to the present work in general, and in particular between the
analytic continuation considered there and the one we use.
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Notes
1 The area with respect to the bosonic component of the super-geometry is not gauge invariant and, therefore, not observable.

However, in a gauge in which the superelectric field has vanishing odd components, the super area, and the bosonic area would
agree.

2 This is actually the case for both, N = 1 and 2, [19], but here we consider N = 1 only.
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3 Here, a capital letter is used to denote the Majorana fermion field (containing both chiralities). The chiral subcomponents
are denoted, respectively, by lower case letters ψr and ψr (with the position of the R-symmetry index explicitly indicating the
chirality).

4 We remind the reader that ∆ is the boundary of the spatial slice Σ, i.e., a spatial slice of the boundary H of spacetime manifold M.
5 Here we have started summation at n = 1, since the approximation (29) is ill-defined for n = 0. It is valid only for large n anyway,

and the low n contributions do not make a difference in the macroscopic regime, but it is convenient to keep them to obtain
closed-form expressions in the following.
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